
pSyncPIM: Partially Synchronous Execution of
Sparse Matrix Operations for All-Bank PIM

Architectures
Daehyeon Baek†∗, Soojin Hwang‡, Jaehyuk Huh‡
†Technology Research, Samsung SDS, Seoul, Korea
‡School of Computing, KAIST, Daejeon, Korea

dh04.baek@samsung.com, sjhwang@casys.kaist.ac.kr, jhhuh@kaist.ac.kr

Abstract—Recent commercial incarnations of processing-in-
memory (PIM) maintain the standard DRAM interface and
employ the all-bank mode execution to maximize bank-level
memory bandwidth. Such a synchronized all-bank PIM con-
trol can effectively manage conventional dense matrix-vector
operations on evenly distributed matrices across banks with
lock-step execution. Sparse matrix processing is another critical
computation that can significantly benefit from the PIM archi-
tecture, but the current all-bank PIM control cannot support
diverging executions due to the random sparsity. To accelerate
such sparse matrix applications, this paper proposes a partially
synchronous execution on sparse matrix-vector multiplication
(SpMV) and sparse triangular matrix-vector solve (SpTRSV),
filling the gap between the practical constraint of PIM and the
irregular nature of sparse computation. It allows the execution
of the processing unit of each bank to diverge in a limited
way to manage the irregular execution path of sparse matrix
computation. It proposes compaction and distribution policies
for the input matrix and vector. In addition to SpMV, this paper
identifies SpTRSV is another key kernel, and proposes SpTRSV
acceleration on PIM technology. The experimental evaluation
shows that the new sparse PIM architecture outperforms NVIDIA
Geforce RTX 3080 GPU by 4.43× speedup for SpMV and
3.53× speedup for SpTRSV with a similar amount of DRAM
bandwidth.

Index Terms—processing-in-memory, sparse matrix, memory
bandwidth, predicated execution.

I. INTRODUCTION

Despite rapidly increasing GPU computation capability to
the PFLOPS scale, the improvement in memory bandwidth
has been lagging behind [3]. This disparity between mem-
ory bandwidth and computation capability poses a signifi-
cant challenge for high-performance computing problems and
graph applications that use memory-intensive kernels, such
as matrix-vector multiplication and triangular matrix-vector
solve. To address this memory bandwidth problem, processing-
in-memory (PIM) has emerged as an alternative solution, using
the internal bank-level bandwidth of DRAM by attaching
processing elements directly to each bank.

Following many research investigations on the potential of
PIM technology, DRAM manufacturers recently released PIM
products to address such demands on memory bandwidth [23],
[24]. Samsung Electronics has announced HBM2-based HBM-
PIM [24], and SK Hynix has released GDDR6-AiM PIM [23]
∗This work was done at KAIST while Daehyeon Baek was a PhD student.

based on GDDR6. The commercial incarnations of PIM
maintain the standard JEDEC interfaces to control DRAM
while adding compute units. With the standard interface, the
current HBM or GDDR-based GPU or accelerators can readily
use these new PIM technologies. However, the commercial
PIM architectures support only dense BLAS (Basic Linear
Algebra Subprograms) operations, with its synchronous all-
bank controls of many banks in DRAM.

Sparse matrix operations are critical computations that can
significantly benefit from the internal bandwidth of PIM, and
several PIM-based designs have been proposed in academia to
support such operations. They assume a standalone PIM with-
out considering the external interface. Thus, each processing
unit attached to its memory bank works independently by the
internal memory controllers in the logic layer. SpaceA is a
sparse matrix-vector multiplication accelerator (SpMV) based
on HMC (Hybrid Memory Cube), in which each processing
unit performs SpMV computation independently [47]. Gear-
box deploys processing units for each subarray in the bank,
enabling higher internal bandwidth [25].

However, there is a significant gap between the commercial
implementations and the prior studies. First, unlike per-bank
controls from the processing units for the earlier studies [25],
[47], the commercial PIM designs [23], [24] use host chip
DRAM controllers to execute all banks synchronously by
a single command to follow the standard interface while
exploiting bank-level memory bandwidth. Second, commercial
designs limit the computing element attached to a bank to
access only its bank, unlike remote bank accesses allowed in
academic studies through on-chip networks on the logic layer.
For dense BLAS operations, all-bank controls without remote
bank accesses do not cause severe problems as each bank has
equally distributed input matrix workloads and executes the
same sequence of instructions.

However, the restriction imposed by the commercial designs
significantly affects the irregular computation of sparse matrix
operations. Sparse matrix-vector operations require diverging
executions in each bank due to random sparsity patterns,
while the current all-bank PIM cannot manage such diver-
gence in the execution path. The load balancing across banks
becomes critical as remote bank accesses are impossible.
In addition, the prior sparse matrix-vector accelerators are

1

missing a crucial operation, such as sparse triangular matrix-
vector solve (SpTRSV), commonly used in many applications.
The earlier studies proposed several ways to optimize the
SpTRSV kernel on GPU with various techniques to reduce
data dependency between matrix rows [1], [28], [40], [49].
However, these approaches cannot overcome the fundamental
limitations of SpTRSV execution, in which SpTRSV itself
has a low arithmetic intensity. Therefore, their approaches are
bound to the memory bandwidth, incurring low GPU usages.

To support sparse operations effectively with PIM, this
paper proposes a partially synchronous control of banks for
all-bank PIM architectures called pSyncPIM to fill the gap
between the commercial all-bank PIM and irregular sparse ma-
trix operations. The new partially synchronous control allows
the processing units to diverge their execution path in a limited
way to maintain the all-bank execution constraint. Reads and
writes on rows of all banks are synchronized with the all-
bank control. However, each processing unit can operate on a
different portion of the opened row of its bank. In addition,
each processing unit can skip or exit the row computation
early if it does not have any element to compute. The partially
synchronous execution allows the all-bank PIM to support
diverging execution with sparse data. However, the processing
units need careful data distribution and compaction if too many
divergences occur. Therefore, we propose data compaction
and distribution policies to optimize the matrix and vector
distribution across banks to maximize the processing unit
utilization for random sparsity patterns.

In addition, our design accelerates SpTRSV by effectively
utilizing internal memory bandwidth with the all-bank PIM de-
sign, which overcomes the memory bandwidth limit of GPU-
based work approaches. While the cuSPARSE [30] library uses
only the row-reordering technique to batch independent rows
in the matrix to process, pSyncPIM uses a recursive block
algorithm [1] to match the hardware limitation of memory
row size, boosting the kernel performance.

We modified DRAMsim3 [27] to support all-bank PIM
architectures and added our partially synchronous execution
support. The experimental evaluation shows that the new
sparse PIM architecture can outperform NVIDIA Geforce
RTX 3080 by 443% for SpMV kernels and 353% for SpTRSV
kernels with a similar amount of HBM memory bandwidth.

This study is the first one to support irregular execution
for sparse matrices with all-bank PIM architectures. The
contributions of the paper are as follows:

• We propose a PIM architecture in which each bank is
controlled by the same commands in an all-bank syn-
chronized manner. However, the actual execution path of
each bank can diverge to process irregular sparse matrix
operations.

• With pSyncPIM, we propose a sparse matrix workload
distribution algorithm to minimize the overhead of SpMV
due to the unevenness of the sparse matrix data.

• We propose a PIM acceleration scheme for SpTRSV by
adopting a recursive block algorithm [1].

Name Operation
Level 1 BLAS

Swap xd ↔ yd
Scale xd ← axd

Copy yd ← xd

AXPY yd ← axd + yd
Dot Product s← xT

d yd
Euclidian Norm s← ∥xd∥2

Level 1 Sparse BLAS
Gather xs ← yd
Scatter yd ← xs

Level 2 Sparse BLAS and its variants
SpMV C ← Ab

SpTRSV x← L−1b
x← U−1b

Level 3 Sparse BLAS variants
SpGEMM C ← AB

TABLE I: Important operations on graph applications and
linear system solvers. x, xd, yd, and b are dense vectors. a
and s are scalars. xs is a sparse vector. A, B, and C are
sparse matrices. L is a lower triangular matrix. U is an upper
triangular matrix.

Bank

Bank

Bank

Single-Bank Mode (SB)

Bank

Bank

Bank

All-Bank Mode (AB)

Bank

Bank

Bank

All-Bank PIM Mode (AB-PIM)

AB enter

AB exit

AB-PIM
enter

AB-PIM
exit

Host accesses
a single row

Host accesses
multiple rows of all banks &

PIM kernel programming

Memory command triggers
PIM kernel execution

PE

PE

PE

Fig. 1: Execution model of HBM-PIM.

II. BACKGROUND

A. Major Sparse Matrix Kernels in Real-World Applications

The two significant problem spaces of real-world applica-
tions that use sparse matrices are graph applications and linear
system problems. These applications comprise a small number
of matrix and vector operations, as Table I summarizes.

