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Abstract

Although recent studies have been improving the perfor-

mance of RDMA-based memory disaggregation systems,

their security aspect has not been thoroughly investigated.

For secure disaggregated memory, the memory-providing

node must protect its memory from memory-requesting

nodes, and the memory-requesting node requires the con�-

dentiality and integrity protection of its memory contents

in the remote node, even when the privileged software is

compromised. To provide protection of remote memory, this

study proposes a hardware-assisted memory disaggregation

system. The proposed trusted disaggregated memory com-

bines the current trusted hardware-based virtual machine

(VM) and a new dedicated hardware engine for trusted mem-

ory disaggregation. The processor with supports for trusted

VM protects the context of a user VMwithin the local system,

while the proposed hardware engine provides an e�cient

isolation and protection of remote memory pages, guaran-

teeing the con�dentiality and integrity of remote memory

pages. In the secure memory disaggregation system, fast

address translation and access validation are supported with

the cooperation of the hardware engine and guest OS in a

trusted virtual machine. In addition, the proposed system

hides the memory access patterns observable from remote

nodes, supporting obliviousness. Our evaluation with an

FPGA-based prototype implementation shows that such �ne-

grained secure disaggregated memory is feasible with com-

parable performance to the latest software-based technique

without security support.
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1 Introduction

Memory disaggregation has emerged to enable e�cient uti-

lization of memory capacity across system boundaries. Imbal-

ance in memory utilization among virtual machines within

a cloud necessitates memory capacity sharing among the

nodes in the same cluster. Recent studies showed that RDMA-

supporting networks can allow e�ective expansion of mem-

ory beyond a single node with their low latency and high

bandwidth data transfers [2, 15, 35]. Such memory disaggre-

gation reduces the total cost of ownership of data centers

by avoiding over-provisioning of memory capacity for each

node.

Although there have been recent studies to improve the

performance of the disaggregated memory systems [2, 7, 35],

its security aspect has not been thoroughly investigated. Un-

like local memory, the disaggregated memory system opens

the memory boundary beyond the conventional system limit,

and thus the memory contents of a user application can exist

across multiple nodes. In addition, a node must allow other

nodes to access part of its memory, being forced to trust the

behavior of other nodes.

Such secure disaggregated memory poses several new

challenges. First, the con�dentiality and integrity of mem-

ory pages stored in remote nodes must be protected under

vulnerable privileged software in the remote nodes. Second,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

43

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8275-2377
https://orcid.org/0009-0005-6471-2183
https://orcid.org/0009-0003-7060-6315
https://orcid.org/0009-0005-0886-6794
https://orcid.org/0009-0000-8406-0817
https://orcid.org/0000-0002-1742-047X
https://doi.org/10.1145/3652024.3665509
https://doi.org/10.1145/3652024.3665509
https://doi.org/10.1145/3652024.3665509


ISMM ’24, June 25, 2024, Copenhagen, Denmark Taekyung Heo, Seunghyo Kang, Sanghyeon Lee, Soojin Hwang, Joongun Park, and Jaehyuk Huh

when a node donates part of its memory for other nodes,

its memory must be protected from any malicious attempt

to access illegitimate regions of memory. Third, the address

translation and permission validation from the local system

to the remote memory must be e�cient, while supporting

�ne-grained page-level management. Finally, memory access

patterns of memory user nodes must be indistinguishable

from the donor node.

Meanwhile, the trusted virtual machine (TVM) technol-

ogy, such as Intel TDX and AMD SEV, allows a user virtual

machine (VM) to be isolated from the hypervisor or other

VMs in a physical system. The hardware layer protects the

context and memory of a user VM from compromised privi-

leged software. The memory is protected from certain types

of physical attacks by the hardware-based encryption and

integrity validation. Such TVM provides the basis of current

con�dential computing on clouds. With the growing need

for �exible memory expansion, TVM must also be extended

to support secure and e�cient disaggregated memory.

To harden the disaggregated memory system, this paper

proposes a hardware-assisted disaggregated memory system,

called Trusted Disaggregated Memory (TDMem). It proposes

to combine the hardware-based TVM support with a new

hardware engine for RDMA-based memory disaggregation.

A user virtual machine (VM) is protected by the local TVM

hardware, and its remotely located memory pages are pro-

tected by the trusted disaggregated memory engines (TDMe)

in the local and remote nodes.

