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Abstract

Consolidating multiple applications on a system can im-

prove the overall resource utilization of data center systems.

However, such consolidation can adversely affect the per-

formance of some applications due to interference caused

by resource contention. Despite many prior studies on the

interference effects in single-node systems, the interference

behaviors of distributed parallel applications have not been

investigated thoroughly. With distributed applications, a lo-

cal interference in a node can affect the whole execution

of an application spanning many nodes. This paper studies

an interference modeling methodology for distributed ap-

plications to predict their performance under interference

effects in consolidated clusters. This study first character-

izes the effects of interference for various distributed ap-

plications over different interference settings, and analyzes

how diverse interference intensities on multiple nodes affect

the overall performance. Based on the characterization, this

study proposes a static profiling-based model for interfer-

ence propagation and heterogeneity behaviors. In addition,

this paper presents use case studies of the modeling method,

two interference-aware placement techniques for consoli-

dated virtual clusters, which attempt to maximize the overall

throughput or to guarantee the quality-of-service.

Categories and Subject Descriptors C.1.4 [Parallel Ar-

chitectures]: Distributed architectures; C.4 [Performance of

Systems]: Modeling techniques; D.4.1 [Process Manage-

ment]: Scheduling

Keywords Resource contention, consolidated system, cloud

computing, distributed parallel application, interference

model, placement algorithm
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1. Introduction

An increasing number of cores in multi-core processors have

been exacerbating contention on shared architectural re-

sources such as shared last-level caches (LLC) and memory

bandwidth. Such contention causes performance interfer-

ence among applications in consolidated systems where dif-

ferent types of applications share a physical machine. With

the growing popularity of cloud computing and system vir-

tualization, such a consolidation of divergent applications on

the same system has become common. To mitigate the per-

formance interference problem, recent studies have been ex-

ploring schemes to reduce performance variation or to sup-

port a certain level of performance guarantee, regardless of

the behaviors of co-running applications [7, 13, 15, 16, 21].

However, most of the prior work have isolated the effect

of interference within a physical system. Their models as-

sume that the interference occurring in a system affects only

the applications running on the same system. For example, in

the recent studies to control the interference [13, 21], the per-

formance of a critical application running on a single phys-

ical system is protected from co-running batch applications.

By estimating the resource contention and performance im-

pact by the co-running applications, the studies have pre-

vented batch applications from reducing the performance of

the critical application lower than a threshold.

However, in clouds, another important class of applica-

tions are distributed parallel applications, which span mul-

tiple physical systems (nodes). In such distributed parallel

applications, the effect of interference in a physical node af-

fects the final latency of the applications differently, depend-

ing on how their parallelism is utilized. For example, in one

type of distributed applications, the interference in one of the

nodes can propagate to the entire participating systems, if

load balancing is not dynamically adjusted. In this case, one

slow node can delay the whole execution of the application,

since the other nodes cannot proceed to the next stage until

the delayed one is completed. A different type of distributed

applications can be resilient to such an isolated interference,

minimizing the propagating effect. Furthermore, when mul-

tiple nodes suffer from different intensities of interference,

the final latency of distributed applications may depend on



how the different levels of interference manifest themselves

in the parallel execution.

For distributed applications in consolidated systems, this

paper investigates how interference in a subset of nodes af-

fects the final execution times of the applications, explor-

ing techniques to model the interference effect. Unlike prior

studies which have been isolating interference estimation

within a physical system boundary [13, 21], to the best of

our knowledge, this paper is one of the first studies to in-

vestigate the interference effect on distributed systems and

to propose a method to estimate the effect. Such interfer-

ence management is important to guarantee the quality of

service of distributed applications, or to improve the overall

throughput of consolidated clusters.

The proposed interference-aware performance model

covers two different aspects of interference manifestation

in distributed systems. First, the interference propagation

model estimates how interference in a subset of nodes de-

termines the final latency. Second, the interference hetero-

geneity model converts different interference intensities in

a subset of nodes to a homogeneous intensity in the same

or different numbers of nodes, to simplify the estimation

model. Combining the two aspects, the proposed technique

can estimate the final performance of a distributed applica-

tion under different interferences in a subset of nodes with a

small number of profiling runs.

Based on the proposed modeling technique, this paper in-

vestigates interference-aware placement algorithms for dis-

tributed applications as a case study. Using the performance

model, two algorithms based on a simulated annealing tech-

nique find the best placement of multiple distributed applica-

tions on a cluster of physical nodes with two different goals.

The first algorithm finds the best placement for maximizing

the overall throughput. The second algorithm finds the best

placement to support a certain level of performance guar-

antee for an application while improving the throughput of

the other applications. Our experimental results show that

the placement algorithms can effectively improve the over-

all performance with quality-of-service (QoS) support using

the proposed interference model.

The main contributions of this paper are as follows. First,

this paper investigates how the final performance of a dis-

tributed application is determined when a subset of the nodes

suffer from various intensities of interference. Second, this

paper proposes a method to build an interference-aware per-

formance model for distributed applications. Although it

requires profiling runs to characterize the interference prop-

agation behaviors of applications, the method reduces the

required profiling runs significantly, compared to a naive de-

sign. Third, using the proposed model, this paper explores

interference-aware placement algorithms for distributed ap-

plications on a cluster of physical nodes. By reflecting the in-

terference propagation behaviors, the placement algorithms

improve the overall throughput or support QoS for dis-

tributed applications.

Limitations: As the first effort to model the interference

in distributed applications, this paper assumes that each dis-

tributed application is known a priori, and the interference

model of the application is constructed with a small num-

ber of separate profiling runs. The model from the sepa-

rate profiling runs cannot be adjusted dynamically during

application execution. In addition, it allows to predict the

effects of pairwise interaction in each node. In each node,

the model assumes that only up-to two distinct applications

share the node resources. A similar approach has been used

in the prior work [13]. Mars et al. first used a profile-based

model construction for pairwise co-location as the initial

mechanism of interference management [13]. Their subse-

quent work extended the profile-based approach to on-line

estimation which supports co-locations of multiple applica-

tions [21]. Supporting a dynamic model for more than two

distributed applications in each node will be our future work.