From these operations, graph applications use operations
with SpGEMM (Sparse General Matrix Multiplication), SpMV
(Sparse Matrix-Vector Multiplication), and BLAS (Basic Lin-
ear Algebra Subproblems) level 1 vector operation kernels.
On the other hand, many linear system-solving applications
use iterative methods over direct Gaussian elimination-based
methods to generate approximate solutions to the linear system
problem from the sparse matrix for high performance. Many
linear system applications, including Conjugate Gradient [19]
and its variant [43], use SpMV kernels and element-wise dense
vector operations, including scale, copy, AXPY, dot product,
and Euclidean norms in iterations. In addition, these iterative
methods use approximate sparse lower/upper triangular ma-
trices L and U where A ≈ LU. These methods compute
x′ = U−1L−1x to reduce the number of iterations and faster
convergence, where SpTRSV is critical.

2

B. Industrial PIM Products

Recently, Samsung Electronics has released HBM-PIM
chips based on HBM2 technology [24]. The HBM-PIM can
utilize the internal bandwidth of 1TB/s, four times the external
bandwidth of 256GB/s. In addition, with only 5.4% additional
power consumption, HBM-PIM achieves 3.5 to 11.2 times
performance improvements over a normal HBM in neural
network applications such as DS2, GNMT, and AlexNet. SK
Hynix has also released a GDDR6-AiM PIM chip based
on GDDR6 technology [23]. Unlike HBM-PIM, GDDR6-
AiM can accelerate activation functions not supported by
Samsung HBM-PIM by adding several more commands from
the existing JEDEC standard. In addition to all bank operations
for the paired memory bank, each processing unit in GDDR6-
AiM can exchange data with other units through the global
buffer added to the AiM controller on the host chip. However,
the host coordinates these data exchanges, and each processing
unit cannot access remote banks independently. As a result,
GDDR6-AiM achieves 1TFLOPS throughput with bfloat16
precision, a 16.64× performance improvement over Intel Xeon
Gold 6230 in GPT-3.

These industrial products use synchronized all-bank exe-
cution schemes for their operations. In this scheme, the host
chip accesses all banks in the channel simultaneously with one
memory transaction by sharing the memory command, row,
and column numbers across all banks. For example, HBM-PIM
uses a mode-switching technique to interoperate between nor-
mal HBM and all-bank PIM execution, as shown in Figure 1.
At first, HBM-PIM operates in single-bank mode (SB), which
is the same as a normal HBM, to manage memory requests
from the host. For PIM execution, the DRAM controller enters
a sequence of memory commands to switch the HBM-PIM to
all-bank mode (AB). In this mode, the host chip can program
PIM kernels into processing units in parallel. After inserting
the PIM kernel instructions, the host sends another memory
command sequence to switch HBM-PIM from AB mode to
all-bank PIM mode (AB-PIM). In this mode, every memory
transaction in a memory channel executes the programmed
PIM kernels in parallel. After the kernel execution finishes,
the host sends memory command sequences to HBM-PIM to
switch AB-PIM mode to SB mode.

These approaches reduce the burden of changing the DRAM
controller design as the host chip manufacturers can apply the
PIM technologies without changing or with minor changes
in the existing JEDEC standard. However, these approaches
target memory-intensive neural network applications, which
support only dense matrix and vector operations. While this
approach is practical for these applications, the synchronous
execution model cannot fit in irregular sparse matrix workloads
due to a diverging control for each bank.

C. PIM-based Sparse Matrix Kernel Accelerators

Unlike the industrial approach, several studies suggest stan-
dalone PIM accelerators [25], [47], in which each process-
ing unit operates freely without synchronizing and receiving
memory commands from host chips. In this manner, each

processing unit can read and write in different timing and
memory rows in each bank. This scheme has a substantial
advantage for accelerating sparse tensor kernels because of
the uneven distribution of sparse tensors and the computations
each unit has to process.

SpaceA [47] is a SpMV PIM accelerator, where each
processing unit paired with a memory bank can send out-
standing memory requests to non-local memory banks, in-
tegrating Content Addressable Memory (CAM) at the bank
level to exploit data reuse of input vectors. From the software
perspective, it suggests a sparse matrix partition and mapping
scheme to distribute a sparse matrix to each bank to balance
workloads. SpaceA achieves 13.54× speedup and 87.49%
energy reduction on average over NVIDIA TITAN Xp from
these techniques.

Gearbox [25] is another standalone PIM study that exploits
subarray-level parallelism inside each memory bank. It reduces
remote accumulation between banks, which is required in
parallel SpMV execution by introducing a dispatching mech-
anism. In addition, it suggests a partitioning mechanism to
replace and reduce remote reads. With these techniques, a
single Gearbox package achieves up to a 15.73× performance
boost over an NVIDIA P100 GPU with 3 HBM2 memory.

D. Limitations of the Previous Work

These standalone 3D stacked DRAM-based studies propose
designs where each processing unit performs its read/write
memory accesses to each memory bank without memory com-
mand synchronization. While asynchronous PIM execution
is an optimized method for executing the sparse tensor ker-
nels, this method requires significant changes in the interface
between the host and DRAM chips. In the current DRAM
interface, the host CPU or GPU has memory controllers that
send requests to memory banks. However, the standalone PIM
studies assume the memory controllers integrated into the logic
die of each PIM, and it is only possible to build the standalone
PIM with a complete change of the interface between the host
and DRAM [24]. As CPU and GPU manufacturers may not
be eager to change the memory interface to delegate their
computation capability to DRAM in the current fragmented
industrial environments, the chance of completely changing
the DRAM interface just for PIM would be very low. The
prior work [47] assumes the HMC (Hybrid Memory Cube)
organization, which DRAM manufacturer no longer pursues
for the same hurdle.

In summary, our research aims not to change the JEDEC
interface standard to facilitate deployment on various host
chips with standard HBM2 DRAM controllers, but to apply the
sparse matrix operations to the synchronized execution model.

E. SpGEMM Accelerators

The acceleration of sparse general matrix-matrix multiplica-
tion (SpGEMM) has been studied with a separate accelerator,
as GEMM can exploit the possible locality in matrix-matrix
multiplication. Outer product-based approaches use perfor-
mance benefits from one-time memory reads and sequential

3

Application Abbreviation Type
Breadth-First Search BFS Graphs
Connected Components CC Graphs
PageRank PR Graphs
Single-Source Shortest Path SSSP Graphs
Triangle Count TC Graphs
Preconditioned Biconjugated
Gradient Stabilized P-BCGS Linear System

Preconditioned Conjugate
Gradient P-CG Linear System

TABLE II: Specification of sparse tensor benchmarks.

BFS CC PR SSSP TC P-BCGS P-CG
0

50

100

Br
ea

kd
ow

n
(%

)

SpGEMM SpTRSV SpMV Vector

Fig. 2: Breakdown of the execution time of sparse matrix
applications.

memory access patterns for SpGEMM calculation [32], [51].
On the other hand, other SpGEMM accelerators [4], [38] pro-
pose row-wise inner products for the memory usage efficiency
over outer-product accelerators.

However, unlike SpGEMM, SpMV and SpTRSV require
only one multiplication and addition per input non-zero ele-
ment in the sparse matrix, and element-wise operations also
have a fixed number of operations per element. Therefore,
this paper focuses on the streaming memory-intensive kernels:
SpMV, SpTRSV, and element-wise (sparse) vector opera-
tions on processing-in-memory acceleration. The host proces-
sor handles matrix and vector allocations, tuple extractions,
transposes, preprocessing steps, and SpGEMM executions in
graph applications and linear systems.

III. MOTIVATION

A. Application Decomposition

Many hardware accelerator studies have proposed vari-
ous ways to improve generalized matrix-matrix multiplica-
tion (GEMM) and generalized matrix-vector multiplication
(GEMV), as well as the sparse versions of those kernels (i.e.,
SpGEMM and SpMV). In this paper, instead of arbitrarily
choosing the operations to accelerate, we first analyze real-
world applications to identify the criticality of different oper-
ations (i.e., kernels) in Table I.

Table II introduces seven selected real-world sparse appli-
cations, five graphs, and two linear system problems. Figure 2
shows the execution time breakdown for these real-world
benchmarks with sparse matrices in Table IX, running on
NVIDIA Geforce RTX 3080 GPU. The figure breaks down
the execution time into the execution time of four kernels:
SpGEMM, SpTRSV, SpMV, and Level 1 BLAS operations
denoted as Vector. We measure the execution time of each
kernel with CUDA Runtime 11.8 [31] via NVIDIA Nsight

bc
s.

ca
nt

co
ns

ph
cr

an
k.

ct
20

.
lh

r7
1

oh
ne

2
pd

b.
pw

tk
rm

a1
0

sh
ip

.
St

an
.

we
b.

xe
n.

ge
om

ea
n

1
2
3
4
5

No
rm

al
ize

d

of
 c

m
ds

2.
74

Per-Bank All-Bank

Fig. 3: Number of memory commands required for SpMV
kernel execution with PIM, normalized to the all-bank mode.