Figure 1 shows the proposed TDMem architecture. The

trusted computing base (TCB) is limited to TVM and TDMe,

and the hypervisors in the local and remote nodes are not

trusted. In TDMem, the hardware engine (TDMe) cooperates

with the guest OS inside a TVM for trusted disaggregated

memory. To allow low latency page accesses, the guest OS

of a user TVM maintains the target page address in the

remote node. However, TDMe in the remote node checks

the source VM of page requests and validates accesses at

page granularity. Such decoupling of address translation and

permission validation allows �ne-grained access validation

without degrading the performance.

In our design, the guest OS in a TVM encrypts all pages to

be stored in remote nodes. The encryption key and message

authentication codes (MAC) for remote pages remain in the

local memory protected by TVM. Therefore, the con�den-

tiality and integrity of remote memory pages are guaranteed

even from compromised privileged software in the remote

node or from physical attacks in the remote DRAM.

Another important aspect of security is the patterns of

page accesses. Prior work showed that such coarse-grained

fault address patterns can leak critical information [42]. To

hide the memory access patterns, remote page addresses

from a user TVM are passed to the local TDMe in ciphertext,

and only the local and remote TDMe can identify the remote
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Figure 1. Trusted disaggregated memory overview

addresses. In addition to such address hiding, this study pro-

poses the support for hiding reuse distances. The privileged

software in the remote node can identify reuse distances

of pages, inferring a certain level of access patterns. TDMe

randomizes the page locations to hide such reuse distance

pro�les too.

The new hardware-assisted system is prototyped in a KVM

system equipped with the Xilinx Alveo U50. Currently, the

prototype system uses a conventional virtual machine due to

the implementation limitation of the current TVM with an

FPGA, but TDMe is implemented to an FPGA board. How-

ever, the required software changes are mostly in the guest

OS, and the guest Linux kernel has been modi�ed for the

tight integration of TDMem with the existing virtual mem-

ory system. Our evaluation shows that even with the security

supports with �ne-grained memory management, the per-

formance degradation is minimized to 4.4%, compared to the

prior best-performing RDMA-based disaggregated memory

system without support for con�dentiality, integrity, and

pattern obfuscation.

• This paper discusses the potential security problem

of disaggregated memory and proposes a new TVM

extension with the secure disaggregated memory hard-

ware.

• The hardware engine allows fast address translation

and access control for remote memory accesses.

• The hardware-assisted mechanism allows fast page

transfers comparable to the prior mechanism based on

region allocation.

• It obfuscates the memory access pattern in the remote

node by exploiting the existing swap subsystem and

our new hardware, so the data leaks by page access

patterns are avoided.

2 Background

2.1 RDMA-Based Memory Disaggregation

Memory disaggregation allows data to reside in remote mem-

ory. A disaggregated memory system has several nodes con-

nected with a high-speed network [2, 15, 35]. In this paper,

we denote a node that donates its memory as a donor and a
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node that utilizes the memory of other nodes as a recipient.

A node can be a donor and a recipient at the same time. From

the perspective of a memory-consuming application, there

are two types of memories: local memory and remote mem-

ory. The local memory is the memory in a recipient that can

be accessed without additional network latency and address

translations. The remote memory is the memory donated by

a donor.

Remote Direct Memory Access (RDMA), which enables

direct memory access to the memory in a remote node, has

been widely used in prior memory disaggregation studies

[2, 15, 35]. The communication channel of RDMA is called a

queue pair. A queue pair is composed of a send queue and re-

ceive queue. The communication between hosts can be done

with the abstraction called verbs. Verbs are classi�ed into

two types depending on the involvement of a remote CPU:

one-sided verbs and two-sided verbs. One-sided verbs do not

require a remote CPU’s involvement, providing more scal-

able performance than the two-sided verbs. For the one-sided

verbs, a memory region must be registered to access memory.

The memory registration takes tens of microseconds [14].

In the RDMA-based memory disaggregation, to access

remote memory pages, the remote pages are migrated to

the local memory via fault handling, and thus the remote

memory pool acts as a hugememory-based swap space of the

local guest OS [15]. For virtualized systems, the hypervisor is

responsible for safely migrating pages between the local and

remote memory, while the guest OS, with better knowledge

of applications, commonly determines the victim pages to

be evicted to the remote memory pool. In our design, the

guest OS picks victim pages and also encrypts those pages

before leaving the local memory protected by TVM. The

PCIe-attached hardware engine handles the access control

and remote page mapping for remote memory accesses.

