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Abstract

We present a novel, hybrid parallel continuous collision detection (HPCCD) method that exploits the availability of

multi-core CPU and GPU architectures. HPCCD is based on a bounding volume hierarchy (BVH) and selectively

performs lazy reconstructions. Our method works with a wide variety of deforming models and supports self-

collision detection. HPCCD takes advantage of hybrid multi-core architectures – using the general-purpose CPUs

to perform the BVH traversal and culling while GPUs are used to perform elementary tests that reduce to solving

cubic equations. We propose a novel task decomposition method that leads to a lock-free parallel algorithm in the

main loop of our BVH-based collision detection to create a highly scalable algorithm. By exploiting the availability

of hybrid, multi-core CPU and GPU architectures, our proposed method achieves more than an order of magnitude

improvement in performance using four CPU-cores and two GPUs, compared to using a single CPU-core. This

improvement results in an interactive performance, up to 148 fps, for various deforming benchmarks consisting of

tens or hundreds of thousand triangles.

1. Introduction

Collision detection between deforming models is a funda-
mental technique in various applications including games,
physically-based simulation, CAD/CAM, and computer an-
imation. Collision detection is classified as two categories:
discrete and continuous methods.

Discrete collision detection (DCD) finds intersecting prim-
itives at discrete time steps. DCD can be performed quite
efficiently, but may miss colliding primitives that occur be-
tween two discrete time steps. This issue can be quite prob-
lematic in physically-based simulations, CAD/CAM, etc. On
the other hand, continuous collision detection (CCD) identi-
fies intersecting primitives at the first time-of-contact (ToC)
during a time interval between two discrete time steps. Typ-
ically, CCD is performed by using bounding volume hi-
erarchies (BVHs) of input models. The BVHs are hierar-
chically traversed to find contacts among models. At the
leaf nodes of the BVHs, elementary tests detecting the first
ToC and the corresponding intersecting primitives are per-
formed [Pro97]. CCD methods, however, require much more
computation time compared to DCD methods and have not
been widely used in interactive applications.

To improve the performance of CCD methods, many prior
approaches accelerate the performance of CCD by designing
specialized algorithms on certain types of models (e.g., rigid
objects [RKC02], articulated bodies [ZRLK07], and meshes
with fixed topology [GKJ∗05, WB05]), developing efficient
culling methods [CTM08, TCYM08], and introducing CPU
or GPU parallel collision detection methods [GRLM03,
KP03, HTG04, SGG∗06, LL02, FF04, TMT09]. Prior meth-

ods supporting self-collision detections and the general
polygonal models may take hundreds of milliseconds and
even a few seconds on performing CCD for deforming mod-
els consisting of hundreds of thousand triangles and may not
be suitable for interactive applications.

Recently, instead of continuing to increase the clock fre-
quency of a single core, the number of cores on a single
chip has continued to increase [Bor07]. Current commodity
CPUs have up to four or eight cores and current GPUs have
more than hundreds of cores [NVI08]. With the number of
cores expected to continue to increase, designing algorithms
that can properly exploit the multi-core architectures will be
critical to achieve overall performance improvement.

Main contributions: We present a novel hybrid parallel
continuous collision detection (HPCCD) method utilizing
both CPUs and GPUs to achieve the interactive perfor-
mance of CCD between deforming models consisting of
tens or hundreds of thousands of triangles. Our HPCCD
method supports various kinds of deforming models and
self-collision detection. Our method uses BVHs of deform-
ing models and selectively performs a lazy BV reconstruc-
tion method to improve the performance of CCD. Since
CPUs are capable of complex branch predictions and effi-
ciently support irregular memory accesses, we use CPUs to
perform the BVH traversal and culling. In order to design
a highly scalable CPU-based hierarchy traversal and culling,
we propose a novel task decomposition that leads a lock-free
parallel algorithm in the main loop of our collision detection
method, although we use locks in non-critical parts (Sec. 4).
Since GPUs are highly optimized for the regular streaming
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Figure 1: These images show two frames of our cloth simu-

lation benchmark consisting of 92 K triangles. In this bench-

mark, our method spends 23 ms for CCD including self-

collisions on average and achieves 10.4 times performance

improvement by using four CPU-cores and two GPUs over

a serial CPU-based CCD method.

floating-point operations, we use GPUs to execute the ele-
mentary tests of the CCD that reduce to solving cubic equa-
tions (Sec. 5).

In order to test our method, we apply our method to various
benchmarks consisting of tens or hundreds of thousands of
triangles (Sec. 6). In the tested benchmarks, our method im-
proves the performance of CCD by more than an order of
magnitude using four CPU-cores and two GPUs compared
with using a single CPU-core. This performance improve-
ment results in the interactive performance, up to 148 fps,
for CCD in our benchmarks. This performance improvement
is caused by reducing dependencies among parallel compu-
tational tasks and exploiting both CPUs and GPUs. We con-
clude and present future directions in Sec. 7 .

2. Related Work

The problem of collision detection (CD) has been well
studied and excellent surveys are available [LM03, Eri04,
TKH∗05]. In this section, we review previous work related
directly to our method.