Compute 2023.2.2. Note that our measurement excludes the
pre-processing and post-processing time.

Figure 2 shows that all four kinds of kernels could be a
significant bottleneck in GPU execution, including operations
on simple sparse and dense vectors. For Breadth-First Search
(BFS) and PageRank (PR) cases, SpMV occupies over 70%
of the total execution time on average. However, for Con-
nected Components (CC) and Single Source Shortest Path
(SSSP), vector operations are the primary bottleneck. These
vector operations include element-wise arithmetic operations
and iterative accumulation to a scalar. For Triangle Count
(TC), SpGEMM occupies over 98% of the total execution
time. Lastly, in linear system solving algorithms, P-BCGS
(Preconditioned Biconjugate Gradient Stabilized) and P-CG
(Preconditioned Conjugate Gradient), SpTRSV is an essential
operation. Therefore, it is necessary to support various sparse
tensor kernels in hardware for the acceleration of the entire
applications.

B. Challenges in Implementing Sparse Tensor Kernels on All-
Bank PIM Architecture

As an alternative control mechanism compared to the all-
bank (AB) mode, it is possible to make the host-PIM interface
compatible with the JEDEC standard, by controlling only
one bank in a channel at a time for PIM execution. For
the rest of the paper, we call this execution method the per-
bank (PB) mode. Unlike the AB mode execution, the host
memory controller must send DRAM commands to control
each bank individually in per-bank execution. The DRAM
commands include conventional DRAM control commands
and PIM execution control ones.

To compare the computation efficiency between per-bank
and all-bank modes, we count the number of memory com-
mands of each mode by running several SpMV kernels with
the simulator of Section VII-A. In the PB mode, the host con-
trols only one bank at a time even for PIM kernel execution.
Figure 3 shows the number of memory commands required to
execute each SpMV kernel in each PIM mode, normalized
to the all-bank mode. With the per-bank mode execution,
the number of memory commands increases by 2.74× on
average compared to the all-bank mode. As DRAM chips can
handle only two memory commands per clock per channel,
overflowing memory commands could result in a performance

4

Algorithm 1 SpTRSV algorithm.
1: M : n× n lower triangular matrix in COO format
2: b: input vector
3: x: output vector
4: for i = 0 to n− 1 do
5: s = 0
6: for all e = (i, ce, ve) ∈M where ce < i do
7: s+ = ve × x[ce]
8: end for
9: l := (i, i, vl) ∈M

10: x[i] = (b[i]− s)/vl
11: end for

bottleneck. Therefore, this study aims to support sparse tensor
kernels for the synchronized all-bank mode execution.

The conventional synchronized all-bank execution scheme
assumes all banks in a channel have the same workloads to
process. However, this condition is not satisfied in sparse ten-
sor kernels. As the nonzero elements are distributed unevenly
in sparse tensors for real-world applications, each bank’s data
would not provide equivalent computation in sparse kernels.
In addition, to avoid wasting memory capacity, sparse tensors
are usually compressed in specialized sparse formats that
only store the nonzero elements with their metadata (i.e.,
encoded data for the position of nonzero elements). This
compression requires indirect memory accesses and dynamic
execution paths for sparse kernels, which becomes necessary
to allow each bank to access different memory rows and
columns. Still, the current all-bank scheme does not allow this
mechanism, requiring all banks to access the same memory
row and column. Therefore, the host processor cannot know
each bank’s exact state for sparse tensor kernel PIM execution,
including the number of elements remaining and the status of
registers.

C. Additional Challenges on SpTRSV

SpTRSV is a crucial kernel of several iterative methods
on linear system solvers, used as a preconditioning tech-
nique to reduce the number of iterations to convergence
significantly [29], [35]. Algorithm 1 describes the general
algorithm of SpTRSV. While various applications use linear
system-solving algorithms, including electromagnetics [41],
[42], computational fluid dynamics [5], [16], [46], and circuit
simulations [14], the SpTRSV kernel has not been studied
for hardware acceleration due to its limited parallelism. As
shown in Algorithm 1, lines 7 and 10, it is required to
execute previous rows to compute the next row. Due to the
dependency between rows, parallelizing all rows in the triangle
matrix for SpTRSV computation is challenging. In addition,
line 10 contains a division operation for row computation.
Since the division operation requires tens of cycles [9] and
additional divisor logic, supporting division operation in PIM
is challenging. Therefore, overcoming the data dependency
and removing the division operation from the computation step
for SpTRSV acceleration is necessary.

Kernels Description Vector Operations
DSWAP xd ↔ yd DMOV
DSCAL xd ← αxd DMOV, SDV
DCOPY yd ← xd DMOV
DAXPY yd ← αxd + yd DMOV, SDV, DVDV
SpAXPY yd ← αxsp + yd SpMOV, SSpV, SpVDV
DDOT s← xT

d yd DMOV, DVDV, Reduce
SpDOT s← xT

spyd SpMOV, SpVDV, Reduce
DNRM2 s← ∥xd∥2 DMOV, DVDV, Reduce
GATHER xsp ← yd GthSct, SpMOV
SCATTER yd ← xsp GthSct, SpMOV
DGEMV yd ← Adxd DMOV, SDV, DVDV
SpMV yd ← Aspxd IndMOV, SSpV, SpVDV
DTRSV xd ← L−1

d xd, U
−1
d xd DMOV, SDV, DVDV

SpTRSV xd ← L−1
sp xd, U

−1
sp xd IndMOV, SSpV, SpVDV

TABLE III: Supported BLAS and Sparse-BLAS Level 1
and 2 kernels. The third column indicates vector operation
instructions in Table V and VI. We omit some instructions
due to the table space limit.

IV. CONDITIONAL EXECUTION WITH ALL-BANK PIM

A. Design Goals

This study aims to design pSyncPIM, a PIM architecture that
accelerates widely used dense and sparse tensor kernels while
maintaining the DRAM interface with the host accelerator
that handles general compute-intensive or complex kernels.
In addition, this study proposes low-cost hardware mappings
of two fundamental Sparse BLAS Level 2 kernels, SpMV and
SpTRSV, which are the most complex kernels it aims to map.
In addition, pSyncPIM does not deviate significantly from
the existing JEDEC standard, thereby maintaining its primary
function as a memory. To this end, our design achieves the
following design goals:

• A flexible instruction set architecture (ISA) that can
support various kernels used in multiple applications.

• A PIM architecture in which each processing unit sup-
ports predicated execution of the same PIM commands
in a lock-step manner to deal with unevenly distributed
sparse matrix and sparse vector workloads. In addition,
each unit terminates on its own whenever the host chip
sends a PIM command.

• An optimization technique that distributes the sparse
matrix evenly across multiple banks to reduce remote
accumulation across banks in the SpMV kernel.

• The first proposal of SpTRSV PIM acceleration with a
memory mapping scheme on a sparse triangular matrix
on each memory bank.

Application Scope: This study focuses on high-performance
computing applications with highly sparse tensors (i.e., less
than 1% density) [17]. Supported BLAS and Sparse BLAS
Level 1 and 2 functions are listed in TABLE III. In TABLE III,
s, α are scalar values, xd, yd are dense vectors, xsp is a sparse
vector, Ad is a dense matrix, Asp is a sparse matrix, Ld, Ud

are dense lower/upper triangular matrices, and Lsp, Usp are
sparse lower/upper triangular matrices. Since this study aims
to accelerate memory-intensive kernels to exploit PIM’s high

5

Data
Registers

Cell Array

Co
nt
ro
l DVRF0

VALUs
Scanner

Memory
Command

Data

Column Decoder
Write Drivers & I/O Sense Amplifiers

Ro
w
 D
ec

SpVQ0 Row Col Val

DVRF1 SpVQ1 Row Col Val

DVRF2 SpVQ2 Row Col Val

Scanner

SRF

Intersetion
or Union

Address

Fig. 4: Architecture of a pSyncPIM processing unit for each
bank. RF is a register file, and Q is a queue.

internal bandwidth, it excludes compute-intensive BLAS and
Sparse BLAS functions from the PIM kernel implementation.