2.2 Trusted Virtual Machine

Trusted Execution Environment (TEE) is a secure and iso-

lated environmentwithin a computing system that provides a

secure execution environment for applications and data. The

granularity of TEE can vary, but recently trusted virtual ma-

chines have become an e�cient TEE model for clouds [9, 37].

Intel TDX is a TEE introduced by Intel [9]. It aims to en-

hance the security of virtual machines (VMs) by providing

hardware-based isolation and encryption for the memory

of each virtual machine. It enables the creation of trusted,

encrypted virtual machines called Trusted Domains (TDs),

protecting sensitive data even from malicious hypervisors or

other software running on the host system. With TDX, vir-

tual machines can bene�t from the hardware-based security

for integrity and con�dentiality of their memory contents.

TDX uses extended-page table (EPT) to allocate and map

memory used by the TDs. To ensure secure translation of

guest physical addresses (GPA) to physical addresses (PA),

TDX employs a data structure called the Physical-Address-

Metadata Table (PAMT). The PAMT guarantees that a page

mapped into the EPT of a TD cannot be mapped into the

any other TD. Within a TD, there are two types of EPT:

Secure EPT and Shared EPT. The Secure EPT is responsible

for providing secure execution within the TD by encrypting

and protecting the integrity of the memory mapped to it.

On the other hand, the Shared EPT is utilized to estab-

lish communication with untrusted entities outside of the

TD. [18] Operations such as hypercalls, networking, and

disk I/O are performed through the memory covered by the

shared EPT. Note that the memory content within this re-

gion is not protected by default, unlike the secure EPT. In

our design, a user application is running in a TVM, and its

memory is protected in secure EPT. However, to transfer data

to the remote node via TDMe, page migration uses shared

EPT, requiring encryption.

2.3 Requirement for Secure Memory Disaggregation

This section discusses four requirements of secure disaggre-

gated memory: memory protection, secure and �ne-grained

memory allocation, fast and secure address translation, and

memory access pattern obfuscation.

Con�dentiality and integrity: The con�dentiality and

integrity of pages stored in remote memory must be guar-

anteed. As the privileged software such as hypervisor in

the donor has a full control over donated memory, it may

read or write any stored pages. Moreover, if a disaggregated

memory system fails to isolate nodes due to design �aws

or bugs, a malicious recipient may read or write unautho-

rized pages. Therefore, pages should be encrypted before

being swapped out to remote memory. In addition, any mod-

i�cations to pages have to be detected to prevent reading

contaminated pages. Reading contaminated pages may result

in a malfunction of applications or privilege escalation.

Secure and �ne-grained memory allocation: First, mem-

ory allocation metadata must be securely protected from

adversaries. The metadata include the start address, size, and

ownership of allocated memory. As these metadata are used

for memory access control, tampering of memory alloca-

tion metadata may result in unauthorized reads or writes

of memory. Second, memory allocation at �ne-granularity

can improve memory utilization. Coarse-granular memory

allocation may cause internal and external fragmentations

when memory demands are highly �uctuating in dynamic

cloud scenarios such as serverless systems or spot instances.

Fast and secure address translation:Memory disaggrega-

tion involves mappings between a local address space and

a remote address space. The local address space is used by

a recipient’s CPUs to access data in local memory, but the

page is located in the remote memory by a di�erent address.

As the address translations from a local address to a remote

address are in the critical path of accessing data, fast ad-

dress translation is essential to achieve high performance. In
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addition to fast identi�cation of remote addresses, secure ad-

dress translation is critical to prevent a compromised donor

from providing corrupted pages and to prohibit a malicious

recipient from reading unauthorized pages.

Memory access pattern obfuscation: The memory access

patterns of recipient must be hidden from a donor node. Even

if a donor node can observe the memory access patterns, the

patterns should not convey any critical information by ob-

fuscating the memory access pattern. Many prior studies

have shown that the disclosure of memory access patterns

may leak critical information such as the access frequency

of data and correlation between them [19, 24, 44]. Moreover,

several practical software attack schemes based on memory

access pattern detection were proposed [19, 29]. A malicious

observer can extract information about the location of pri-

vate data from memory access patterns, which can result in

the revelation of private data.

2.4 Threat Model

This study assumes that a user virtual machine is protected

from a malicious hypervisor by the trusted virtual machine

(TVM) architecture. It also assumes that the con�dentiality

and integrity of local memory is supported by TVM. Trusted

computing base (TCB) of TDMem is the TVM hardware of

the recipient node and TDMem devices (TDMe) on both

donor and recipient nodes. The vulnerabilities in the user

applications and guest OS within a TVM are not consid-

ered and orthogonal to the VM-based trusted computing.