2.1. Continuous Collision Detection (CCD)

There are many different CCD approaches and some of
them include algebraic methods [Pro97,KR03], adaptive bi-
section [SSL02], etc. CCD methods have been further op-
timized for rigid models [RKC02] and articulated mod-
els [ZRLK07]. CCD methods for deformable polygonal
meshes were initially designed for meshes with fixed con-
nectivity [GKJ∗05,WB05] and, recently, have been extended
to models with topology changes [CTM08,TCYM08]. Also,
a few culling techniques have been proposed to remove re-
dundant elementary tests for CCD [TCYM08, CTM08].

2.2. Parallel Collision Detection

There have been considerable efforts to perform collision de-
tection efficiently using GPUs [HTG04, KP03, GRLM03].
Govindaraju et al. [GRLM03] proposed an approach for fast
CD between complex models using GPU-accelerated visi-
bility queries. There have been GPU-based algorithms for

self-collision [VSC01,GKJ∗05] specialized for certain types
of input models (e.g., closed objects). Sud et al. [SGG∗06]
proposed a unified GPU-framework for various proximity
queries including CCD between various deforming models.

A few CPU-based parallel CD methods also have been pro-
posed. Lawlor and Laxmikant [LL02] proposed a voxel-
based CD method for static models and achieved up to
60% parallel efficiency by using distributed-memory paral-
lel machines and applying a generic load-balancing method.
Figueiredo and Fernando [FF04] designed a parallel CD al-
gorithm for a virtual prototype environment. This method
achieved its best performance, 100% improvement, by using
four CPU-cores over using a single-core and then showed
lower performance as more CPUs were added. These par-
allel methods supported only DCD for static models. Tang
et al. [TMT09] proposed a front-based task decomposition
method that utilizes multi-core processors for collision de-
tection between deformable models. Their CPU-based paral-
lel method achieves a high scalability by even using 16 CPU-
cores. We will compare our method with this CPU-based
parallel method in Sec. 6.3.

2.3. Lock-Free Parallel Algorithms

The traditional synchronization based on locks can degrade
the performance of parallel algorithms because of lock con-
tention [CS99]. To address this problem, there have been
many efforts to reduce or eliminate the use of locks by de-
signing lock-free algorithms relying on atomic swap instruc-
tions [Her03]. However, these lock-free algorithms are based
on the assumption that actual lock contentions are rare and
thus reducing conflicting accesses to shared data structure is
crucial. On the other hand, our HPCCD method eliminates
conflicting accesses to shared BVH data in the main loop
of CD part based on our novel task decomposition method,
although locks are only used in non-critical parts.

3. Overview

In this section, we give a background on CCD and an
overview of our hybrid parallel method.

3.1. Background on CCD

In order to find intersecting primitives at the first ToC dur-
ing a time interval between two discrete time steps, CCD
methods model continuous motions of primitives by lin-
early interpolating positions of primitives between two dis-
crete time steps. We also use this linear continuous mo-
tion. There are two types of contacts: inter-collisions be-
tween two different models and intra-collisions, i.e., self-
collisions, within a model. Both contacts arise in two contact
configurations, vertex-face (VF) case and edge-edge (EE)
cases. These two cases are detected by performing VF and
EE elementary tests, which reduce to solving cubic equa-
tions given the linear continuous motion between two dis-
crete time steps [Pro97].

BVHs are widely used to accelerate the performance of
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Figure 2: These images are from the breaking dragon

benchmark consisting of 252 K triangles, the most challeng-

ing benchmark in our test sets. Our method spends 54 ms

for CCD including self-collisions and achieves 12.5 times

improvement over a serial CPU-based method.

CCD methods. Some of the commonly used types of bound-
ing volumes (BVs) include spheres, axis-aligned bound-
ing boxes (AABBs), oriented bounding boxes (OBBs),
etc [TKH∗05, LM03]. We use the AABB representation be-
cause of its fast update method, simplicity, and wide ac-
ceptance in various collision detection methods [TKH∗05].
Given a BV node n of a BVH, we use notations of L(n) and
R(n) to indicate the left child and right child nodes of the
node n. As models are deforming, we have to update BVHs
of such deforming models. We update BVHs based on a se-
lective restructuring method, which reconstructs small por-
tions of BVHs that may have poor culling efficiency and re-
fits the rest of portions of BVHs by traversing the BVH in a
bottom-up manner [YCM07,TKH∗05]. We also combine the
selective restructuring method with a lazy BV construction
method.

3.2. Common BVH-based Collision Detection

For BVHs of deforming models, we merge these BVHs
into a BVH and then perform our CCD method with the
merged BVH. In this case, inter-collisions among multiple
objects and self-collisions within each object can be com-
puted by performing self-collision detection with the merged
BVH [TKH∗05]. We initially perform collision detection be-
tween two child nodes of the root node of the BVH. To
do that, we create a collision test pair consisting of these
two nodes. Then, we push the pair into a queue, called col-

lision test pair queue. In the main loop of the CD algo-
rithm, we dequeue a pair (n,m) consisting of BV nodes n

and m from the queue and perform a BV overlap test be-
tween two BV nodes, n and m, of the pair. If there is an
overlap, we refine two BV nodes with their two child BV
nodes and create four different collision pairs, (L(n),L(m)),
(L(n),R(m)), (R(n),L(m)), and (R(n),R(m)). If we have to
find self-collisions within nodes n and m for dynamically
deforming models, we also create two additional collision
pairs, (L(n),R(n)) and (L(m),R(m)). When we reach leaf
nodes during the BVH traversal, we perform the VF and EE
elementary tests between features (e.g., vertex, edges, and
faces) associated with the leaf nodes. We continue this pro-
cess until there is no more collision pairs in the queue.