B. Overview

Figure 4 shows the architecture of the processing unit of
pSyncPIM. To utilize the total internal memory bandwidth,
we attach a processing unit to a memory bank, which differs
from the 2:1 ratio of bank and processing unit in Samsung
HBM-PIM [24]. In addition, our approach assumes all memory
commands are issued in the right order in the all-bank mode,
which requires disabling out-of-order command issues from
DRAM controllers. Each processing unit consists of a 128B
control register that stores 32 PIM instructions, a 16B scalar
register, 3× 32B dense vector registers, and 3× 192B sparse
vector queues. A sparse vector queue includes 3× 64B sub-
queues to store the row index, column index, and values of
matrix/vector elements. When reading data from a bank to
a sparse vector queue or writing data from a sparse vector
queue to the bank, the data is pushed or popped from one
of the three sub-queues with 32B consecutive arrays except
Gather/Scatter instructions. The Gather/Scatter instructions use
all three sub-queues for push and pop. However, multiple
successive elements with (row, col, value) pairs are popped
from/pushed into the sparse vector queue for SIMD vector
operation.

For computation, the processing unit has a 256-bit vector
ALU (VALU) to support multiple precisions from 8-bit to
64-bit. An index calculator is inserted before VALU to avoid
unnecessary operations between the zero-value of the sparse
vector. For the union computation case, if only one side of
the vector has non-zero, the processing unit skips the binary
operation. Then, it copies the non-zero element of the existing
one. If the index of non-zero elements matches, then VALUs
compute the binary operation. For intersection, the index
comparator uses the skip mechanism from the prior work [17]
in the intersection computation case and computes only index-
matching elements.

OpCode Dst Src0 Src1 Value Binary S Idx Idnt Unused
31 28 27 25 24 22 21 19 18 15 14 11 10 9 8 7 6 5 0

OpCode Unused Imm0 Order Imm1
31 28 27 24 23 16 15 10 9 0

Binary Operation Format (B Format)

Control Operation Format (C Format)

Fig. 5: Two general formats of instruction set architecture.
Field Description
OpCode Determines the instruction to execute.
Dst Destination register or queue.
Src0, Src1 Source register or queue.
Value Value data format.
Binary Binary operation between two elements.
S Intersection or union operation between vectors.
Idx Sparse vector queue’s row, column, or value sub-queues.
Idnt Identity element used in gather/scatter operations.
Imm0 Jump target.
Order Loop order, used for distinguishing multiple loops.
Imm1 Counter for the number of jumps.
Unused Unused.

TABLE IV: Description of fields in the instruction format.

C. Matrix Format

pSyncPIM uses the Coordinate List (COO) format for
implementation, which is the best choice for the current target
(i.e., HPC) workloads compared to other existing formats. For
example, the bitmap format widely used for sparse neural
networks [13], [33], [44] is inefficient for highly sparse ma-
trices with a density under 1% [20]. Compressed row/column
(CSR/CSC) formats, on the other hand, incur additional mem-
ory indirection with their metadata access, which requires extra
work to maintain not to make any remote bank access.

However, pSyncPIM can support other sparse matrix for-
mats with minor modifications and additions in its architecture,
as the difference is only on the index matching mechanism.
For example, to support CSR/CSC and their variants, only
four 32-bit index registers and a 32-bit integer adder for their
metadata must be added to pSyncPIM. Supporting multiple
sparse matrix formats in a single PIM design is also feasible
with minor hardware overheads. We expect that supporting two
formats, one for high-sparsity applications and the other for
low-sparsity applications (i.e., COO/CSR/CSC and bitmap),
would be reasonable, considering the benefits and complexity.

D. pSyncPIM Instructions

Instruction Set Architecture: Figure 5 shows the two general
formats of the instruction set architecture: binary operation
format (B format) and control operation format (C format),
4 bytes long each. pSyncPIM supports 15 instructions: five
data movement instructions, six binary operations, and four
control instructions. Control instructions use C format, and
data movement and binary operation instructions use B format.
Control instructions include NOP, JUMP, EXIT, and newly
added CEXIT (Conditional Exit). Table IV further describes
each field of the instruction format.
Conditional Exit: When running sparse tensor kernels that ac-
company uneven distributions of computations, all processing
units in PIM cannot process their computation workloads at the

6

Algorithm 2 Workflow of SpMV in pSyncPIM.
1: Read row, column, values SpVQ0←Bank
2: loop
3: IndMOV scalar SRF←Bank with SpVQ0 col idx
4: SSpV SpVQ1←SRF⊗SpVQ0 (Vector multiply)
5: SpVDV DRF0←SpVQ0⊕Bank (Vector accumulate)
6: Write vector DRF0→Bank
7: Read row, column, values SpVQ0←Bank
8: Conditional exit when SpVQ1 is empty
9: end loop

same time. Therefore, in this study, we introduce a new CEXIT
(Conditional Exit) command in addition to the existing EXIT
command. Through this, each processing unit runs an infinite
loop in the PIM kernel, and its execution terminates when the
sparse vector queues indicated by the CEXIT command are
empty, as shown in Algorithm 2. In this way, the units will
end the infinite loop in different timestamps, which depend
on the workload size of each unit. Even after the execution
terminates, each processing unit will still activate, access,
and precharge the memory rows by host memory commands.
However, the processing units do not change the actual data.
Since processing units can terminate independently, the host
chip must identify whether all banks in a memory channel
complete kernel execution.
Other Instructions: pSyncPIM supports data movement in-
structions between the memory bank, dense vector registers,
the scalar register, and sparse vector queues with several new
data movement schemes. Table V summarizes the memory
movement instructions. pSyncPIM defines several fundamental
scalar, dense, and sparse vector instructions for computation,
as shown in Table VI. Note that s is scalar, vd is a dense
vector, and vsp is a sparse vector. After closely analyzing
subroutines composed of frameworks commonly used in HPC
areas - BLAS, Sparse BLAS Level 1, 2, and GraphBLAS - we
found that using the instructions in Table VI is sufficient for
implementing most memory-intensive sparse tensor kernels.

E. Predicated Execution

While executing the infinite loop for sparse tensor compu-
tation, there is no guarantee that the sparse vector queues in a
processing unit have the same amount of non-zero elements for
each bank. For example, when the host sends a load instruction
to a sparse vector queue, some units have 32B room to load,
while others do not. In this case, units capable of pushing
32B data to the queue execute the load instruction. When
the sparse vector becomes input or output, each processing
unit executes predicated instructions in a lock-step manner,
depending on its state. Therefore, multiple units run the same
memory command simultaneously, but their actual behavior
depends on their status, ensuring the correctness of the sparse
tensor kernels.

F. Support for Nested-Loop Capability

As we expand the computing capability from dense to sparse
tensor kernels, nested loops inside PIM become necessary.

Name Operation
DMOV Move dense vector from/to bank/DRF.
IndMOV Read the scalar from the memory bank that SpVQ points.
SpMOV Move scalar vector from/to bank/SpVQ.
SpFW Force write sparse vectors to the bank.
GthSct Transform between dense and sparse vectors.

TABLE V: Data movement instructions.

Name Description Operation
SDV scalar - dense vector op. s⊙ vd → vd
SSpV scalar - sparse vector op. s⊙ vsp → vsp
Reduce iterated binary op.

⊙
vd → s

DVDV element-wise dense vector op. vd ⊙ vd → vd
SpVDV dense-sparse vector op. vsp ⊙ vd → vd, vsp
SpVSpV element-wise sparse vector op. vsp ⊙ vsp → vsp

TABLE VI: Vector operation instructions. ⊙ is an arbitrary
binary operation.

Therefore, we add 5 bits of ORDER field inside the JUMP
instruction to differentiate multiple JUMP operations from
each other to separate loop counts. Each processing unit has
multiple loop counters to track the number of each iteration
of the JUMP instruction. As it is possible to put at most 32
instructions, 32 loop counters are sufficient for monitoring
each JUMP instruction.

V. ACCELERATING SPMV KERNEL

pSyncPIM handles remote accumulation using conventional
host chip DRAM accesses. In our architecture, the sparse
matrix is cut into several submatrices in rows and columns and
distributed to each bank. Suppose the input or output vector
memory space spans multiple rows in a memory bank. In that
case, the host chip must send multiple memory commands to
access all memory rows for random accessing vectors. From
that, the success rate of fetching the input and writing the
output decreases as the number of rows in memory banks
reserved for the input and output vector increases. Therefore,
the dimension of submatrices should not overflow the size of
one memory row in the division process. With the restriction
of remote bank accesses, pSyncPIM divides the sparse matrix
into very small submatrices with a size of 1 KB on matrix
row and column dimensions.