Although TVM protects the application memory, the mem-

ory region for DMAs with TDMe is not protected as the

current TVM does not provide a secure DMA. Side-channels

through caches and memory channels in CPUs are not con-

sidered in this study, as the current TVM technology does

not provide such protection.

The con�dentiality and integrity of local and remote mem-

ory pages are supported under compromised hypervisors

and physical attacks on DRAM. The local memory protection

is provided by TVM hardware, and remote pages exists only

in ciphertext in the remote memory. When remote pages are

migrated to the local guest OS, their integrity is validated by

the stored MACs in the guest OS memory. The encryption

key and MACs are stored in the guest OS memory, and thus

TVM protects those security meta-data. Replay protection

for physical DRAM attacks are not provided in the current

TVM such as Intel TDX and AMD SEV. Therefore, we do not

provide that.

However, unlike con�dentiality and integrity protection

for both software-based and physical attacks, memory access

pattern obfuscation can be supported only for software-based

attacks. For software-based attacks, the local guest OS mem-

ory cannot be accessed by the hypervisors, as TVM blocks

such accesses. TDMe will hide remote page access patterns

from the remote hypervisor. However, physical attacks such

as DRAM probing can identify addresses on the channel to

DRAM, so the current TVM and TDMe cannot hide patterns

from such physical probing.

Even if the network between TDMes is compromised, the

con�dentiality and integrity detection of remote memory

pages are still supported, as the local guest OS on a TVMwill

encrypt pages and validate their integrity. However, memory

access pattern obfuscation requires to encrypt messages be-

tween TDMes, if the network can leak request contents via

software-based attacks. For our FPGA prototype, the FPGA

devices have a physically separate network and their packets

do not go through the hypervisor software stack. Therefore,

the prototype does not use encrypted messages between

TDMes to reduce the implementation complexity. Note that

even if messages are encrypted, the migrating page itself

does not need to be re-encrypted, as it is already encrypted

by the guest kernel on a TVM.

3 Design

3.1 Overview

TDMem is a disaggregated memory system with hardware

supports to enhance its security support. TDMem has multi-

ple participating nodes in a system, and each node is equipped

with a trusted disaggregated memory engine (TDMe). It com-

bines the trusted virtual machine (TVM) technology with

TDMe to extend the memory boundary of a TVM to the

remote memory.

Figure 2 presents the overview of TDMem. On the donor

side, the hardware TDMe with RDMA capability accesses the

part of the memory assigned for the remote memory pool.

The donor hypervisor assigns the memory pool chunks to

TDMe, and TDMe will allocate pages by its own page-level

allocation mechanism. In addition to the donor memory

allocation, TDMe also validates the access permission from

the recipient OS, and randomizes the page locations to hide

page access patterns.

On the recipient side, a user VM is protected by the hard-

ware TVM support. The virtual memory system (VMS) of

the guest OS running on the VM is tightly integrated to the

secure memory disaggregation engine using the frontswap

interface. Frontswap allows the Linux kernel to redirect page

swap requests to other subsystems.When the guest OS swaps

out a memory page, it is encrypted and its MAC is stored in

the guest OS memory protected by TVM.

Figure 2 (a) shows the swap-out process to the remote

node. The guest OS on the recipient side (left) encrypts the

page and keeps its MAC. On the donor side (right), TDMe

assigns a page location with an obfuscation policy and places

the incoming encrypted page. The ownership for the remote

page location is updated in the remote TDMe. After that, the

translation table in the guest OS is updated with the new

remote location.

Figure 2 (b) shows the swap-in process from the remote

node, initiated by a page fault in the local VM. The guest OS
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Figure 2. Overview of TDMem

maintains the remote location for the page for fast transla-

tion, but the remote TDMe checks the access permission.

TDMe must support remote attestation from the guest OS

on a TVM. During the attestation of a TVM, the local TDMe

and connected remote TDMe are attested for the validity of

the devices. The ASIC implementation must provide such

a remote attestation function. For FPGA-based designs, the

security features of FPGAs, such as bitstream encryption and

authentication can be used and reprogramming of devices

needs to be blocked by disabling a JTAG port [31].