Issues of parallelizing the BVH-based CD: Parallelizing

the BVH-based CD is rather straightforward. One naive ap-
proach is to divide the pairs stored in the collision test pair
queue into available threads. Then, each thread performs
the BVH traversal and adds collision test pairs into its own
queue without any locking. However, threads have to use a
locking mechanism for reconstructing a BV of a node. We
found that this naive method shows poor scalability (Fig. 7).
Two issues cause this low performance. The first one is that
contacts among objects occur in localized regions of objects
and processing a pair may generates a high number of ad-
ditional pairs or may terminate soon after. This high vari-
ance of the computational workload associated with each
pair requires frequent redistributions of computational work-
load for a load-balancing among threads and results in a high
overhead. The second one is that using locks to avoid simul-
taneous reconstructions on the same node serializes these
multiple threads and hinders the maximum utilization of
multi-core architectures. In this paper, we propose a scalable
parallel CD method that addresses these issues.

3.3. Overview of Our Approach

At a high level, our HPCCD method consists of two parts
(see Fig. 3): 1) CPU-based BVH update and traversal with
lazy BV reconstructions and 2) GPU-based VF and EE ele-
mentary tests.

Our HPCCD method first updates a BVH of a deforming
model by refitting the BVs. Then, we perform the BVH
traversal and culling by using multiple CPU threads. During
the BVH traversal, we also perform selective BV reconstruc-
tion method in a lazy manner. In order to design a highly
scalable algorithm, we decompose the BVH traversal into
inter-CD task units, which enable a lock-free parallel algo-
rithm in the main loop of our collision detection method.
These inter-CD task units are guaranteed to access differ-
ent sets of nodes and do not require any locking mechanism
for lazy BV reconstructions on BV nodes. We also propose
a simple dynamic task reassignment method for high load-
balancing among threads by partitioning inter-CD task units
of a thread to other threads. When reaching leaf nodes during
the BVH traversal, we send potentially intersecting triangles
contained in the two leaf nodes to GPUs and perform ele-
mentary tests constructed from the triangles using GPUs. In
order to minimize the time spent on sending data, we asyn-
chronously send the mesh information to GPUs during the
BVH update and traversal. We only send colliding primi-
tives and their contact information (e.g, a contact point and
normal) at the first ToC to CPUs after finishing the tests.

4. Inter-CD based Parallel CCD

In this section, we explain our novel decomposition and task
reassignment methods for the CPU-based hierarchy traversal
and culling of the HPCCD method.

We define a few terminologies to describe our method. We
define an inter-collision test pair set, ICTPS(n), to denote
all the collision test pairs generated in order to find inter-
collisions between two child nodes of a node n. We define
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Figure 3: This figure shows the overall structure of the

HPCCD method. It performs the BVH update and traversal

at CPUs and the elementary tests at GPUs.

two nodes to have a parent-child relationship if one node is
in the sub-tree rooted at the other.

4.1. Inter-CD based Decomposition

Our task decomposition method for the parallel CPU-based
BVH traversal is based on task units of an inter-collision de-
tection, inter-CD. Each inter-CD task unit processes colli-
sion test pairs represented by ICTPS(n) of a node n. To as-
sign task units to each CPU thread, we push a node n into
a task unit queue and associate the queue with the thread.
Inter-CD task unit has two phases: 1) setup phase and 2)
the BVH traversal phase performing BV overlap tests. In
the setup phase of an inter-CD task, we first fetch a node,
nS, from its task unit queue and refine the node into its two
child nodes L(nS) and R(nS). If we have to perform the self-
collision detection, we push those two child nodes that will
generate other inter-CD task units into the task unit queue.
We also create a scheduling queue for dynamic task reas-
signment for a load-balancing, which will be explained in
Sec. 4.3.

After the setup phase, we perform the BVH traversal phase.
During the BVH traversal phase, we use a collision test
pair queue as used in the common BVH-based traver-
sal explained in Sec. 3.2. We assign a collision test pair
(L(nS),R(nS)) into the collision test pair queue. Then, we
fetch a pair consisting of two nodes n and m from the col-
lision test pair queue and perform a BV overlap test be-
tween two BV nodes n and m of the pair. If there is a BV
overlap, we refine both of those two nodes into L(n), R(n),
L(m), and R(m). Then, we construct four collision test pairs,
(L(n),L(m)), (L(n),R(m)), (R(n),L(m)), and (R(n),R(m)),
and push them in the collision test pair queue. We continue
this process until we reach leaf nodes. If we reach leaf nodes,
we perform exact VF and EE elementary tests between fea-
tures associated with the leaf nodes by using GPUs. If there
is any collision, we put the collision result into a result

buffer.

Disjoint property of inter-CD task units: During process-
ing an inter-CD task unit of a node n, we create and test
various collision test pairs, ICTPS(n), of nodes that are in the
sub-tree rooted at the node n. If there is no parent-child rela-
tionship between two nodes, say n and m, we can easily show
that a set of accessed nodes during performing ICTPS(n) is
disjoint from another set of accessed nodes during perform-
ing ICTPS(m). We will utilize this disjoint property to design
an efficient parallel CCD algorithm (Sec. 4.2 and Sec. 4.3).