Since the size of one memory row of the underlying HBM2
chip is 1KB, the maximum length of each input and output
vector of each submatrix cannot exceed 1KB. From this basis,
choosing the proper value format becomes critical to pack
as many elements as possible within the memory row. By
decreasing the size of values, the dimension of each submatrix
mapped in a memory bank increases. With larger submatrices
in rows and columns, the number of partitions decreases,
with a reduction of the external traffic. Considering the gap
between external and internal bandwidth (256GB/s and 2TB/s)
in our architecture, reducing external traffic is critical for
performance.
Matrix Compression: When submatrices are distributed
naively into each memory bank, the required external memory
traffic increases for replicating input vectors and accumulating

7

(a) Row-wise partitioning (b) Compression and distribution

Fig. 6: Matrix compression for bank-parallel SpMV execution.

partial results. Copying inputs and adding partial outputs uses
slower external I/O than internal I/O, which is the major
bottleneck of SpMV computation. Therefore, to reduce these
external memory I/O, we introduced a matrix compression
technique to reduce the external I/O traffic. Figure 6 presents
the matrix compression technique. The sparse matrix is cut
row-wise first, and all-zero columns are removed for each
partial matrix. Then, each row-wise partial matrix is distributed
to memory banks in the reduced state. After finishing the
computation for each memory bank, the host chip accumulates
only non-zero outputs to reduce the external memory reads.
Conditional Exit Detection: Due to the nature of the sparse
matrix, the number of non-zeros for each bank differs. While
some banks consume more memory rows than others, the
empty spaces of the index arrays are filled with -1. When
a -1 value is in the index queue, the processing unit sets flags
for the CEXIT command. With this technique, it becomes
possible to allocate the same number of memory rows for the
sparse matrix for each bank while maintaining the partially
synchronized execution model.

VI. ACCELERATING SPTRSV KERNEL

A. Adopting SpTRSV Block Algorithm

In pSyncPIM, we adapt the state-of-art algorithm for Sp-
TRSV [1] to PIM acceleration. The algorithm divides the
sparse triangular matrix L into two sub-sparse triangular
matrices, L0 and L1, and a sparse square matrix M as shown
in Equation 1. O denotes the null matrix.

L =

(
L0 O
M L1

)
(1)

With this splitting mechanism, the divide-and-conquer mech-
anism can be applied to the linear system Lx = b, as shown
in Equation 2.

Lx =

(
L0 O
M L1

)(
x0

x1

)
=

(
b0

b1

)
= b (2)

Also, Equation 2 is decomposed into two matrix-vector solving
equations of Equation 3.

L0x0 = b0, Mx0 + L1x1 = b1 (3)

Since L0 and L1 are also sparse triangular matrices, it is
possible to divide these sub-matrices recursively. Thus, the
block algorithm executes SpTRSV in three steps:

1) Solve upper half part L0x0 = b0 (Recursive SpTRSV)
2) Perform b1

′ = b1 −Mx0 (SpMV)

Bank 0

Bank 1

Bank n

Batch 0

Batch 1

...

Batch k
...

Fig. 7: Logical description of unit sparse triangular matrix
memory mapping.

3) Solve lower half part L1x1 = b1
′ (Recursive SpTRSV)

This technique makes it possible to solve sparse triangular
matrices of arbitrary sizes by implementing a limited-size
SpTRSV kernel and a combination of SpMV kernels for most
square submatrices inside the triangular matrix.

B. Memory Mapping of Sparse Triangular Matrix for SpTRSV

As explained before, we divide the triangular matrices re-
cursively until the size of the generated subtriangular matrices
fits in a memory row size to utilize the block algorithm of
SpTRSV. When the size of a memory row is 256KB, the
maximum number of rows and columns with the double-
precision floating-point is 32,768. While square submatrices
use SpMV mapping in memory, triangular matrices need a
different mapping strategy. For memory mapping of unitri-
angular matrices, we excluded the diagonals with ones for
efficiency. More formally, the memory stores L∗ = L− I and
U∗ = U−I triangular matrices in memory, where I represents
the identity matrix. While the physical memory representation
omits diagonal elements, our SpTRSV kernel implementation
assumes all elements in the diagonal are 1.

Triangular matrices L∗ and U∗ are stored in the column-
first COO format in the memory (i.e., non-zero values are
sorted in column-major). These triangular matrices are cut into
rows evenly for distributing workloads and mapped into each
memory bank, as shown in Figure 7. In addition, the triangular
matrices are cut into several batches column-wise for each
memory row for each bank in the preprocessing step. All non-
zeros in each batch across all banks are in the same memory
row. Since the distribution of non-zero elements is typically
uneven, each batch generally has different numbers of column
vectors.

C. Execution Algorithm of SpTRSV Kernel

While the SpMV kernel can compute most parts of the
sparse triangular matrix, a unique SpTRSV subroutine im-
plementation must be provided for triangular submatrices at
the diagonal. We apply a scalar multiplication-based algo-
rithm instead of the conventional dot product-based SpTRSV
algorithm (Algorithm 1) to avoid random and remote bank
accesses on the distributed input vector. Algorithm 3 describes
the proposed algorithm.

Within a column-wise batch of Figure 7, our acceleration
scheme divides the batch into several levels where all columns
are independent. For each column, pSyncPIM performs the
following execution loop:

8

Algorithm 3 Scalar multiplication-based SpTRSV for a lower
unitriangular matrix.

1: L: n× n lower triangular matrix in COO format
2: b: input vector
3: x: output vector
4: for i = 0 to n− 1 do
5: scale = b[i]
6: for all e = (re, i, ve) ∈ L where re > i do
7: x[re] = x[re]− scale× ve
8: end for
9: end for

Field Value
Protocol HBM2
of bankgroups 4
of banks per group 4
of memory rows 16384
of memory columns 64
of stacks 8
of pseudo-channels 16
Address Mapping rorabgbachco (rank is 0 bit)
Clock Frequency 1GHz
Timing parameters HBM2 default timing
External/Internal Bandwidth 256GB/s, 2TB/s
Capacity 4GB

TABLE VII: Memory configuration of pSyncPIM.

1) Read the input vector elements corresponding to the
columns of the level in SB mode.

2) Switch to AB mode and broadcast the input elements
for each bank.

3) Host programs the SpTRSV kernel into pSyncPIM.
4) Switch to AB-PIM mode.
5) Perform kernel execution for all banks. The kernel

executes the lines 6-8 of the Algorithm 3.
6) When kernel execution terminates, switch to SB mode

for the next level and repeat this process for all batches.

D. Host-side Preprocessing

Decoupling Division Operations from SpTRSV: The con-
ventional implementations for SpTRSV include division op-
erations on its critical path, where these implementations do
not assume all elements in diagonal are not normalized to 1.
As executing the division is costly, this study uses incom-
plete LDU decomposition (ILDU), where the decomposition
normalizes the diagonal elements of the sparse unitriangular
upper matrix U and generates a diagonal matrix D. The ILDU
process stores the diagonal matrix D as D−1 in memory for
optimal computation.
Row Reordering: For a faster execution of SpTRSV, reducing
the number of levels and maximizing the number of rows in
a level to process is necessary for pSyncPIM. Since it is hard
to implement such reordering of rows in PIM architecture, for
optimal execution, the host processor should reorder rows to
execute multiple independent rows in parallel at the prepro-
cessing step.

Field Value
Datapath Width 32B
of ALUs INT8: 32, INT16/FP16: 16,

INT32/FP32: 8, INT64/FP64: 4
Clock Frequency 250 MHz
Throughput INT8/16/32/64: 25.6/12.8/6.4/3.2 GIOPS

FP16/32/64: 12.8/6.4/3.2 GFLOPS
Instruction Registers 4B × 32
Scalar register 16B
Dense vector registers 32B × 3
Sparse vector queues 192B × 3

TABLE VIII: Specification of a processing unit per bank.
Matrix Dimen. Density Applications
2cubes sphere [42] 101,492 1.60× 10−5 SpTRSV, PCG
amazon0312 [26] 400,727 1.99× 10−5 Graphs
bcsstk32 [8] 44,609 1.01× 10−3 SpMV
ca-CondMat [26] 23,133 3.49× 10−4 Graphs
cant [45] 62,451 1.03× 10−3 SpMV
consph [45] 83,334 8.66× 10−4 SpMV
crankseg 2 [11] 63,838 3.47× 10−3 SpMV
ct20stif [12] 52,329 9.50× 10−4 SpMV
email-Enron [26] 36,692 2.73× 10−4 Graphs
facebook [26] 4,039 5.41× 10−3 Graphs
lhr71 [53] 70,304 3.02× 10−4 SpMV
offshore [41] 259,789 6.29× 10−5 SpTRSV, PCG
ohne2 [37] 181,343 2.09× 10−4 SpMV
p2p-Gnutella31 [26] 62,586 3.62× 10−5 Graphs
parabolic fem [46] 525,825 1.33× 10−5 SpTRSV, PCG
pdb1HYS [45] 36,417 3.28× 10−3 SpMV
poisson3Da [16] 13,514 1.93× 10−3 SpTRSV
pwtk [12] 217,918 2.43× 10−4 SpMV
rma10 [5] 46,835 1.06× 10−3 SpMV, SpTRSV
roadNet-CA [26] 1,971,281 1.42× 10−6 Graphs
shipsec1 [6] 140,874 1.80× 10−4 SpMV
soc-sign-epinions [26] 131,828 4.84× 10−5 SpMV
Stanford [22] 281,903 2.90× 10−5 SpMV, Graphs
webbase-1M [45] 1,000,005 3.11× 10−6 SpMV
wiki-Vote [26] 8,297 1.51× 10−3 Graphs
xenon2 [34] 157,464 1.56× 10−4 SpMV

TABLE IX: Specification of sparse matrices for evaluation,
collected from SuiteSparse and SNAP datasets [7], [26].