The rest of the paper is organized as follows. Section 2 de-

scribes a prior technique to quantify and model interference

in a single node system. Section 3 investigates two aspects,

propagation and heterogeneity of interference in distributed

systems. Section 4 proposes a modeling method to minimize

required profiling runs, and validates our model. Section 5

proposes two interference-aware placement algorithms, and

shows the experimental results. Section 6 presents the val-

idation results with a commercial cloud service. Section 7

presents the related work and Section 8 concludes the pa-

per.

2. Background and Motivation

2.1 Prior Techniques for Quantifying Interference

This section presents a prior technique proposed by Mars

et al. to model the effect of interference for pairwise appli-

cations running on single-node systems [13]. Among var-

ious sources of performance interferences, shared last-level

caches (LLC) and memory bandwidth have been dominantly

contended resources for compute-intensive applications [13,

16, 21]. If one application evicts cachelines for a co-running

application or consumes scarce memory bandwidth exces-

sively, the performance of the co-running application is ad-

versely affected. In this paper, we use the effect of shared

cache and memory bandwidth interference as the primary

source of performance interference, although the technique

can be generalized to different types of interferences such as

network and disk I/O bandwidth, as discussed by the prior

studies [13, 16, 21].

To model the interference behavior of distributed appli-

cations, we employ a technique proposed by a prior study,

to model the interference behavior within a physical node

boundary. The single-node technique called Bubble-Up,

measures how the performance of each application is de-

graded by different intensities of interference. Based on the
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Figure 1. Estimating execution times of consolidated work-

loads with interference sensitivity curves and bubble scores

performance changes, the technique generates interference

response curves (sensitivity profile) for each application with

profiling runs [13]. In addition to the per-application inter-

ference sensitivity profile, it also measures how much in-

terference the application generates to co-runners, and nor-

malizes the generated interference to a score (bubble score).

Using the per-application sensitivity profile and the bubble

score generated by the application, the interference man-

agement system can estimate the performance of any two

applications when the two applications are scheduled to the

same system. The study divides applications to mission-

critical tasks and batch ones, and the batch applications are

scheduled only when they do not degrade the performance

of mission-critical ones beyond a threshold [13, 21].

A key component of the interference modeling technique

is to normalize the interference intensity to a bubble score.

To generate interference intensity in a controlled manner, the

study designs bubble, a small interference-generation pro-

gram, which exercises the memory subsystem by creating

different levels of cache misses and external memory ac-

cesses. Using the bubble program, the performance of each

application is measured with different pre-defined levels of

interference. With profiling runs for each application un-

der different interference levels, the scheme measures how

much performance degradation the application exhibits un-

der a given level of interference. In Figure 1, the interference

sensitivity profile for each workload models the execution

time increase pattern by the pressure increase using the co-

running bubble.

The same bubble program is also used to measure how

much interference an application generates. Based on the

performance degradation of the bubble program itself, when

it is co-run with a target application, the interference inten-

sity the application causes is converted to a bubble score. In

essence, the bubble-based approach provides an interference

normalization method, so that the interference effect of every

pair of co-running applications does not need to be profiled
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Figure 2. Execution time of 126.lammps over various num-

bers of nodes executing 462.libquantum

a priori. For each application, the per-application sensitiv-

ity profile and bubble score need to be measured, without

knowing what another application will be co-run. When two

applications are deployed to a system, their possible perfor-

mance interference can be estimated by examining the sen-

sitivity profiles and bubble scores of the two applications.

Figure 1 shows the procedure to estimate the performance

of two co-running applications by combining the sensitivity

curves and bubble scores.

The subsequent study by Yang et al. extended the bubble-

based interference model to on-line measurement which also

supports co-locations of multiple applications in a single

node [21]. The interference response and generation mod-

els of applications are constructed on the fly by executing

profiling runs with bubble occasionally. They optimized the

occurrence of profiling runs, by tracking changes of the sys-

tem behavior.

A different prior approach, DeepDive uses an interfer-

ence model with resource usage statistics for interference

management [16]. The interference model estimates possi-

ble interference and performance degradation, from the re-

source usage statistics of co-running applications. When a

task is submitted, it runs on an isolated virtual machine (VM)

without interference to characterize the behavior of the ap-

plication for a short period of time, collecting key resource

usage statistics such as cache misses or I/O accesses. Once

the characterization of the application is completed with the

short dynamic profiling run, the task is migrated to an ap-

propriate node, by estimating the possible interference by

the new application and the existing applications based on

the resource usage statistics. Instead of normalizing interfer-

ence levels to bubble scores, the approach directly models

interference with memory and I/O usage statistics. It also

exploits the migration capability of virtualization to avoid

separate profiling runs, although the effectiveness of the ap-

proach relies on the stability of application behaviors since

only a short initial run must be able to represent the whole

execution.

2.2 Motivation

In this paper, we use the same approach as the bubble-based

interference measurement for each individual node partici-

pating the execution of distributed applications. Using an in-

terference generation program similar to bubble, we gener-

ate several different intensities of interference in each node.



The main contribution of this work is how each individual

interference in distributed nodes should be combined to de-

termine the final performance of distributed applications.

As a motivating example, Figure 2 presents how the final

runtime of a parallel application is determined by interfer-

ence in a subset or all of the nodes. For the experiments, 32

dual-core virtual machines are deployed to run the lammps

application in an 8-node cluster. The detailed configuration

is presented in Section 3.1. Along with the parallel appli-

cation, instances of libquantum run in a subset of nodes,

as an interfering co-runner. The figure shows the normalized

execution times when interference occurs by the co-running

libquantum applications in 0-8 physical nodes.

To demonstrate the importance of interference modeling

of parallel applications, the figure presents an expected per-

formance with a naive proportional interference model. With

the naive proportional model, the interference in a node af-

fects the final execution time of the application proportion-

ally. For example, if a task in a single node within an n-

node cluster is slowed down due to interference, it affects

the overall performance by a factor of 1/n. The first set of

bars shows the expected execution times of the application

(lammps) with the naive model, and the second set of bars

shows the real execution times of the same application. The

x-axis represents the number of nodes where instances of

libquantum are running, and thus lammps is experiencing

interference.