3.2 Con�dentiality and Integrity Validation

TDMem guarantees the con�dentiality of recipient’s pages

and validates their integrity with the recipient-side software

page encryption. By using TVM-supported encryption APIs,

it provides a secure key generation protected from the hyper-

visor. When a page is evicted from a recipient node, the page

is encrypted with AES-GCM in the recipient-side kernel. The

encryption key is randomly generated during the initializa-

tion of TDMem. The key resides in the kernel and is tied to a

node, not shared with others. As encrypted pages cannot be

read without keys, the con�dentiality of pages is guaranteed.

The integrity of pages can be validated by encryption also.

As AES-GCM supports the authentication of encrypted data,

any modi�cations to encrypted pages can be detected on
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Figure 3. Decoupled translation and permission checks

decryption. On page encryption and decryption, a MAC is

generated that is unique to the page content, to detect any

integrity violation. MACs are stored in the recipient-side

address translation table, protected by TVM.

With the current TVM, the guest OS is responsible for

encrypting data before data leaves its trusted boundary [9].

Without the encryption within the protected domain, an un-

trusted host hypervisor can leak the data directly accessing

the memory, since the guest OS uses a shared EPT for I/O

data transfer.

3.3 Fine-Grained and Secure Memory Allocation

TDMem supports �ne-grained memory allocation with the

assistance of TDMe. TDMem has memory allocators in the se-

cure memory disaggregation engines. The memory capacity

of a donor node is dynamically allocated to di�erent recipi-

ents or its own applications for e�cient memory utilization.

The page allocator in the donor must be nimble, and the

hardware permission validation must be designed to support

such page-level validation. TDMem has memory allocators

in TDMe to allocate memory at 4KB page granularity on

every page swap-out request. Memory allocators are located

in TDMe to minimize the latency on memory allocation.

Memory allocation requests can be handled immediately

once a command reaches TDMe. The memory allocators are

securely protected from malicious OSes because both the

logic and metadata reside in TDMe and cannot be altered by

OSes.

In addition, when TDMe has its own memory such as high

bandwidth memory (HBM), it can also place certain pages in

the local or remote HBM, depending on the preferred loca-

tion set by the guest OS. It is used to allow the performance

optimization by the guest OS.

3.4 Decoupled Translation and Permission Checks

Address translation must be fast and secure because it is

on the critical path and controls memory accesses. TDMem

achieves both goals by decoupling address translations and
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permission checks. Figure 3 illustrates the decoupled ad-

dress translation and permission checks. To achieve high-

performance, TDMem avoids introducing an additional ad-

dress space. TDMem exposes the donor’s physical address

space to recipient directly and o�oads address translations to

recipient. Each recipient has a mapping table that maps swap

o�sets to remote physical addresses. By exposing the remote

address space directly to recipient, performance degradation

is avoided. As address translations are done in recipient, a

compromised donor cannot forge the translation table.

The key problem with o�oading address translations to

recipient is the risk of recipient’s accesses to unauthorized

pages. A malicious recipient may try to read illegitimate

pages by tampering the translation table. TDMem tackles

the problem with a permission table at the donor TDMe. The

table tracks the ownership for all memory pages in the donor.

On page loads, the permission table is looked up to validate

the load request. The permission table is updated on memory

allocation and deallocation. Another problem with having

a permission table at the donor side is that a compromised

donor may manipulate the permission table. TDMem blocks

this type of attack by having the permission table in TDMe.

TDMe is part of TCB, and its operation cannot be tampered

by malicious privileged software.

4 Memory Access Pattern Obfuscation

4.1 Page Address Obfuscation

Memory disaggregation systems with direct address trans-

lations have a limitation that memory access patterns may

leak. If the mappings between the recipient’s address space

and the donor’s address space are �xed, a malicious hyper-

visor in the donor may track the memory access pattern of

a recipient by tracking the access pattern at the donor side.

One of the solutions to hide memory access patterns is the

Oblivious RAM (ORAM), which is an algorithm that obfus-

cates memory access patterns from adversaries. Although

there have been many studies to improve the performance

of ORAM and to scale them [8, 12, 33, 41, 43], the adoption

of ORAM still incurs prohibitive performance degradation

in the real world.

An alternative way to provide obfuscation is to hide ad-

dresses. Prior hardware designs proposed to encrypt ad-

dresses between the processor and DRAM modules to pre-

vent physical DRAM probing from revealing memory access

patterns [1]. For TDMem, we employ a similar approach of

hiding memory addresses used in the local VM. TDMem �rst

uses the swap subsystem scheme of the Linux kernel, using

separated swap address space for allocating swap slots on

swap-out requests, as well as supporting �exible mapping

between physical address space and swap address space. In

addition, to avoid attackers with the knowledge of the open-

source logic of the Linux swap space allocation, TDMem

Local Node

Hypervisor

TDMe

Local Mem

0x7f

RDMA NICStore
/Load

Time

TCB

Reuse distance (R.D.)