High-level

nodes

Low-level nodes

Front

n5

n6

n7

n4 Thread 1

Thread 2

Thread 3

Thread 4

Initial task assignmentn1

n2 n3

n6n4 n5 n7

Front

Figure 4: This figure shows high-level and low-level nodes

given four available threads. The right portion of the figure

shows an initial task assignment for the four threads.

Serial CCD method: Before we explain our HPCCD
method, we first explain how to perform CCD with a sin-
gle thread based on inter-CD task units. Given a BVH
whose root node is nR, we perform an inter-CD task unit,
ICTPS(nR), of the node nR. At the end of processing the
task unit of ICTPS(nR), the collision test pair queue is empty.
However, the task unit queue may have two nodes, which are
two child nodes of nR. We fetch a node, n, from the task unit
queue and perform ICTPS(n). We continue this process until
there is no node in the task unit queue. Then, the result queue
contains all the self- and intra-collisions among the original
deforming models. An important property in this serial CCD
method is that any pair of nodes in the task unit queue do not
have the parent-child relationship.

Note that our serial CCD algorithm based on inter-CD task
units is constructed by simply reordering the processing or-
der of collision test pairs of typical BVH-based CD methods
explained in Sec. 3.2.

4.2. Initial Task Assignment

Each thread is initialized with a node n. If nodes assigned to
threads satisfy the disjoint property, we do not need to use
expensive locking mechanisms to prevent multiple threads
from attempting to reconstruct the same BV node for a lazy
BV reconstruction during the BVH traversal.

To guarantee that nodes assigned to threads do not have any
parent-child relationship and thus satisfy the disjoint prop-
erty, we compute such nodes by maintaining a front while
we traverse the BVH from its root node in the breadth-first
order (see Fig. 4). If the size of the front is same as the num-
ber of available threads, we stop the BVH traversal and as-
sign each node in the front to each thread. We refer to those
nodes and all the nodes in the sub-trees rooted at those nodes
as low-level nodes while all the other nodes are referred to
as high-level nodes. An example of low-level and high-level
nodes for four threads is shown in Fig. 4.

In the same manner with the serial CCD method described in
Sec. 4.1, each thread finds collisions that occur in a subtree
of the node that is initially assigned to the thread. Once each
thread finishes its computation, we process inter-CD task
units of high-level nodes. First, we process parent nodes, n2
and n3 in the case of Fig. 4, of initially assigned nodes to
each thread. We wait until the processing of inter-CD task
units of two nodes n2 and n3 finishes and then process their
parent node, n1. While processing high-level nodes, we do
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not add child nodes of those nodes to the task unit queue
since we already processed inter-CD tasks of those child
nodes.

In this simple task assignment method, we can traverse the
BVH, perform the overlap tests, and invoke lazy BV re-
constructions, if necessary, without any locking. However,
a thread can finish its assigned task units much earlier than
other threads because of the localized contacts among ob-
jects. In this case, it is desirable to divide task units of a
thread to the thread finishing its task to fully utilize all the
available p threads. For this, we propose a dynamic task re-
assignment in the next section.

4.3. Dynamic Task Reassignment

Suppose that a thread finishes its computation and there is
no more nodes left in the task unit queue. We will refer to
this thread as a requesting thread trequest . In order to uti-
lize this requesting thread trequest , we detect another thread
tdist called a distribution thread that can give its computation
workload to the requesting thread trequest . At a high level,
we choose to distribute an inter-CD task unit that may have
the highest computation workload to the requesting thread.
More specifically, we choose a distribution thread tdist with
the highest number of triangles associated with the front
node in its task unit queue among threads. Then, the distri-
bution thread tdist gives the front node in its task unit queue
to the requesting thread trequest .

The main rationale of this approach is as follows. Nodes in
the task unit queue represent inter-CD task units and can
be distributed to other threads, since there are no parent-
child relationships among these nodes. The front node in the
task unit queue in each thread is likely to cause the high-
est computational workload among nodes in the queue given
the breadth-first order traversal of the BVH. Moreover, we
expect that there will be more computational workload of
processing an inter-CD task unit of a node as the number
of triangles associated with the sub-tree rooted at the node
is higher. We found that this simple dynamic task reassign-
ment method works quite well in the tested benchmark and
achieves up to a 7 times performance improvement by using
8 CPU-cores compared to using a single CPU-core.

Suppose that a requesting thread trequest chooses a distribu-
tion thread tdist . To request the distribution of computation
workloads, trequest places a request to the scheduling queue
of the thread tdist . To place the request, a locking to the
scheduling queue is required since other threads may attempt
to access the same scheduling queue to place their requests.
After placing the request, trequest sleeps.

In each thread, we check whether its own scheduling queue
is empty or not by looking at its size right after finishing all
the collision test pairs and before performing another inter-
CD task unit. If there are no requests in the queue, the thread
continues to process another inter-CD task unit by fetch-
ing a node from its task unit queue. If there are requests in
the scheduling queue, we distribute its computational work-
load stored in the task unit queue to the requesting threads.