As shown in the figure, the expected execution time with

the naive proportional model increases linearly with the

number of interfering nodes. However, the real runs exhibit

completely different curves. Even when a single node suf-

fers from interference, the execution time is significantly

increased. Further increases of interfering nodes delay the

execution with much slower rates. Such behavior of lammps

is due to its parallelism and synchronization pattern. A slow-

down in a single node will block the progress of the other

nodes.

As shown by the motivation example, the performance of

distributed applications cannot be simply estimated by the

proportional aggregation of the performance of participating

nodes. To address the problem, this paper proposes a model-

ing method for distributed applications under interference.

3. Modeling Interference

This section presents the interference sensitivity behaviors

of distributed applications. First, we analyze the perfor-

mance degradation when the number of nodes suffering from

interference increases. Such interference propagation deter-

mines the performance of distributed applications, with a

given number of nodes under the same interference inten-

sity. Second, we investigate how heterogeneous intensities

of interference in multiple nodes are reflected in the final

performance of the applications.

Type Name Size Abbrev.

104.milc mref M.milc

107.leslie3d mref M.lesl

SPEC 113.GemsFDTD mref M.Gems

MPI2007 126.lammps mref M.lmps

132.zeusmp2 mref M.zeus

137.lu mref M.lu

NPB
cg class D N.cg

mg class D N.mg

HADOOP Kmeans 75 MB H.KM

SPARK

PageRank
1M vertices

S.PR
with 12M edges

Collaborative 30 users
S.CF

Filtering on 100 movies

WordCount 4.2GB S.WC

403.gcc ref C.gcc

429.mcf ref C.mcf

SPEC 436.cactusADM ref C.cact

CPU2006 450.soplex ref C.sopl

462.libquantum ref C.libq

483.xalancbmk ref C.xbmk

Table 1. Application configuration and data set

3.1 Methodology

For our study, we use a cluster composed of eight physical

host nodes connected via a 10 Gigabit Ethernet switch. Each

of the hosts is configured with two Intel Xeon Octa-core E5-

2650 processors and 64 GB memory. The Xen hypervisor

with version 4.3.2 is used, and the guest operating system

for virtual machines (VMs) is a para-virtualized Linux of

kernel version 3.2.59. For each VM, it is configured to have

two virtual CPUs (vCPUs) with 5 GB memory. Since a

host has 16 physical cores in total, the total 8 VMs can be

placed on each of the hosts. Since we use compute-intensive

workloads, the experimental setup does not over-commit the

total vCPUs more than the available physical cores.

Table 1 shows application workloads and their input

sizes used in our experiments. Four types of parallel work-

loads, SPECMPI2007, NPB, Hadoop, and Spark are used

to investigate the interference model for distributed ap-

plications. Applications in SPECCPU2006, which are not

parallel workloads, are used as possible batch-oriented co-

running workloads in Section 5. For the experiments, each

distributed application uses 32 dual-core VMs (i.e. 64 vC-

PUs in total) running on 8 physical nodes with 16 cores. For

each workload, we restricted that four VMs which belong to

the same application, are always executed together on a host

node in experiments. Therefore, only up-to two applications

can be co-located in a node, reducing the complexity of our

analysis.

3.2 Interference Propagation

The first aspect of interference modeling for distributed ap-

plications is how the effect of interference occurring in a

subset of nodes propagates to the execution of the whole ap-
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Figure 3. Execution time with varying bubble pressures with from 1 to 8 interfering nodes (normalized to no-interference)
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Figure 4. Average error by converting heterogeneous interference to homogeneous one with four policies on 8 hosts

plication spanning multiple nodes. In this section, we first

present how the performances of our benchmark applica-

tions change when the number of physical nodes with inter-

ference (interfering nodes) increases. To simplify the anal-

ysis, all the interfering nodes suffer from the same inter-

ference intensity with the same bubble pressure. Figure 3

presents the normalized execution times when the number

of interfering nodes increases from 1 to 8 physical nodes.

The x-axis is the number of interfering nodes. Each graph

shows 8 curves with different bubble pressures from 1 to 8

generated by a co-running bubble.

As shown in the figure, applications exhibit different

interference propagation behaviors. In general, there are

roughly three types of applications. In the first type, high

propagation, the interference in one or two nodes affects

the execution times significantly. The majority of appli-

cations, including M.milc, M.lesl, and M.lmps, exhibit

such behaviors. The high propagation property becomes

stronger with higher bubble pressures. In the second type,

proportional propagation, such as M.Gems, the exe-

cution times increase proportionally to the number of in-

terfering nodes. The behavior of this type of applications

is similar to the collection of single-node applications. As

more individual nodes are slowed down, the performance

is proportionally degraded. Note that unlike the other MPI-

based applications we used, M.Gems does not use any allre-

duce/allgather routines, and has much smaller numbers of

barriers, having the low collective operations and showing

linear increase patterns. The final type, low propagation,

such as H.KM and S.PR, is relatively resilient to the inter-

ference, since it has low requirements for LLC capacity and

memory bandwidth. Even if a co-running application mo-

nopolizes the shared resources, this type of applications is

not affected significantly.

Various distributed workloads we examined exhibit dif-

ferent interference propagation behaviors. Furthermore, even

in the same propagation type of applications, the perfor-

mance curves quite differ, since the resilience to local inter-

ference varies by application behaviors. Even though appli-

cation experts may know the general behavior of each ap-

plication, and even its memory resource demand and usage

pattern, it is extremely difficult to estimate the actual per-

formance impact from the interference. Based on the obser-

vation, we conclude that per-application interference prop-



agation models are necessary to estimate the performance

of each application, when some nodes have performance

interference.

However, one critical problem of profiling and modeling

the propagation behaviors of distributed applications is the

number of profile runs to build the model. For single-node

applications used by Mars et al. [13], it is necessary only to

run each application with different levels of bubble pressure.