0x9a

Swap distance (S.D.)

Trusted VM
❶

Store [local 0x7f]

to [remote 0x3c]

(Remote updated)

Load [local 0x7f]

from [remote 0x3c]

Store [local 0x9a]

to [remote 0x3c]

(Remote updated)

❷ ❸

Requests

w/ remote
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further obfuscates memory access patterns by changing the

remote address of a local page with TDMe.

4.2 Reuse Distance Obfuscation

In addition to the address hiding by swap address changes

and encryption, reuse distances without knowing page ad-

dresses can also leak certain access patterns. [34] For the

support for reuse distance obfuscation, we assume that the

one-sided RDMA read by TDMe is not detected by the hy-

pervisor. However, the hypervisor can know the occurrence

of a page write by checking the memory contents changes.

Note that our support for the obliviousness of remote page

addresses cannot be supported for physical DRAM prob-

ing, although the remote hypervisor cannot detect access

patterns.

Figure 4 illustrates how page writes can leak patterns.

Note that the content of local memory and remote mem-

ory are denoted as [local page_address] and [remote

page_address] in the �gure, respectively. 1 Local page

0x7f is swapped out, written at 0x3c of the remote memory.

2 After some time, local page 0x7f is swapped in. 3 More

time later, another local page 0x9a is swapped out, written

at 0x3c of the remote memory. As mentioned in Section 2.4,

a kernel of remote node can read all contents on its memory.

Therefore, in this example, a malicious remote node kernel

can catch the change of contents at [remote 0x3c]: remote

kernel knows the distance between 1 and 3 - swap distance,

which is an upper bound of the distance between 1 and 2 -

reuse distance.

By collecting the swap distance data for an amount of

pages, the malicious remote kernel can approximate the dis-

tribution of reuse distance. Several prior work have claimed

that the distribution of data reuse distance summarizes core

information of workload, from the major type of opera-

tion [22] to the overall access pattern [11]. Thus, the attacker

can use the approximated reuse distance information as a

gadget of other attacks: for example, estimating the type of

workload.

Goal: The remote hypervisor can detect the occurrence of

an RDMA write through memory scanning, enabling it to es-

timate the distribution of swap distance. However, an RDMA

read does not change the memory content, indicating that it

is not detectable by memory scanning. Therefore, TDMem’s

primary goal of memory obfuscation is to hide reuse distance
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Figure 5.Memory access pattern obfuscation mechanism

Table 1. Maximum '
2 value (vs. Reuse Distance Histogram)

Workloads Fixed Fit Next Fit Random Fit (Proposed)

cactuBSSN 0.951 0.226 0.233

omnetpp 0.938 0.760 0.291

deepsjeng 0.998 0.983 0.008

lbm 0.666 0.865 0.055

pattern by removing any e�ective correlation between swap

distance and reuse distance distribution.

Main idea: The main idea of hiding reuse distance is to

alter the location of swapping pages on every write. For each

swap-out write, the remote TDMe chooses a random loca-

tion among free pages to prevent any correlation between

the swap distance and actual reuse distance distributions.

Since the reallocation and RDMAwrite are performed by the

remote TDMe, it does not incur any signi�cant performance

degradation of recipient.

We show that a random-�t swap allocation can e�ectively

obfuscate the reuse distance information. This allocation

scheme randomly selects swap addresses among the avail-

able free space. Figure 5 visualizes the obfuscation with the

random-�t allocation. The red line is swap distance without

obfuscation that might re�ect the actual reuse distance - the

black line. On the other hand, the purple line is the swap dis-

tance using a random-�t allocation, which has signi�cantly

less correlation with the actual reuse distance since a swap

slot selection has no relation with the page address, access

point in time neither.

4.3 Result

To show the e�ect of obfuscation using random-�t swap

allocation, we perform a trace-based simulation. We select

5B instructions from four SPEC CPU benchmarks where

they load and store actively. The simulated system includes

32MB of local memory and 512MB of remote memory, ex-

cept for deepsjeng - due to its large footprint, we set remote

memory capacity as 1GB to make the workload run. Two

potentially-unsafe swap allocation schemes are also evalu-

ated as baselines in addition to random-�t: �xed-�t assumes

�xed mapping between local and remote (swap) address,

while next-�t allocates swap address in round-robin manner

from the free space. Note that the de�nition of ’distance’

is cycles between access and re-access for certain remote

address.