After distributing the computational workload, the distribu-
tion thread tdist sends wake-up messages with the partitioned
nodes to the requesting threads. Once a requesting thread
trequest receives the wake-up message, the thread pushes the
received node into its task unit queue and resumes its com-
putation by performing inter-CD task units. Pseudo-code of
our parallel CCD algorithm based on inter-CD task units is
shown in Listing 1. Note that we do not perform any syn-
chronization nor locking in the main collision detection loop.

Perform_Self_CD ( node n ) {
TaskUnit_Q <− n ;

whi le ( ! TaskUint_Q . Empty ( ) ) {
n <− TaskUint_Q . Dequeue ( ) ;

i f ( n has c h i l d nodes ) {
TaskUint_Q <− L ( n ) and R( n ) ;
Pa i r_Q <− ( L ( n ) ,R( n ) ) ;

}

whi le ( ! Pa i r_Q . Empty ( ) ) { / / Main CD loop
P a i r <− Pai r_Q . Dequeue ( ) ;
Per fo rm l a z y r e c o n s t r u c t i o n f o r nodes o f

P a i r ;

i f ( I s O v e r l a p ( P a i r ) ) {
i f ( I s L e a f ( P a i r ) )

Per fo rm e l e m e n t a r y t e s t s ;
e l s e

Pai r_Q <− R e f i n e ( P a i r ) ;
}

}

i f ( ! Schedul ingQ . Empty ( ) )
D i s t r i b u t e i t s work t o t h e r e q u e s t i n g

t h r e a d ;
}

Reques t t o a d i s t r i b u t i o n t h r e a d and s l e e p ;
}

Listing 1: Pseudocode of HPCCD method

4.4. Parallelizing an Inter-CD Task Unit

During processing high-level nodes, the number of inter-CD
task units that can run in parallel is smaller than the number
of available threads. In order to fully utilize all the avail-
able CPU threads, we propose an algorithm that performs an
inter-CD task unit in a parallel manner.

Our method is based on a simple observation: we do not per-
form many lazy BV reconstructions while processing high-
level nodes since we already traversed many nodes and per-
formed lazy reconstructions during processing inter-CD task
units of low-level nodes. Therefore, we choose to use a lock-
ing mechanism for lazy BV reconstructions. Since recon-
structions of BVs happen rarely during processing high-level
nodes, there is a very low chance of a thread waiting for a
locked node. By using the locking mechanism, we can arbi-
trarily partition the pairs of the collision test pair queue into k
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Figure 5: This figure shows two frames during the N-

body simulation benchmark with two different model com-

plexities: 34 K and 146 K triangles. Our method spends

6.8 ms and 54 ms on average and achieves 11.4 times

and 13.6 times performance improvements for two different

model complexities.

available threads. For partitioning, we sequentially dequeue
and assign a pair into k threads in a round robin fashion. We
choose this approach since collision test pairs located closely
in the queue may have similar geometric configurations and
thus have similar computation workload during processing
collision test pairs.

5. GPU-based Elementary Tests

Once we reach leaf nodes of the BVH, we perform the VF
and EE elementary tests. To perform VF and EE elementary
tests between two potentially colliding primitives at GPUs,
we need to send necessary information to the video memory
of GPUs. Since sending data from main memory of CPUs
to the video memory of GPUs can take high latency, we
send the mesh information to GPUs during the BVH update
and traversal asynchronously in order to hide the latency of
sending the data. Then, when we reach leaf nodes of BVHs,
we send two triangle indices of two potentially intersecting
triangles. At the GPUs, we construct the VF and EE tests
from two triangles referred by the two indices and solve cu-
bic equations to compute the contact information at the first
ToC.

5.1. Communication between CPUs and CPUs

In our HPCCD framework, multiple CPU threads gener-
ate elementary tests simultaneously. For sending data from
CPUs to GPUs, an easy solution would be to let each CPU
working thread send two triangle indices to GPUs. How-
ever, we found that this approach requires a high overhead
since GPUs have to maintain individual device contexts for
each CPU thread [NVI08]. Instead, we use a master CPU-
GPU communication thread, tmaster (see Fig. 3). Each CPU
thread requests the master thread to send the data to GPUs.
The overall communication interface between the CPUs and
GPUs is shown in Fig. 3.

The master thread maintains a triangle index queue (TIQ).
The TIQ consists of multiple (e.g., 128) segments, each of
which can contain thousands (e.g., 2K) of a pair of two tri-
angle indices. Each segment can have three different states:
"empty", "full", and "partial" states. If all the elements of

a segment are empty or filled, the segment has the state of
"empty" or "full" respectively. Otherwise, it has the "partial"
state. The TIQ has a window that looks at c consecutive seg-
ments to see whether they are full and ready to be transfered
from main memory to the video memory, where c is set to
be the one fourth of the maximum size of the TIQ. Also,
the TIQ has a front pointer that indicates a next available
empty segment. Initially, the master thread gives two empty
segments to each CPU thread. Once a CPU thread requests
a new empty segment from the master thread, the master
thread gives the empty segment referred by the front pointer
and updates the position of the front pointer by finding an
empty segment sequentially in the TIQ. The master thread
also maintains a GPU task queue (GTQ) that holds elements,
each of which contains segments that has been sent to the
GPUs, a state variable indicating whether the GPU finishes
processing the elementary tests of the sent segments, and an
output buffer that can contain the contact information at the
first ToC.