For distributed applications running on multiple physical

nodes, profiling runs must examine all possible numbers

of interfering nodes, increasing the time complexity of the

profiling run significantly. A naive method is to run with

N different interference setups for an N-node cluster, and

for each setup, different levels of bubble pressure must be

examined. In Section 4, we will propose a scheme to reduce

the required profiling runs drastically.

3.3 Interference Heterogeneity

The second difficulty of modeling interference for dis-

tributed applications is the heterogeneity of interference in-

tensity in multiple interfering nodes. In the previous section,

it is assumed that every interfering node suffers from the

same level of interference. However, in real consolidated

systems, each node may have a different interference level.

If profiling runs must examine all possible intensities in dif-

ferent numbers of interfering nodes, the profiling space will

become intractable. To resolve the explosion of the profiling

space, we propose a method to convert the heterogeneous

intensity in interfering nodes, to a homogeneous one. With

this mapping, the model only needs to have the performance

sensitivity curves with homogeneous intensity, as shown in

Figure 3.

The rationale behind the feasibility of conversion process

is that in some applications, the worst interference dominates

the execution, while the average interference determines the

overall interference level in other applications. In this work,

we investigate and formulate four different mapping poli-

cies. First, N max policy considers only the number of in-

terfering nodes under the worst interference intensity. For

example, suppose there are four interfering nodes. If two of

them suffer from the same high pressure, and the rest of two

nodes are under lower pressures, the overall execution time

of an application is similar to that of the same application

with only two interfering nodes with the same high pressure.

The effect of two interfering nodes with lower pressures is

ignored. Second, N+1 max policy slightly augments N max

policy. Instead of considering only the top intensity nodes,

in this policy, the rest of interfering nodes are merged to an

extra interfering node with the same top pressure, instead

of ignoring them. For the same example of four interfering

nodes, the heterogeneous intensity is mapped to a homoge-

neous intensity with 3 nodes with the same top pressure. The

third policy, all max, assumes that the effect of the worst

pressure even in a single node propagates directly to all the

nodes. Therefore, it is mapped to a homogeneous intensity in

which the worst pressure occurs in every node. The final pol-

icy, interpolate, uses an average intensity from all nodes

as a representative interference in all the nodes. Note that

in this work, we present a converting methodology to han-

dle the heterogeneous intensity, and our methodology will

be able to accommodate the addition of new policies, if any,

for applications with entirely different behaviors.

Using the four different policies, we evaluate the behav-

iors of our workloads. However, examining all possible com-

binations of intensity levels from 1 to 8 with from 0 to 8 in-

terfering nodes requires a large number of experimental runs

which were impossible to test with our limited computing

resources. With 8 physical systems, the total number of het-

erogeneous settings is 12,870. To find the best mapping pol-

icy, we use a sample-based approach. We randomly selected

60 heterogeneous interference configurations, and examined

which of the four policies matches each application behav-

ior.

Figure 4 presents the detailed error rates with the four

different policies for each application. For each policy, an

error bar with the minimum and maximum error rates is

also presented. As shown in the figure, although not a single

policy is the best for all applications, one or two policies

for each application have very small error rates. Table 2

shows the best policy for each application with the average

error, and standard deviation. As shown in the table, for

distributed applications, at least, one of the policies can

convert heterogeneous intensity to homogeneous intensity

effectively with less than 9% average error and low standard

deviation.

To find the best mapping policy, the profiling method

must examine a statistically meaningful number of samples.

For 12,870 total configurations, the 60 samples have a mar-

gin of error of about +/−1.7 on 99% confidence level, as-

suming the population distribution is normal and the stan-

dard deviation of the population follows the sample stan-

dard deviation. Due to the relatively low standard deviation

as shown in Table 2, the confidence interval is short even on

99% confidence level. With a certain number of sample runs,

the best mapping policy of each application can be found.

Once the best policy is determined, only homogeneous in-

tensity runs are necessary to build a model for the applica-

tion.

3.4 Interference Model

To estimate the performance of distributed applications un-

der diverse interferences in a subset of nodes, three mod-

eling parameters must be obtained by profiling runs. First,

the profiling process must measure the bubble score of each

application, which is the interference intensity generated by

the application. For MPI-based applications, the master par-

ticipates in the computation like slaves. Thus, they generate

a similar intensity of interference in all participating nodes,

since each process exhibits a similar memory system behav-

ior. However, for Hadoop and Spark applications, the master



Workload Best policy Avg. error(%) Std. dev.

M.milc N+1 MAX 3.50 2.18

M.lesl N+1 MAX 2.20 1.60

M.Gems INTERPOLATE 7.34 5.93

M.lmps N+1 MAX 1.91 0.93

M.zeus N+1 MAX 1.11 0.82

M.lu N+1 MAX 4.01 2.35

N.cg N+1 MAX 3.37 2.26

N.mg N+1 MAX 8.62 3.16

H.KM INTERPOLATE 4.55 1.41

S.WC N MAX 4.15 7.95

S.CF N MAX 6.60 4.96

S.PR N+1 MAX 3.69 2.60

Table 2. The best heterogeneity mapping policy

Workload Bubble point Bubble list Converted bubble list

A (N+1 max) 5 [3, 2, 1, 1] [3, 3, 0, 0]

B (ALL max) 3 [5, 2, 2, 1] [5, 5, 5, 5]

C (INTERPOLATE) 2 [3, 5, 3, 1] [3, 3, 3, 3]

D (N max) 1 [5, 5, 3, 2] [5, 5, 0, 0]

NODE 1 NODE 2 NODE 3 NODE 4 NODE 5 NODE 6 NODE 7 NODE 8

A B A A B A B C

B C C D C D D D
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Figure 5. Sensitivity profiles, bubble scores, and hetero-

geneity mapping policies

does not process any task, generating much lower interfer-

ence. Thus, only among slaves, the interference levels are

similar. In this work, we use the average interference inten-

sity generated in all participating nodes as the bubble score

of an application. However, further optimization is possible

to consider the difference between the master and slaves for

Hadoop and Spark applications. Second, to address the in-

terference heterogeneity, the profiling process must find the

per-application best mapping policy between heterogeneous

and homogeneous interferences. Third, for each bubble pres-

sure, the profiling runs must measure the interference sensi-

Algorithm 1 Binary-brute algorithm

1: var T : double[n][m+ 1]; //initially T [i][j] = null
2: t0: double;

3: t0 := measure(0, 0); //exec. time with no interference

4: for each i in 0..n− 1 do

5: T [i][0] := 1; //norm. time with no interference

6: T [i][m] := measure(i+1, m)/t0; //with max nodes at i+1
7: T := profile binary row(T , i, 0, m, t0);

8: T := interpolate row(T , i);
9: end for

tivity curves for increasing numbers of interfering nodes to

represent interference propagation property as in Figure 3.