Table 1 represents the experiment result: coe�cient of

determination ('2) between distribution of reuse distance and

swap distance with �xed-�t, next-�t and random-�t, parsed in

the granularity of 1 million. For more accurate measurement

of correlation level, we shifted swap distance distribution

to �nd the maximum '
2 value in Table 1. In general, two

datasets are considered to be correlated when '
2 value is

above 0.5 [28]. While two unsafe choices - �xed-�t and next-

�t swap allocation reaches '2 value above 0.5 for most cases,

our proposed random-�t swap allocation always reports '2

value under 0.3. This implies the necessity of our obfuscation

scheme, as well as its e�ectiveness.

4.4 Discussion

Memory tra�c obfuscation: There exists an side-channel

attack that uses the amount of memory tra�c as a gadget of

secure data extraction [16]. Although it is a hardware-based

side channel attack of which is not included in the threat

model of TDMem, TDMem can prevent this attack by adding

dummy read/write with some costs paid by performance

degradation.

Detecting RDMA reads by intentional IOMMU faults:

Although we assume that the remote hypervisor cannot

detect one-sided RDMA reads, a potential way to generate

an IOMMU fault, by removing access permission for pages.

However, such IOMMU faults can be detectable by TDMe,

as a faulted RDMA read will be retried. If such a malicious

read fault occurs for the RDMA region used for the memory

pool, TDMe can determine that the remote hypervisor is

compromised, blocking further services and reporting the

security problem.

Some architectures allow access bits in IOPTEs to be set

by IOMMU. With the mechanism, the hypervisor can scan

IOPTEs to detect accesses via access bits. To support the

reuse distance hiding by TDMe, BIOS must support the dis-

abling of such mechanism, and the hypervisor must not be

allowed to enable it. It requires a minor change in the proces-

sor support. Note that address handling without the reuse

distance obfuscation does not require such a change.

5 Prototyping TDMem

5.1 Overview

We prototyped TDMem with a Linux KVM system equipped

with the Xilinx Alveo U50. Although TDMem aims to use a

trusted virtual machine support by the processor, our cur-

rent implementation uses a conventional virtual machine.

However, the software-side implementation is concentrated

on the guest OS, and thus the support for TVM will require

neglisible changes. For performance evaluation, except for

TVM-speci�c extra overheads, our prototype includes all
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major performance costs for the protected access to the dis-

aggregated memory.

The hardware component (TDMe) is implemented in the

Xilinx FPGA board. The FPGA board has an FPGA chip,

network module, and 8GB on-board HBM. The FPGA chip

is used to implement the TDMem logic, and the network

module is used to connect nodes with 100Gbps Ethernet. The

role of HBM memory is determined by the role of a node. A

recipient uses the whole HBM memory as remote memory

that can be accessed without network latency. On the other

hand, a donor uses the HBM memory for donated memory

and memory allocation metadata storage. To summarize,

TDMe can use three memory tiers: recipient-HBM, donor-

HBM, and donor-DRAM. On a page swap out request, a

recipient can specify the target memory tier to store the

page. IP cores are written in Vitis HLS and Verilog, and they

are integrated in the Vivado �ow.

5.2 TDMem Operations

TDMem is integrated to frontswap of the Linux kernel, which

is the interface that redirects swap operations to other sub-

systems. Frontswap has four functions: store, load, invalidate

page, and invalidate area. These functions become the default

operations of TDMem. On each operation, a command is gen-

erated in the kernel driver and forwarded to the recipient

engine over PCIe.

The commands generated by the kernel are handled by

the FPGA engines. The size of a command is 64B, which is

the default transfer size of the DMA engine. A command

encodes required information to process the command. The

completion of a command is identi�ed by polling. The re-

cipient kernel is responsible for reserving a memory block

that is accessible from its FPGA board. The memory block is

named as completion, and a completion contains several

metadata required to process the operation. A completion

for a store command contains the completion status of a

request, stored memory tier, and remote memory address.

These metadata are kept in the translation table in the re-

cipient. To load the page, the recipient generates a request

using the metadata.