VII. EVALUATION

A. Methodology

We modify the DRAMsim3 [27] simulator with HBM2
configuration to evaluate pSyncPIM. Table VII describes the
DRAM configuration parameters and Table VIII explains the
specifications for the processing unit configuration. pSyncPIM
includes 256 processing units per memory cube. We imple-
ment all the kernels evaluated in pSyncPIM in hand-coded
PIM assembly. In addition to the PIM architecture, we at-
tach a SpGEMM accelerator core that supports nonsquare
SpGEMM [4] for assessing interoperability with pSyncPIM
when evaluating one real-world benchmark (TC) that includes
SpGEMM kernels.

We evaluate pSyncPIM with various benchmarks using 26
sparse matrices. Table IX summarizes the information about
all sparse matrices used for evaluation. Using these matrices,
we assess the performance of the SpMV kernel, the SpTRSV
kernel, and the end-to-end performance of seven graph and
linear system solve applications introduced in Table II. The

9

bcs
.

can
t

con
sph

cra
nk

.
ct2

0.
lhr

71
oh

ne
2

pd
b.

pw
tk

rm
a1

0
shi

p. soc
.

Sta
n.

web
.

xen
.

ge
om

ea
n

100

101
Sp

ee
du

p

0.
31

1.
96 3
.5
3

4.
43

Per-Bank GPU pSyncPIM SpaceA pSyncPIM X3
Fig. 8: Speedup of pSyncPIM with SpMV kernels, normalized to the GPU performance. The Y-axis is in log-scale.

last column of Table IX maps each matrix to kernels and
real-world benchmarks: Graphs indicate graph applications,
and SpTRSV means the matrix is used on the SpTRSV kernel
and P-BiCGStab benchmark. The matrices marked as PCG are
positive definite matrices used in the P-CG application.

We compare pSyncPIM with NVIDIA Geforce RTX
3080 GPU using CUDA, cuSPARSE, and GraphBLAST li-
braries [30], [31], [48]. Note that our experiments do not use
NVIDIA tensor cores, as tensor cores support only structural
2:1 sparsity. GPU performance was measured using wall clock
time. To match the wall clock time measurements in GPU, the
kernel execution time of pSyncPIM includes mode switching
and PIM kernel programming overheads. However, the initial
sparse matrix mapping times are excluded in both cases.

B. SpMV Kernels

In addition to GPU, we also compare pSyncPIM with a per-
bank execution model to evaluate our partially synchronized
execution model, and with a standalone asynchronous PIM
architecture for SpMV - SpaceA [47], to evaluate the exe-
cution efficiency of our all-bank architecture. To match the
external memory bandwidth with Geforce RTX 3080 GPU
(i.e., 760GB/s), we assess the 3× pSyncPIM configuration,
with a total of 768GB/s external memory bandwidth.

Figure 8 shows the SpMV performance in Geforce RTX
3080 GPU, SpaceA, and pSyncPIM, its per-bank execution,
where one memory command can control only one bank in a
channel, and a 3× scenario. On average, pSyncPIM shows a
1.96× performance boost over GPU, and 6.26× performance
boost over the per-bank execution model. While Figure 3
shows 2.74× of the number of memory commands on per-
bank over all-bank, the additional performance gap between
per-bank model and pSyncPIM comes from the bank-level
parallelism of all-bank PIM execution.

However, pSyncPIM offers only 0.56× performance of
SpaceA. This is due to the inevitable inefficiency of the syn-
chronized lock-step execution model versus standalone desyn-
chronized executing PIM architecture. Although pSyncPIM
does not outperform SpaceA in the majority of workloads,
it still has its advantage in two points: pSyncPIM does not re-
quire any modification of DRAM communication methods be-
tween the host and the memory and covers various sparse ten-
sor kernels including SpTRSV by PIM programming features
as well as various precisions, which SpaceA does not support.

2cu
be
s.
off
s.
oh
ne
2
pa
ra.
po
iss
.
rm
a1
0
ge
o.

10−1

100

101

Sp
ee

du
p 3.
68

GPU pSyncPIM

(a) Lower triangular matrix

2cu
be
s.
off
s.
oh
ne
2
pa
ra.
po
iss
.
rm
a1
0
ge
o.

10−1

100

101

Sp
ee

du
p 3.
38

GPU pSyncPIM

(b) Upper triangular matrix

Fig. 9: Speedup of pSyncPIM with SpTRSV kernels, normal-
ized to the GPU performance. The Y-axis is in the log scale.

For example, the notable performance gain of pSyncPIM with
soc-sign-epinions and Stanford comes from the
support of multiple precisions in pSyncPIM. While SpaceA
covers all benchmark matrices into FP64, pSyncPIM can
run with the original INT8 data format. Smaller data format
reduces the sparse matrix’s memory size and each submatrix’s
replication and remote accumulation factor in each processing
unit. Note that bcsstk32 shows significant differences in
workloads between banks which incurs no benefit from the
reduction of data size: The SpMV kernel with bcsstk32 uses
only 101 banks out of 256 banks of pSyncPIM, which distills
the benefits of parallel execution. This underutilization comes
from the distribution algorithm, which focuses on reducing
replication and remote accumulations rather than ensuring the
evenness of workloads for each processing unit.

In 3× configuration, pSyncPIM shows 2.26× performance
boost over 1× configuration and 4.43× performance boost
over RTX 3080. Note that due to the uneven distribution of
each submatrix in a processing unit, the SpMV performance
does not scale linearly.

C. SpTRSV Kernels

We evaluate the SpTRSV kernel on six double-precision
floating point matrices that describe linear system problems.
Figure 9 shows the performance boost of pSyncPIM over
the cuSPARSE implementation on GPU. Note that Figure 9a
shows the SpTRSV performance with lower triangular ma-
trices, and Figure 9b shows the result with upper triangular
matrices. In general, pSyncPIM outperforms the GPU for most
cases except parabolic_fem. Since parabolic_fem
shows hyper-sparsity on near-diagonal unitriangular submatri-
ces, it becomes overhead for executing SpTRSV in pSyncPIM.
Moreover, parabolic_fem shows little data dependency

10

dsc
al

da
xp

y
dd

ot
dn

rm
2
dg

em
v

102

103
GI

OP
S

Per Bank pSyncPIM

(a) INT8 performance

dsc
al

da
xp

y
dd

ot
dn

rm
2
dg

em
v

101

102

GF
LO

PS

Per Bank pSyncPIM

(b) FP64 performance

Fig. 10: Throughput of the per-bank PIM and pSyncPIM with
dense BLAS kernels. The Y-axis is in log-scale.

BF
S CC PR

SS
SP TC

P-B
CG
S

P-C
G

ge
om
ea
n

10−1
100
101
102

Sp
ee

du
p 20
.9

GPU pSyncPIM

Fig. 11: Speedup of pSyncPIM with real-world applications,
normalized to the GPU performance. The Y-axis is in log-
scale.

between rows, where the GPU can execute more rows that
exceed the memory row size boundary of pSyncPIM in par-
allel. However, even including the parabolic_fem case,
pSyncPIM still offers a 3.53× performance boost over cuS-
PARSE in geometric mean.

D. Dense Matrix and Vector Kernels

We evaluate five dense BLAS kernels for dense ma-
trix/vector operation performance (throughput) in Figure 10.
We use INT8 and FP64 precisions to represent the two ends
of extreme cases in data types. In both cases, the kernel with
a higher arithmetic intensity (INT8) performs better in both
pSyncPIM and per-bank PIM. Despite the arithmetic intensity
of kernels, pSyncPIM shows a notable performance boost
over per-bank PIM in general – 9.6× speedup on average.
This demonstrates that the performance efficiency of all-bank
execution is also present in sparse and dense operations.