As each CPU working thread performs the BVH traversal,
it adds two triangle indices to one segment from the two as-
signed segments. When the segment does not have additional
space to hold any more triangle indices, the thread sets the
state of the segment to be "full". Then, the thread asks a new
segment from the master thread. Meanwhile, the thread does
not wait for the master thread and asynchronously continues
to perform the BVH traversal with the other segment. In this
way we can hide the waiting time for a new empty segment
that has been requested to the master thread.

Procedure of the master thread: The master CPU-GPU
communication thread performs the following steps in its
main loop. The first step is to look at the consecutive seg-
ments in the TIQ’s window. If there are multiple consecutive
"full" segments, we send these consecutive "full" segments
to GPUs with one data sending API call and push them in
one element of the GTQ. The reason why we send consecu-
tive segments is to reduce the number of calls of data send-
ing API, which has a high kernel call overhead [NVI08].
We then update the window position by sliding it right af-
ter the transmitted consecutive segments in the TIQ. Note
that any "partial" segments are not sent and will be checked
again for the transmission when the window contains these
segments later. When a GPU finishes processing all the el-
ementary tests constructed from the segments received, the
GPU sets the state variable of the element of the GTQ to be
"data ready" and stores all the colliding primitives in the out-
put buffer of the queue element. As a next step, the master
thread goes over all the elements in the GTQ and remove el-
ements that have the "data ready" state. We also update the
result buffer that contains the contact information at the first
ToC with output buffers of these removed elements. Then,
we make segments of these "data ready" elements to have
the "empty" state in order to be reused for a next request of
"empty" segments. The final step of the master thread is to
process requests of "empty" segments from CPU threads.

Load balancing between CPUs and GPUs: When we use
a low-end GPU and high-end CPUs, we found that the GPU
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may not process all the elementary tests generated from
these CPU-cores, thus requiring additional GPUs to load-
balance and achieve a further performance improvement.
Without having additional GPUs, we can load-balance the
elementary tests across both the CPUs and GPUs to achieve
an additional performance improvement by using CPUs to
process the elementary tests instead of generating and send-
ing the elementary tests to the GPUs. To do this, a CPU
working thread checks whether the GTQ’s size is bigger than
the number of GPU cores, right before the CPU thread fin-
ishes to fill a segment and requests an "empty" segment. If
the GTQ’s size is bigger than the number of GPU cores, we
assume that the GPUs are busy and cannot process all the
segments produced by CPUs. In this case, the CPU thread
processes the half of the elementary tests of the "full" seg-
ment and continues to performs the BVH traversal until it
fills the half-empty segment. Once the segment becomes full
again, the CPU thread checks the queue size of GTQ and
performs the same procedure again.

6. Implementation and Results

We have implemented our HPCCD method and tested it
with two different machines. The first one is an Intel Xeon
desktop machine with two 2.83 GHz quad-core CPUs and
a GeForce GTX285 GPU. The second one is an Intel i7
desktop machine with one 3.2 GHz quad-core CPU and two
Geforce GTX285 GPUs. The Intel i7 processor supports the
hyper-threading [CS99]. We will call these two machines
8C1G (8 CPU-cores and 1 GPU) and 4C2G (4 CPU-cores
and 2 GPUs) machines for the rest of the paper. We use the
OpenMP library [DM98] for the CPU-based BVH traversal
and CUDA [NVI08] for the GPU-based elementary tests.
We also use a feature-based BVH using Representative-

Triangles [CTM08] in order to avoid any redundant VF and
EE elementary tests.

Parallel BVH update: Before we perform the CCD using a
BVH, we first refit BVs of the BVH. Our algorithm traverses
the BVH in a bottom-up manner and refits the BVs. To de-
sign a parallel BVH refitting method utilizing k threads, we
compute 2k nodes in a front as we did for the initial task as-
signment of inter-CD task units to threads in Sec 4.2. Then,
we assign the first k nodes stored in the front to each thread
and then each thread performs the BV refitting to the sub-
tree rooted at the node. Since the BVH is unlikely to be bal-
anced, a thread can finish its BV refitting earlier than other
threads. For the thread finishing its refitting, we assign the
next available node in the front to the thread. During the
BVH traversal, we identify and selectively restructure BVs
with low culling efficiency. To do that, we use a heuristic
metric proposed by Larsson and Akenine-Möller [LAM06].
We perform a lazy BV reconstruction by using a simple
median-based partitioning of triangles associated with the
node.

Benchmarks: We test our method with three types of dy-
namic scenes (see Table 1). The first benchmark is a cloth
simulation, where a cloth drapes on a ball and then the ball

Model Tri. (K) Image Avg. CCD time (ms)

Cloth simulation 92 Fig. 1 23.2
Breaking dragon 252 Fig. 2 53.6
LR N-body simulation 32 Fig. 5 6.8
HR N-body simulation 146 Fig. 5 53.8

Table 1: Dynamic Benchmark Models

is spinning (Fig. 1). This benchmark consists of 92 K tri-
angles and undergoes severe non-rigid deformations. In our
second benchmark, a bunny collides with a dragon model.
Then, the dragon model breaks into numerous pieces (Fig.
2). This model has 252 K triangles. Our final benchmark
is a N-body simulation consisting of multiple moving ob-
jects (Fig. 5). We compute two different versions with differ-
ent model complexities of this benchmark: a high-resolution
(HR) version has 146 K triangles and a low-resolution (LR)
has 32 K triangles. Each object in this benchmark may un-
dergo a rigid or deformable motion and objects collide with
each other and the ground. These models have different
model complexities and characteristics. As a result, they are
well suited for testing the performance of our algorithm.