Figure 5 describes sensitivity curves and heterogeneity

mapping policies for four workloads. The top table in the

figure shows an example placement where workloads A, B,

C, and D are placed in 8 nodes, with two different workloads

sharing each node. In the bottom table, the workload column

shows the best mapping policy for each workload, and the

second column is the bubble scores of workloads. The third

pressure list column is the heterogeneous interference actu-

ally occurring by the example placement, and the converted

pressure list shows the homogeneous intensity converted by

the best mapping policy of each application. With the infor-

mation on the model, the performance of workloads A, B,

C, and D can be estimated for the example placement. For

example, workload A receives pressures of 3,2,1,1 with the

placement. The heterogeneous interference can be converted

to 3,3,0,0, since the best mapping policy is N+1 max for the

workload. Then, using the curves for the pressure value of 3

with two interfering nodes, the performance of A under the

interference is estimated.

4. Profiling Method and Model Validation

4.1 Interference Propagation Profiling

To profile the execution times of a distributed application

under various interference settings efficiently, we devise two

algorithms, binary-brute and binary-optimized. These algo-

rithms selectively profile the execution times of a distributed

application to construct the sensitivity curves with differ-

ent bubble pressures and with different numbers of homo-

geneous interfering nodes as in Figure 3.

Each of the algorithms computes a matrix of execution

times normalized to those under no interference for a dis-

tributed application. In an n × (m + 1) matrix, called T ,

where n is the total number of bubble pressures, and m is

the total number of hosts, T [i][j] is a normalized execution

time when the number of interfering nodes with i+1 bubble

pressure is j.

Algorithm binary-brute measures the execution of a tar-

get application for each different bubble level, which corre-

sponds to each curve in Figure 3. For each curve, instead

of examining all possible numbers of interfering nodes, it

measures the execution times with a few selected numbers



Algorithm 2 Binary-optimized algorithm

1: var T : double[n][m+ 1]; //initially T [i][j] = null
2: t0: double;

3: t0 := measure(0, 0); //exec. time with no interference

4: T [0][m] := measure(1, m)/t0; //with max nodes at min bub.

5: T [n − 1][m] := measure(n, m)/t0; //with max nodes at max

bub.

6: for each i in 0..n− 1 do

7: T [i][0] := 1; //norm. time with no interference

8: end for

9: T := profile binary row(T , n− 1, 0, m, t0);

10: T := interpolate row(T , n− 1);

11: T := profile binary col(T , m, 0, n− 1, t0);

12: T := interpolate col(T , m);

13: T := interpolate all(T );

of interfering nodes (using function measure). The selection

process uses a binary-search algorithm to eliminate unnec-

essary runs, and thus, if the performance difference with two

different numbers of interfering nodes is small enough, then

the profiling process does not need to run for the number of

interfering nodes between the two setups (in function pro-

file binary row). Once this profiling process is done, we pre-

dict each of unmeasured execution times by interpolating ex-

isting execution time values (in function interpolate row).

Algorithm binary-optimized further reduces the profiling

runs by exploiting the shape of curves is similar, regardless

of bubble pressures. It constructs one curve with the high-

est bubble pressure with the same binary search as binary-

brute. In addition to the top curve, it similarly measures or

predicts the execution time with the maximum number of

interfering nodes at different bubble pressures (in functions

profile binary col and interpolate col). By constructing the

top curve and measuring the distance between curves among

different pressure levels, the other curves with lower bub-

ble pressures can be inferred, assuming their shapes do not

change significantly. We can predict an unmeasured T [i][j]
by doing a sum by proportion based on the existing execu-

tion times (in function interpolate all) as T [i][j] := 1 +
(T [i][m]−1)∗(T [n−1][j]−1)

T [n−1][m]−1 .

4.2 Cost Reduction and Accuracy

We compare the performance of these two algorithms with

random based algorithms, in terms of profiling cost and ac-

curacy. The random-30% and random-50% algorithms ran-

domly select 30% and 50% of all interference settings, re-

spectively, and predict the execution times of other settings

by interpolating the existing execution times. Note that in

these algorithms, settings with no interference and with in-

terference in all hosts for each bubble pressure are always

selected and measured to construct sensitivity curves effec-

tively.

Table 3 shows the accuracy of each of the four algorithms.

The average profiling cost of an algorithm is computed as the

average percentage of measured interference settings over all

Prediction Algorithm Average cost(%) Average error(%)

binary-optimized 18.45 3.16

binary-brute 59.44 0.56

random-50% 49.23 5.31

random-30% 29.23 13.55

Table 3. Profiling cost and accuracy
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Figure 6. Prediction errors with four profiling techniques
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Figure 7. Profiling cost with four profiling techniques

Workload Bubble Workload Bubble Workload Bubble

M.milc 4.3 M.lesl 3.9 M.Gems 2.4

M.lmps 1.0 M.zeus 1.4 M.lu 4.6

N.cg 3.9 N.mg 5.0 H.KM 0.2

S.WC 0.3 S.CF 0.5 S.PR 0.7

C.gcc 4.8 C.mcf 5.4 C.cact 3.8

C.sopl 4.9 C.libq 6.6 C.xbmk 4.3

Table 4. Bubble scores for the benchmark applications

settings. The average error is computed as the average per-

centage of the difference between an estimated normalized

execution time and a measured one for all settings. Figure 6

and Figure 7 present the average error and cost for each of

the applications, respectively. In the results, for the binary-

brute algorithm, it has the lowest error, but requires the high-

est cost among all the algorithms. For the binary-optimized

algorithm, it shows a moderate error and requires the low-

est cost. Considering both of profiling cost and accuracy, the

binary-optimized algorithm can be used effectively to con-

struct the sensitivity curves of an application, compared to

the binary-brute and random based algorithms.
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Figure 9. Validation errors with M.Gems

4.3 Model validation

We experimentally validate the interference-aware perfor-

mance model by running two applications together in a clus-

ter of multiple systems. We use the same system configu-

ration as described in Section 3.1. For each application, the

interference propagation model is constructed as in Figure 3,

and the best interference heterogeneity mapping policy is

also determined as in Table 2. Table 4 shows the measured

bubble score for all applications, ranging from 0.2 to 6.6.