E. Real World Benchmarks with Accelerator-PIM Integration

Figure 11 shows the performance comparison between GPU
and pSyncPIM on five graph applications and two linear
system solving algorithms. Note that we run graph applications
with GraphBLAST library and CUDA library for the evalua-
tion with GPU, respectively. We measure the performance of
GPU with graph applications using GPU_Timer, a wrapper
structure provided by GraphBLAST library. We attach the
SpGEMM accelerator [4] to pSyncPIM, in order to run
SpGEMM kernels included in TC workload. For graph appli-
cations, pSyncPIM outperforms GPU by 51.6× in geometric
mean. For linear system solving algorithms, pSyncPIM has
2.2× performance boost over GPU in geometric mean.

BFS CC PR SSSP TC P-BCGS P-CG Average
0

50

100

Br
ea

kd
ow

n
(%

) GPU PIM

SpGEMM SpTRSV SpMV Vector

Fig. 12: Breakdown of kernel execution time in real-world
applications for GPU and pSyncPIM (denoted as PIM).
Average is an arithmetic mean.

am
a. bcs

. ca.
em

ail. fac
e.

p2
p.

roa
d.

Sta
n.

wiki. ge
o.

0
1
2
3
4

Sp
ee

du
p

2.
00

SpGEMM acc. Only SpGEMM acc.+pSyncPIM

Fig. 13: Speedup of pSyncPIM conjugated with SpGEMM
accelerator [4] with TC application, normalized to the per-
formance of accelerator-only configuration.

For further investigation, we compare the portion of execu-
tion times of kernels between GPU and pSyncPIM, as shown
in Figure 12. The significant performance advances of CC
and SSSP come from large overheads from GraphBLAST
vector operation implementation of GPU, which decreases
on pSyncPIM. pSyncPIM outperforms GPU in SpMV-major
applications: 66.3× boost on BFS and 31.8× of PR. This per-
formance boost comes from GraphBLAST code’s overheads
to support various algebraic structures. While GraphBLAST
uses C++ templates and functors to execute various binary
operations and data types in the GPU kernel, these additional
overheads are understandable [48].

pSyncPIM also shows a 1.68× to 2.88× performance boost
over GPU for SpTRSV-major linear system solve applications.
While the kernel inevitably has limited parallelism due to row
dependency, utilizing massive internal memory bandwidth is
effective on the SpTRSV kernel.

To investigate the role of pSyncPIM within a SpGEMM-
major benchmark (i.e., TC), we compare the performance of
TC workload between the SpGEMM accelerator-only scenario
and accelerator collaborating with pSyncPIM. Figure 13 shows
the performance comparison between the accelerator-only and
accelerator-pSyncPIM systems. For the accelerator-only sce-
nario, the SpGEMM accelerator [4] treats the SpMV kernel
as a variant of the nonsquare SpGEMM kernel, which is inef-
ficient. However, with pSyncPIM, the accelerator can offload
SpMV kernels to the PIM, resulting in 2.0× performance
boost. In summary, when the host accelerator is unsuitable
for the SpMV kernel, the pSyncPIM cooperation offers a
significant performance boost over a host-chip-only case.

11

bcs
.

can
t

con
sph

cra
nk

.
ct2

0.
lhr

71
oh

ne
2
pd

b.
pw

tk
rm

a1
0
shi

p.
Sta

n.
web

.
xen

.

ge
om

ea
n

100

Co
ns

um
ed

 E
ne

rg
y

(m
J)

1.
16

2
0.

43
6

Per Bank pSyncPIM

Fig. 14: Energy consumption of per-bank PIM and pSyncPIM.

F. Power & Area Analysis

We estimate the power consumption from the data of Sam-
sung HBM-PIM [24] based on the silicon product, including
the power consumption of all-bank mode memory accesses.
For ALU power consumption, we use [10] with the reports
of HBM-PIM [24]. In addition, we assume that the buffer
die’s 1024-bit data I/O is turned off on PIM execution mode.
We run a modified DRAMsim3 power model simulation with
these data on several SpMV benchmarks. Figure 14 shows
the energy consumption result between per-bank PIM and
pSyncPIM. From this result, pSyncPIM shows an average of
2.67× energy efficiency over per-bank PIM for SpMV due to
its shorter execution time. In addition, it has at most 5.0W of
power consumption with the SpMV benchmarks, which is low
enough for the power limit of HBM2.

For area, based on the HBM-PIM data [24], we analyze the
processing unit’s area size as 0.967 mm2. With 32 units per
die, the processing unit occupies 30.94 mm2, and the rest,
including the memory banks and the TSV, have 38.05 mm2.
In summary, the total area of pSyncPIM becomes 68.99 mm2.
Table X lists area comparisons with the prior work.

VIII. DISCUSSION

Compilation: We evaluated the benchmarks on pSyncPIM
with hand-written PIM kernel assembly codes. To reduce the
number of stalls from data dependency and ALU execution
latency, we reorder and insert pre-loading inputs into the PIM
assembly. We expect that additional compilation techniques
could further optimize the codes.
Supporting Neural Networks: Our main target in this work is
the HPC computation where sparse matrices usually have less
than 1% non-zero elements. However, sparse neural networks
typically show a density of 10% to 50%. In this case, it
is better to represent the sparse metadata with a bitmap,
considering the footprint [20]. Section IV-C discussed the
minor hardware overhead supporting the bitmap format. Since
pSyncPIM ISA is a superset of commercial PIMs [23], [24], it
is possible to support neural network applications that include
sparse and dense layers with our ISA. These neural network
applications can use pSyncPIM directly by using the BLAS
kernels, including the operations on Table III or by using ML-
specific wrappers (e.g., cuDNN, MIOpen) invoking the BLAS
kernels.

Samsung HBM-PIM SpaceA pSyncPIM
Baseline Tech HBM HMC HBM
Total Area 84.4mm2 48mm2 68.99mm2

of Stacks 4 PIM + 4 HBM 8 PIM 8 PIM
PE Area 22.8mm2 2.333mm2 30.94mm2

Capacity 6GB 8GB 4GB

TABLE X: Area comparison of prior work and pSyncPIM.

IX. RELATED WORKS

PIM Architectures: AESPA proposed computation of all data
in a bank row through a single command, to support the
asynchronous execution in all-bank PIM architecture for dense
GEMV [21]. NeuPIMs proposed overlapped bank accesses for
PIM execution and external near-memory accelerators for large
language models, by adding a row buffer in all-bank PIM
architecture [18]. Other studies investigated the acceleration
of graph processing with PIM. Tesseract is an early work that
applies a programmable PIM accelerator based on HMC for
large-scale graph processing [2]. GraphP and GraphQ improve
PIM-based graph processing with communication and data
movement enhances [50], [52].
SpMV Accelerators: EIE and MASR proposed the accelera-
tion of SpMV in sparse neural network inference [13], [15].
SIGMA accelerates SpMV in sparse neural network training,
considering SpMV as a kind of nonsquare SpGEMM [33].
Sadi et al. proposed an accelerator for graph SpMV work-
loads based on algorithm-hardware co-optimization [36]. Ten-
saurus accelerates general sparse-dense tensor multiplications
including SpMV, by focusing on a sparse data format [39].
Cerberus investigated the design space of SpMV acceleration
with respect to different algorithms and data representations,
proposing a multi-mode accelerator to process a wide range
of SpMV workloads efficiently [20].

X. CONCLUSION

This study proposes pSyncPIM, which provides partially
synchronous execution in each bank for all-bank PIM ar-
chitectures. For the irregular execution needed for SpMV
and SpTRSV operations, pSyncPIM overcomes the current
all-bank control constraint, supporting the standard DRAM
interfaces by predicated execution and conditional termination
of each processing unit. In addition, it identifies another key
kernel, SpTRSV, and proposes an acceleration algorithm with
PIM. Using an optimized data compaction and distribution, the
new sparse PIM architecture can outperform NVIDIA Geforce
RTX 3080 by 4.43× for SpMV and 3.53× for SpTRSV with
a similar amount of DRAM bandwidth.

ACKNOWLEDGEMENT

This work was supported by the Institute of Information
& communications Technology Planning & Evaluation (IITP)
(IITP2017-0-00466 SW StarLab and RS-2024-00396013),
funded by the Ministry of Science and ICT (MSIT), Korea.

REFERENCES

[1] N. Ahmad, B. Yilmaz, and D. Unat, “A Split Execution Model for
SpTRSV,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 11, pp. 2809–2822, 2021.

12

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-
in-Memory Accelerator for Parallel Graph Processing,” in Proceedings
of the 42nd International Symposium on Computer Architecture (ISCA),
2015, pp. 105–117.

[3] M. Andersch, G. Palmer, R. Krashinsky, N. Stam, V. Mehta, G. Brito,
and S. Ramaswamy, “NVIDIA Hopper Architecture In-Depth,” https:
//developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/.

[4] D. Baek, S. Hwang, T. Heo, D. Kim, and J. Huh, “InnerSP: A Memory
Efficient Sparse Matrix Multiplication Accelerator with Locality-Aware
Inner Product Processing,” in 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2021, pp.
116–128.