6.1. Results

We measure the time spent on performing our HPCCD in-
cluding self-collision detection with two different machines.
We achieve the best performance with the 4C2G machine,
the four CPU-cores machine with two GPUs.

In the 4C2G machine, the HPCCD method spends 23.2 mil-
liseconds (ms), 53.6 ms, 6.8 ms, and 53.8 ms on average for
the cloth simulation, the breaking dragon, and LR/HR N-
body simulations respectively; we will report results in this
benchmark order for the rest of the tests. These computa-
tion times translate to about 43, 19, 148 and 19 frame per
seconds (fps) for the four benchmarks respectively. Com-
pared to using a single CPU-core, we achieve 10.4, 12.5,
11.4, and 13.6 times performance improvements. We also
show the performance of HPCCD with different numbers of
CPU threads and GPUs with the two different machines (see
Fig. 6).

We measure the scalability of our CPU-based BVH update
and traversals of our HPCCD method as a function of CPU
threads (e.g., 1, 2, 4, and 8 threads) without using GPUs in
the 8C1G machine (see Fig. 7) with all the benchmarks. The
CPU part of our HPCCD method shows 6.5, 6.5, 6.4, and
7.1 times performance improvements by using 8 CPU-cores
over a single CPU-core version in the four benchmarks re-
spectively. We achieve a stable and high scalability near the
ideal linear speedup across our benchmarks that have differ-
ent model complexities and characteristics. This high scal-
ability is due to the lock-free parallel algorithm used in the
main loop of the collision detection.

6.2. Analysis

Our HPCCD method consists of four components; 1) BV re-
fitting, 2) parallel CCD with low-level and high-level nodes,
3) performing elementary tests, and 4) other serial compo-
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Figure 6: We measure the performance of our HPCCD with

four different benchmarks in two machines as we vary the

numbers of CPU threads and GPUs. We achieve 10 times to

13 times performance improvements by using the quad-core

CPU machine with two GPUs.

nents and miscellaneous parts (e.g., setup of threads). In the
serial version of the HPCCD using only one CPU-core, these
four components take about 3%, 19%, 77%, and 1% on av-
erage in our tested benchmarks respectively; the results will
be reported in the order each component appeared above for
the rest of the section. By offloading the elementary tests to
GPUs and parallelizing other components except for the se-
rial part, we were able to achieve up to a 13.6 times per-
formance improvement. By using the 4C2G machine, the
four components take about 12%, 81%, not-available, and
6.46% respectively. Since the time spent on performing el-
ementary tests in GPUs are overlapped with the CPU-based
BVH traversal, we could not exactly measure that compo-
nent. However, that component takes less than or equal to
that of the CPU-based BVH traversal.

Scalability of different components: We measure the scal-
ability of the first and the second components in the 8C1G
machine without using the GPU. We achieve 3.0 and 6.5 per-

formance improvements by using 8 CPU-cores over a single
CPU-core version for the first and second components re-
spectively. The low scalability of the first BV refitting com-
ponent is caused by its small workloads of the BV refitting
operations. Therefore, the overhead of our simple load bal-
ancing methods and frequent needs for load balancing lower
the scalability. We also measure the scalability of the com-
bination of the second and the third components; it shows
7.5 times performance improvement by using 8 CPU cores.
Since the portions of the second and the third components
are dominant in the CCD, we achieve a high scalability in the
whole CCD process despite the low performance improve-
ment of the BV refitting component.

We also measure the scalability of the third component of
performing elementary tests as a function of the number of
GPUs used in the 4C2G machine. We perform the CCD by
using only a single CPU-core and measure the time, Te, spent
on performing elementary tests after serializing the compo-
nents of the HPCCD. We then measure how much the overall
CCD time is reduced from using a single CPU-core to using
GPUs for the elementary tests. We refer to the reduced time
as Tr. The scalability of the third component can be com-
puted by a simple equation, Te/(Te−Tr). According to this
equation, we achieve 2.8 times and 4.6 times performance
improvements for the third component by using one GPU
and two GPUs respectively on average in the benchmarks.
However, we expect to achieve a higher scalability when us-
ing multiple CPUs, since we can generate more elementary
tests efficiently and thus utilize GPUs better.

Segment size in the TIQ: The size of a segment in the TIQ
affects the performance of the HPCCD, since it determines
the granularity of the communications from CPUs to GPUs
and between the master and slave threads. A small segment
size may lead to a high communication overhead between
the master and slave threads. On the other hand, a large seg-
ment size may cause GPUs to be idle at the beginning of the
BVH traversal, since GPUs should wait for "full" segments
from CPUs. We found that 2K entries for a segment show the
best performance for the tested benchmarks in the tested two
machines. However, bigger entries (e.g., 4K to 16K entries)
show only minor (e.g., 2 %) performance degradation.