They generate widely different intensities of interference.

Figure 8 presents the average error including 25% - 75%

error bars for each application, when the application is co-

running with all the applications (including itself). Most of

workloads have less than 10% errors with the majority of

them under 5%. The Spark applications have high error rates

over 10%, but their average error rates are reduced signifi-

cantly without the problematic co-runner, M.Gems. Figure 9

presents the predicted and actual runtimes of all applica-

tions running with M.Gems. M.Gems is one of the most un-

predictable applications among our workloads, since its be-

havior is relatively unstable, depending on the co-running

applications. It uniquely uses latency-sensitive blocked I/Os

instead of common asynchronous I/Os. In Xen, when there

are some idle CPU resources to dedicatedly execute Dom0

which handles network I/Os, the blocked I/O performance

can be boosted. Since M.Gems is very sensitive to the avail-

ability of CPU for Dom0, our prediction accuracy is low

for the Spark and Hadoop applications that have fluctuating

CPU loads.

4.4 Limitations

Static Profiling: The first limitation of this study is its model

construction method based on static profiling. This study as-

sumes a priori knowledge of each application, and through

separate profiling runs, the propagation and heterogeneity

behaviors are measured before the application is used in pro-

duction environments. The profiling is done only once for

each application until the application binary or physical sys-

tem configuration changes, and this study proposed to reduce

the number of profiling runs with a binary search method and

statistical sampling. Due to the static nature of model con-

struction, the model may not reflect the dynamic changes

of behavior accurately. For example, if an application has

clear phase changes during its execution, and each phase has

a different interference model behavior, the current single

static model provides only an average behavior across dif-

ferent phases.

Pairwise Interaction: The second limitation of this study is

its pairwise interaction within a node. In each node, only up-

to two different applications can be co-located to accurately

model their interaction in the current modeling method. A

possible solution for extending the model is to design a

method to combine bubble pressures from multiple applica-

tions to a single score. Although the bubble design varies by

resource types, in our bubble design for LLC and memory

bandwidth, the dominant factor is LLC miss. In our scoring

scheme, each score increase by 1 corresponds to the dou-

bling of LLC misses. For example, when the same two bub-

ble scores, S, are combined, the result score will be the sum

of S+1 and extra pressure by collision of the two combined

applications. The extra pressure may be dependent on the

original score, and this extra pressure estimation requires an

additional modeling and validation effort.

Average Bubble Scoring: The proposed technique assumes

that all the processes from an application across different

nodes generate similar interference intensities, and uses a

single average bubble score for the application. In the bench-

mark applications, the majority of MPI and Hadoop applica-

tions use the same program running on many nodes, and thus

each process of the same application exhibits very similar

LLC miss behaviors. Furthermore, as the balanced data dis-

tribution across processes attempts to equalize the amount

of data handled by each process, the similarity among pro-

cesses is very strong in our benchmark applications. One

exception was the master node for certain applications, in

which the master node performs significantly different tasks

from the other worker nodes. A future extension of this study

will be to support heterogeneous tasks within an application

with potentially different bubble scores.

5. Case Studies

5.1 Placement Algorithm

When the interference propagation model and interference

heterogeneity handling policy are profiled for each appli-
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Figure 10. QoS guarantee and runtimes normalized to solo runs

cation, a placement algorithm finds the best placement of

applications to satisfy given constraints in a set of cluster

nodes. Since the exhaustive search of all possible mappings

is impossible, we develop an interference-aware VM place-

ment algorithm based on simulated annealing [9]. A similar

placement algorithm based on stochastic hill climbing has

been studied for web-service workloads [12]. The placement

algorithm attempts to find the global optimal point by locat-

ing a good approximation, although it is not guaranteed to

find the optimal solution.

The algorithm starts by hypothetically mapping VMs ran-

domly over hosts. To find the best VM placement under in-

terference, it randomly selects two VMs running different

workloads and swaps the locations of two VMs, if the new

VM placement performs better while it satisfies given QoS

constraints. The above process is repeated until the number

of iterations reaches a predefined threshold. For each step

with a hypothetical placement, the placement algorithm esti-

mates the normalized execution time of each application us-

ing the proposed interference model. Note that this algorithm

provides a reasonably good way to prove the effectiveness

of our model as shown in the results below. However, other

techniques rather than simulated annealing can be used, and

they can also benefit from the interference model.

In this section, the experiments used the same system

configuration described in Section 3.1. However, in these

runs, each distributed application is running with 16 VMs,

and four applications with total 64 VMs fully share the 8-

node cluster with 16 cores per node. Since the current model

supports only pairwise co-locations of different applications,

our placement algorithms consider a set of 4 VMs running

the same application in a host as a unit, instead of an in-

dividual VM (even though the algorithms in Sections 5.2

and 5.3 are described based on the unit of an individual

VM). In this way, only one or two application workloads

will be placed in a host. Since SPECCPU2006 applications

are single-threaded applications, if a SPECCPU2006 appli-

cation is chosen, 32 instances of the same application are

running on 16 VMs, with 2 instances per VM, as a VM has

two cores.