[5] S. Bova, “Model of Charleston Harbor.”
[6] C. Damhaug, “Positive definite matrices.”
[7] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix

Collection,” ACM Transactions on Mathematical Software (TOMS),
vol. 38, no. 1, pp. 1–25, 2011.

[8] I. Duff, R. Grimes, and J. Lewis., “The original Harwell-Boeing collec-
tion.” pp. 1–14, 1989.

[9] A. Fog, “Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD, and VIA CPUs,” https://www.agner.org/
optimize/instruction tables.pdf, 2022.

[10] S. Galal and M. Horowitz, “Energy-Efficient Floating-Point Unit De-
sign,” IEEE Transactions on Computers, vol. 60, no. 7, pp. 913–922,
2011.

[11] N. Gould, Y. Hu, and J. Scott, “Positive definite matrices,” ftp://ftp.
numerical.rl.ac.uk/pub/matrices/symmetric/.

[12] R. Grimes, “Structural engineering matrices.”
[13] U. Gupta, B. Reagen, L. Pentecost, M. Donato, T. Tambe, A. M. Rush,

G.-Y. Wei, and D. Brooks, “MASR: A Modular Accelerator for Sparse
RNNs,” in 2019 28th International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2019, pp. 1–14.

[14] S. Hamm, “Semiconductor simulation matrices from.”
[15] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and

W. J. Dally, “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA), 2016, pp. 243–254.

[16] O. Hededal and S. Krenk, “FEMLAB: a MATLAB toolbox for
the finite element method,” https://vbn.aau.dk/en/publications/femlab-a-
matlab-toolbox-for-the-finite-element-method-version-10, 1995.

[17] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An Acceler-
ator for Sparse Tensor Algebra,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’52),
2019, p. 319–333.

[18] G. Heo, S. Lee, J. Cho, H. Choi, S. Lee, H. Ham, G. Kim, D. Maha-
jan, and J. Park, “NeuPIMs: A NPU-PIM Heterogeneous Acceleration
for Batched Inference of Large Language Model,” in Proceedings of
the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’24), 2024.

[19] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients
for solving linear systems,” Journal of research of the National
Bureau of Standards, vol. 49, pp. 409–435, 1952. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2207234

[20] S. Hwang, D. Baek, J. Park, and J. Huh, “Cerberus: Triple Mode Accel-
eration of Sparse Matrix and Vector Multiplication,” ACM Transactions
on Architecture and Code Optimization, 2024, just Accepted.

[21] H. Kal, C. Yoo, and W. Ro, “Aespa: Asynchronous execution scheme
to exploit bank-level parallelism of processing-in-memory,” in 56th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2023.

[22] S. Kamvar, “Stanford Web Matrix,” http://www.stanford.edu/
∼sdkamvar/research.html.

[23] Y. Kwon, K. Vladimir, N. Kim, W. Shin, J. Won, M. Lee, H. Joo,
H. Choi, G. Kim, B. An, J. Kim, J. Lee, I. Kim, J. Park, C. Park,
Y. Song, B. Yang, H. Lee, S. Kim, D. Kwon, S. Lee, K. Kim, S. Oh,
J. Park, G. Hong, D. Ka, K. Hwang, J. Park, K. Kang, J. Kim, J. Jeon,
M. Lee, M. Shin, M. Shin, J. Cha, C. Jung, K. Chang, C. Jeong, E. Lim,
I. Park, J. Chun, and S. Hynix, “System Architecture and Software Stack
for GDDR6-AiM,” in 2022 IEEE Hot Chips 34 Symposium (HCS), 2022,
pp. 1–25.

[24] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn,
and N. S. Kim, “Hardware Architecture and Software Stack for PIM

Based on Commercial DRAM Technology : Industrial Product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 43–56.

[25] M. Lenjani, A. Ahmed, M. Stan, and K. Skadron, “Gearbox: A Case for
Supporting Accumulation Dispatching and Hybrid Partitioning in PIM-
Based Accelerators,” in Proceedings of the 49th Annual International
Symposium on Computer Architecture (ISCA’22), 2022, p. 218–230.

[26] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[27] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A
Cycle-Accurate, Thermal-Capable DRAM Simulator,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 106–109, 2020.

[28] Z. Lu, Y. Niu, and W. Liu, “Efficient block algorithms for parallel sparse
triangular solve,” in Proceedings of the 49th International Conference on
Parallel Processing, ser. ICPP ’20. New York, NY, USA: Association
for Computing Machinery, 2020.

[29] MATLAB, “Solve system of linear equations — preconditioned con-
jugate gradients method,” https://www.mathworks.com/help/matlab/ref/
pcg.html.

[30] M. Naumov, L. S. Chien, P. Vandermersch, and U. Kapasi, “CUSPARSE
Library,” https://developer.nvidia.com/cusparse, 2022.

[31] NVIDIA, “CUDA,” https://developer.nvidia.com/cuda-zone.
[32] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,

H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE:
An Outer Product Based Sparse Matrix Multiplication Accelerator,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2018, pp. 724–736.

[33] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “SIGMA: A Sparse and Irregular GEMM Ac-
celerator with Flexible Interconnects for DNN Training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 58–70.

[34] D. Ronis, “Crystalline compounds (zeolites,sodalites),” Mar. 2001.
[35] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Society

for Industrial and Applied Mathematics, 2003. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003

[36] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi, and F. Franchetti,
“Efficient SpMV Operation for Large and Highly Sparse Matrices using
Scalable Multi-way Merge Parallelization,” in Proceedings of the 52nd
International Symposium on Microarchitecture (MICRO), 2019, pp. 347–
358.

[37] O. Schenk, “Semiconductor device simulation matrices,” http://www.
computational.unibas.ch/computer science/scicomp/matrices.

[38] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “MatRaptor:
A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-Wise
Product,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2020, pp. 766–780.

[39] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A Versatile Accelerator for Mixed sparse-Dense Tensor
Computations,” in Proceedings of the 26th International Symposium on
High Performance Computer Architecture (HPCA), 2020, pp. 689–702.

[40] J. Su, F. Zhang, W. Liu, B. He, R. Wu, X. Du, and R. Wang,
“Capellinisptrsv: A thread-level synchronization-free sparse triangular
solve on gpus,” in Proceedings of the 49th International Conference on
Parallel Processing, ser. ICPP ’20. New York, NY, USA: Association
for Computing Machinery, 2020.

[41] E. Um, “3D FEM, transient electric field diffusion.”
[42] E. Um, “Fem, electromagnetics, 2 cubes in a sphere.”
[43] H. A. van der Vorst, “Bi-CGSTAB: A Fast and Smoothly Converging

Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems,”
SIAM Journal on Scientific and Statistical Computing, vol. 13, no. 2,
pp. 631–644, 1992.

[44] Y. Wang, C. Zhang, Z. Xie, C. Guo, Y. Liu, and J. Leng, “Dual-side
Sparse Tensor Core,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, pp. 1083–1095.

[45] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of Sparse Matrix-vector Multiplication on Emerging
Multicore Platforms,” in SC ’07: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, 2007, pp. 1–12.

[46] P. Wissgott, “Parabolic FEM problem.”
[47] X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu, and

Y. Xie, “SpaceA: Sparse Matrix Vector Multiplication on Processing-in-
Memory Accelerator,” in 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2021, pp. 570–583.

13

[48] C. Yang, A. Buluç, and J. D. Owens, “Graphblast: A high-performance
linear algebra-based graph framework on the gpu,” ACM Trans. Math.
Softw., vol. 48, no. 1, feb 2022.

[49] F. Zhang, J. Su, W. Liu, B. He, R. Wu, X. Du, and R. Wang, “Yuenye-
ungsptrsv: A thread-level and warp-level fusion synchronization-free
sparse triangular solve,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 9, pp. 2321–2337, 2021.

[50] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, “GraphP: Reducing Communication for PIM-based Graph
Processing with Efficient Data Partition,” in Proceedings of the 24th
International Symposium on High Performance Computer Architecture
(HPCA), 2018, pp. 544–557.

[51] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient Archi-
tecture for Sparse Matrix Multiplication,” in 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020,
pp. 261–274.

[52] Y. Zhuo, W. Chao, M. Zhang, W. Rui, D. Niu, Y. Wang, and X. Qian,
“GraphQ: Scalable PIM-Based Graph Processing,” in 52nd IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2019, pp. 712–
725.

[53] S. Zitney, J. Mallya, T. Davis, and M. Stad therr, “Multifrontal vs
frontal techniques for chemical process simulation on supercomputers,”
Computers & Chemical Engineering, vol. 20, no. 6, pp. 641–646, 1996,
fifth International Symposium on Process Systems Engineering.

14