Limitation: Our algorithm has certain limitations. Note that
the serial part of the HPCCD method takes 6.46% with the
4C2G machine. According to the Amdahl’s law [CS99], we
can achieve only 15 times more improvement in addition to
the 13 times performance improvement we have achieved by
using the 4C2G machine, although we would use unlimited
resource of CPUs and GPUs. Also, our method can detect a
case when GPUs do not keep up with CPUs and use CPUs
to perform elementary tests to achieve a higher performance.
However, our current algorithm does not attempt to achieve a
higher performance when GPUs are idle. We can implement
processing inter-CD task units in GPUs using the CUDA and
perform the inter-CD tasks in GPUs when GPUs are idle.
However, it requires further research to map the hierarchical
traversal well in the streaming GPU architectures. Also, we
mainly focus on the efficient handling of large deforming
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Figure 7: This figure shows the performance improvement

of our HPCCD method as a function of the number of CPU-

cores without using GPUs over using a single CPU-core.

The gray line, marked by triangles, shows an average per-

formance improvement of the naive approach described in

Sec. 3.2 with all the tested benchmarks.

models with consisting of tens or hundreds of thousands of
triangles. If the model complexity is small or we have to
handles models consisting of a small number of rigid bodies,
our method may not get a high scalability since there are not
many inter-CD task units that we can parallelize.

6.3. Comparisons

It is very hard to directly compare the performance of our
method over prior methods. However, most prior approaches
use either GPUs [GRLM03, KP03, HTG04, SGG∗06] or
CPUs [LL02, FF04, TMT09] to accelerate the performance
of CCD. One distinct feature of our method over prior meth-
ods is that it maps CPUs for the BVH traversal and GPUs
for performing elementary tests. Since these two different
components, the traversal and elementary tests, are more
suitable to CPUs and GPUs respectively, we decompose the
computation of CCD in such a way that it can fully exploit
the multi-core architectures of CPUs and GPUs. Therefore,
our method achieved more than an order of magnitude per-
formance improvement over using a single CPU-core and
showed interactive performance for large-scale deforming
models.

We compare our method with the current state of the art
technique proposed by Sud et al. [SGG∗06]. This method
supports the general polygonal models and CCD including
self-collision. We contacted authors of this technique, but
we were not able to get the binary of this method. There-
fore, we compare results of our method with their results
reported in their paper. Note that this comparison is rather
unfair, since they used a GeForce 7800, 3-years old graph-
ics card. Since their tested benchmarks are different from
ours, we measure an average ratio of model complexities
of tested benchmarks to the CCD times spent for process-
ing those benchmarks. The ratio of our method is 107 times
higher than that of their method. This means that our method
can process 107 times bigger model complexity given a unit
time or run 107 times faster given a unit model complexity
than their method. Also, according to the GPU performance
growth data from the GeFroce 7800 to GeForce GTX 280 for
the last 3 years [NVI08], the performance has been improved
about 6 times. Therefore, based on this information, we con-
jecture that our method is about 5 times to 10 times faster

than their method even though they would use two GeForce
GTX 285 GPUs that our method was tested. Moreover, they
reported that the performance of their method is limited by
the data read-back performance. Although the performance
of their method would have been improved by using a re-
cent GPU, data read-backs has not been much improved in
past years (e.g., about 3 times improvement in terms of data
bandwidth for three years in the past [NVI08]). They re-
ported that the data read-back from a GPU and other con-
stant costs even for small models span between 50 ms and
60 ms at least, which is even higher than or comparable to
the whole computation time of our HPCCD method tested
with large-scale deforming models.

We also compare our method with a CPU-based parallel
CCD method proposed by Tang et al. [TMT09]. This method
also achieved a high performance improvement by using
16 CPU-cores. However, our method achieves about 50%
and 80% higher performance with the same tested bench-
marks: the cloth simulation and LR N-body simulation re-
spectively. Since the portion of elementary tests is larger in
the LR N-body simulation, our hybrid method achieves a
higher performance improvement with the LR N-body sim-
ulation. Also, according to the Google Product Search † and
its reported lowest prices for CPUs and GPUs, the price of
the 16 CPU-cores (USD 7200) used in [TMT09] is 4.4 times
higher than that of the CPU (USD 995) and two GPUs (USD
640) of our 4C2G machine. Therefore, our method achieves
about 7 times higher performance per unit cost.

7. Conclusion and Future Work

We have presented a novel, hybrid parallel continuous colli-
sion detection method utilizing the multi-core CPU and GPU
architectures. We use CPUs to perform the BVH traversal
and culling since CPUs are capable of complex branch pre-
dictions and efficiently support irregular memory accesses.
Then, we use GPUs to perform elementary tests that reduce
to solving cubic equations, which are suitable for the stream-
ing GPU architecture. By taking advantage of both of CPUs
and GPUs, our method achieved more than an order of mag-
nitude performance improvement by using a four CPU-core
and two GPUs over using a single CPU-core. This resulted in
an interactive performance for CCD including self-collision
detection among various deforming models consisting of
tens or even hundreds of thousand triangles.

There are many avenues for future work. In addition to ad-
dressing our current limitations, we would like to extend
our current HPCCD method to exploit the Larrabee archi-
tecture [SCS∗08], which provides the 16-wide SIMD func-
tionality. We would also like to test the scalability of our
method with more CPUs and GPUs. Finally, we would like
to design parallel algorithms for other proximity queries in-
cluding minimum separation distance and penetration depth
queries.

† http://www.google.com/products
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