5.2 QoS-Aware Placement

An important use scenario is to support QoS guarantee for

mission-critical distributed applications. When a mission-

critical application is running, other less critical applications

may or may not be allowed to share physical nodes. Without

any interference model, it is impossible to predict whether

the QoS of the mission-critical application will be satis-

fied or not. The QoS-aware placement algorithm is based on

the aforementioned interference-aware placement algorithm

with simulated annealing. After hypothetically distributing

VMs for given workloads randomly over hosts in the sys-

tem, the algorithm randomly selects two VMs running dif-

ferent workloads, and swaps the locations of the two VMs,

if the new placement satisfies the delay constraint for the ap-

plications with the QoS requirement. In case that the current

placement state already meets the delay constraint, it swaps

randomly selected VMs only if the new VM placement still

meets the constraint, and has a shorter total execution time.

The above process is repeated for predefined iterations. The

placement algorithm attempts to reduce the overall execution

time while meeting the QoS constraint first.

Figure 10 presents the QoS support status and the sum

of normalized runtimes for four application mixes. In the

figure, one of the four applications for a mix (in italic) is a

target application for QoS. The algorithm finds a placement

to support the QoS for the application, and to maximize the

overall performance. For the experiment, the QoS constraint

is to guarantee 80% of the execution time compared to a

solo run where the target application is running without

any interference. For comparison, the result also shows a

naive model for distributed applications. In the naive model,

heterogeneous interference is converted to a homogeneous

one with the N+1 max policy, which is the static best one,

if we select a single policy for all the applications. Once

the heterogeneity is eliminated, the overall performance is

estimated proportionally by the number of interfering nodes

(as the expected performance is estimated in Figure 2).

As shown in the figure, using the proposed model sup-

ports the QoS guarantee effectively within 80% of the solo

run performance. However, using the naive model can vi-

olate the QoS as shown in the gray bar. The right side of

the figures shows the sum of normalized runtimes. The ex-

ecution time of each application is normalized to that in the



Index Workload combination

High perf. difference between best and worst (20%∼)

HW1 N.mg N.cg H.KM M.lmps

HW2 M.zeus C.libq H.KM M.Gems

HW3 C.libq N.cg H.KM S.PR

HM1 M.zeus S.WC M.Gems S.PR

HM2 H.KM M.Gems M.lu C.xbmk

HM3 S.CF H.KM M.Gems M.Gems

Medium perf. difference between best and worst (5∼20%)

MW N.mg H.KM H.KM M.lesl

MM C.cact C.libq M.Gems M.lmps

MB N.cg M.milc C.libq C.xbmk

Low perf. difference between best and worst (∼5%)

L M.lesl M.zeus M.zeus N.mg

Table 5. Selected workload combinations
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Figure 11. Normalized performance improvement

solo run, and the sum is weighted by the number of VMs

used by each application. For example, 16 VMs of a SPEC-

CPU2006 application have the same weight as the other dis-

tributed applications using the same number of VMs. For

the mix (a), the proposed model increases the overall run-

time slightly compared to the naive model to support QoS.

For the rest of mixes, the overall runtimes are similar to or

slightly shorter than those with the naive model.

5.3 Placement for Performance

Using the same placement algorithm as the QoS-aware

placement, the second policy finds the placement for the best

overall performance without any QoS constraints. For each

application in a placement, its performance is defined as

the speedup over the execution time of the same application

in the worst placement. The overall combined performance

from all the applications in a placement is the weighted av-

erage of the speedups from the applications, and the weight

of each application is proportional to the number of VMs

used by the application.

We chose 10 mixes with different behaviors as given in

Table 5, to examine the effectiveness of our placement al-

gorithm in real machines with a spectrum of mix character-

istics. We ran each mix using three goals, Best maximizes

the overall performance, Worst finds the worst performing

placement for comparison, and Random shows the average

results of five random placements. In addition, we also use

the naive model explained in the previous section. In Table 5,

the mixes are divided into high, medium, and low by the

performance difference between the best and worst place-

ments. The low difference mixes do not suffer from interfer-

ence since generated interferences by applications are small

or co-running applications are not very sensitive to interfer-

ence. However, we still examine those mixes to show that

the placement algorithm does not negatively affect such low

difference cases either.

Figure 11 presents the average speedup of four applica-

tions for each mix. For the mixes with high difference, the

placement algorithm quite effectively finds a good place-

ment with a large performance improvement of up-to 105%

for HM3. The average improvements with high and medium

differences against the worst placement are 56.59% and

16.98%, respectively. For the naive model, the average im-

provements with high and medium differences are 39.86%

and 7.94%, respectively. However, it shows unpredictable

performance, which is often better or worse than the random

placement. For all mixes, the best placement with our model

exhibits the best performance. The result indicates that the

proposed placement algorithm using the interference model

effectively finds a good placement, and avoids the worst

placement.

6. Results on Amazon EC2

To validate our modeling method for larger systems, we ran

experiments with the Amazon EC2 service. For our experi-

ments, we use 32 VM instances with c4.2xlarge type, which

is configured with 8 vCPUs, 15 GiB memory, and high net-

work performance. The interference model proposed in this

paper requires to measure interference occurring in physical

systems. However, in the public Amazon EC2 cloud, it is

impossible to control the placement of VMs or to measure

current interference from their co-running VMs. Thus, we

co-locate applications within a VM provided by EC2. The

experiments use four vCPUs to execute an application work-

load, while we reserve the remaining four vCPUs to execute

bubble programs (or another application workload). The to-

tal number of vCPUs for a distributed application is 128.

There are two critical limitations of this EC2-based setup

for our study. First, there is unmeasured interference from

VMs owned by other users running on the same physical

system. Second, the EC2 service may relocate VMs to dif-

ferent physical systems while they are not active. Therefore,

it is very difficult to experiment on consistent physical sys-

tems with interference fully measured. To mitigate these un-

controllable effects, we selected four workloads which have

relatively short execution times, to finish all the experiments

before the system status changes. For application workloads,

we use M.milc, M.Gems, M.zeus and M.lu.

For each of the four applications, the interference model

is constructed with the proposed modeling method. Fig-

ure 12 shows the normalized execution times when the num-

ber of homogeneous interfering VMs (which execute bubble
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Figure 12. Execution time with varying bubble pressures and with from 1 to 32 interfering nodes on Amazon EC2

Workload Best policy Avg. error(%) Std. dev.

M.milc N+1 MAX 12.01 7.27

M.Gems N+1 MAX 11.49 6.28

M.zeus ALL MAX 6.40 4.52

M.lu N MAX 5.28 4.36

Table 6. The best heterogeneity mapping policy on EC2
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Figure 13. Validation errors for applications on EC2

programs along with the application workload) is 0, 1, 2, 4,

8, 16, 24 or 32. Table 6 shows the best mapping policy for

each application with the average error and standard devia-

tion. To find the interference heterogeneity model for each

application, we randomly sample 100 heterogeneous inter-

ference settings, and measure the execution times on the se-

lected settings. For each of the applications, the average er-

ror for the best mapping policy on Amazon EC2 is higher

than that on our private cluster. A major reason is because

we cannot control the placement of VMs and VMs by other

users are likely running with our VMs on Amazon EC2.

Similar to Section 4.3, we run two applications together

on 32 VMs to validate our model. Figure 13 shows the

average performance estimation error for each application

when it is executed together with all the other applications.

For the benchmark workloads, the average errors are 3-10%.

The sensitivity curves, best mapping policy, and bubble

score for an application are dependent on physical system

configurations as well as the application behaviors. There-

fore, separate interference-aware performance models need

to be constructed for Amazon EC2. However, with the model

parameters newly measured from the EC2 system, our model

can still predict the performance under interference with

modest errors for the larger scale systems.

7. Related Work

There have been earlier efforts on investigating techniques

to reduce the effects of shared cache and NUMA. Zhuravlev

et al. proposed scheduling algorithms in which threads are

grouped and distributed among sockets in a multicore sys-

tem such that the overall cache miss rate of the system is

minimized [24]. A co-scheduling algorithm was proposed

to group VMs with complementary resource demands [14].

In each time slice, it schedules tasks with different resource

demands, reducing hotspots on the chip. To reduce shared

cache impacts between threads (or VMs), low overhead

cache partitioning techniques were studied [17, 19]. Nathuji

et al. proposed to compensate the negative performance

impact due to shared cache by provisioning additional re-

sources for VMs running in a single system [15].

Besides cache contention, NUMA can complicate thread

and VM scheduling and impact performance significantly.

Blagodurov et al. developed a NUMA-aware scheduling al-

gorithm that migrates the memory of threads to maintain

NUMA affinity [3]. The effects of NUMA on shared mem-

ory and MPI-based applications have been investigated in

virtualized environment [11]. To support NUMA systems, a

commercial hypervisor, VMware ESX, provided optimiza-

tion to migrate the memory of VMs [1], but shared LLC con-

tention was not taken into account on scheduling. To mini-

mize the effects of cache sharing and NUMA affinity for a

cloud system, Ahn et al. proposed contention-aware schedul-

ing techniques, which use live VM migration to schedule

VMs dynamically for single-threaded workloads [2].

There have been several studies to reduce resource con-

tention and balance load over physical hosts by using VM

migrations. Wood at al. proposed techniques to monitor the

resource usages of VMs, and initiate VM migrations to

mitigate hotspots [20]. In VMware’s Distributed Resource

Scheduler (DRS) [10], it migrates running VMs for load

balancing across physical hosts, based on the resource re-

quirements specified by users. Similarly, VM migration is

triggered when CPU utilization of a physical system be-

comes larger than some threshold for load balancing [6]. A

decentralized migration technique was proposed to monitor

network affinity between pairs of VMs, and migrate VMs

to minimize communication overhead among VMs [18].

Scheduling techniques based on VM migration can be also



used for parallel workloads to reduce the latency caused by

interference at runtime.

Performance prediction models can be used to schedule

VMs efficiently. Zhu et al. proposed a power-aware con-

solidation algorithm for scientific workflows, which con-

solidates tasks with dissimilar resource requirements on the

same node [23]. An interference-aware scheduling algorithm

was studied for data-intensive applications in a virtualized

data center, which characterizes the applications based on

CPU and I/O resource usages [5]. In a task scheduling al-

gorithm for MapReduce applications, it mitigates the effect

of interference using an exponential interference prediction

model, while improving data locality [4].

Several techniques to identify interference and predict the

effect of interference have been investigated to improve per-

formance of applications or resource utilization [13, 16, 21,

22], and also QoS-aware resource management techniques

have been studied [7, 8]. CPI2 detects interference based

on CPI data and possibly throttles applications which affect

the performance of other co-running applications badly [22].

Delimitrou and Kozyrakis investigated a QoS-aware sched-

uler that uses collaborative filtering techniques to classify an

incoming workload regarding the effects of heterogeneous

resources and interference [7], and developed a QoS-aware

cluster management system which allows users to specify

performance constraints (such as throughput) of applica-

tions, instead of resource reservation, and uses similar clas-

sification techniques for resource management [8]. The ef-

fects of heterogeneity caused by co-running jobs as well as

different machine types have been analyzed for web-service

applications in warehouse-scale computers, and a system

(called Whare-Map) which maps jobs to heterogeneous ma-

chines using stochastic hill climbing technique has been pro-

posed [12].

8. Conclusion

This study investigated how interference in individual nodes

affects the overall performance of distributed parallel appli-

cations. Extending a prior Bubble-Up technique for model-

ing the interference effect in single-node applications, this

work proposed a scheme to model interference propagation

across multiple nodes and to address interference hetero-

geneity. Using the proposed performance model, the paper

investigated two interference-aware placement algorithms,

one for ensuring the QoS, and the other for maximizing

the overall throughput of applications, as case studies. The

proposed model can be used for the overall energy reduc-

tion to minimize the wasted CPU resources, when interfer-

ence in some nodes is unavoidable for distributed applica-

tions with high interference propagation. A limitation of this

study is, as one of the first studies for interference effect on

distributed applications, that it relies on the profiling-based

model construction for pairwise co-locations of the applica-

tions. Extending it to an online mechanism supporting co-

location of multiple applications is our future work.
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