5.3 Software Implementation

Address Translation: TDMem o�oads the address trans-

lation responsibility to recipient. Each recipient has a �at

address translation table that maps a local address (swap

o�set) to a remote physical. Figure 6 presents the format

of the translation entry. The valid �eld presents whether

the entry has valid translation information. A translation

entry becomes valid when a store request completes. The

tier �eld presents the memory tier where the page is stored,

and the remote_address �eld has the address of the page in

the tier. The store_pending and load_pending �elds are

used to coordinate with other concurrent swap requests. The

valid

(1B)

tier

(1B)

remote address

(8B)

store pending

(1B)

load pending

(1B)

MAC

(16B)

p
a

g
e

 o
ff

se
t

Translation

Table

Translation Entry

Figure 6. Translation table entry format

�elds are used to prevent loading pages before store com-

pletion or invalidating pages before page load completion.

The MAC �eld is used for the authentication of decrypted

pages. The �eld is updated on encryption. The MAC �eld is

compared with the MAC that is generated on the decryption

of the page.

5.4 Hardware Implementation

TDMem uses the Xilinx QDMA Subsystem for PCI Express

[3] for the communication between the host and card. QDMA

is chosen over XDMA because it supports a queue-based

submission mechanism, which supports thousands of con-

current requests. This feature is essential to serve concurrent

page swaps. The descriptor bypass mode has been enabled

to allow the card to write the host DRAM directly. For the

networking feature, the UltraScale+ Integrated 100G Ether-

net Subsystem [4] is used for the prototyping purpose. The

FPGA prototype has two engines: recipient and donor.

5.4.1 Recipient Engine. The recipient engine receives

commands from the recipient-side guest OS. It handles them

locally or forwards to the donor engine.

Request generator : A request generator parses commands

and creates requests to the remote node. The store request

generator stores pages in the local HBM or remote memory.

The target memory tier is determined by the kernel and

encoded to the command �eld (target_tier).

The on-board HBM memory allocator manages the mem-

ory status. For store requests whose target is the local HBM,

the HBM allocator attempts to �nd a free page in the local

HBM. If a store request to the local HBM fails, the request is

silently redirected to the donor-side engine so that memory

allocation is done at the donor node.

The load request generator loads a page from the local

HBM if the page is at the local HBM. Otherwise, it will for-

ward commands to the donor engine. The invalidate page

request generator and invalidate area request generator deal-

locate pages from the local HBM and send commands to

deallocate pages from remote memory.

On-board HBMmemory allocator: The on-board HBM

memory allocator is responsible for the allocation and deal-

location of on-board HBM memory. The memory allocation

granularity is 4KB. The memory allocator is implemented

with a bitmap. As the size of HBM is 8GB, the size of the

bitmap is 2,097,152-bit (256KB). To allow concurrent access

to the table, ARRAY_PARTITION pragma has been applied to

the table with a cyclic option and factor of 32.
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Response handler: The response handler reads returned

responses and writes completions or pages to the recipient.

Only two commands have responses: store and load. The

completion of page invalidation does not have to be identi-

�ed. The identi�cation of page invalidation results in wasted

hardware resource and network bandwidth. A store response

is a single-word response that contains the tier and address

of the stored page. A load packet has 65 words, where the

�rst word has the metadata, and the following 64 words have

the page content. The writes from the store response handler

and load response handler are arbitrated in a round-robin

manner.

5.4.2 Donor Engine. Unlike the recipient engine, where

commands are sent from the host side, the donor engine

receives commands from the network interface. Figure 8

shows a detailed design of donor engine.

Response Generator: The response generators are di�erent

from the recipient-side request generators in two aspects.

First, the response generators coordinate not only with the

on-board HBM memory allocator but also with the host

DRAM memory allocator. Second, the invalidate page re-

sponse generator and invalidate area response generator do

not generate response packets. The store response generator

and load response generator access donated memory, which

is reserved by the kernel. The donor reserves memory with

the kernel boot parameter, memmap. The donor engine knows

the starting address and the size of the donated memory.

On-board HBM Allocator & Host DRAM Allocator: The

donor-side memory allocators have the same responsibility

as the recipient-side’s, which is to manage the allocation

status of memory. However, there are two di�erences from

the recipient-side memory allocator. First, the donor-side

memory allocator has to track the ownership of pages in
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page read latency, which
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Table 2. System con�gurations

Donor Host Recipient Host Recipient Guest

Memory DDR4 188GB DDR4 125GB DDR4 32GB

Kernel 5.9.0 5.10.0

Processors Intel(R) Xeon(R) CPU E5-2630 v4

OS Ubuntu 18.04

QDMA Driver 2020.2

addition to allocation status. The load response generator

looks up the memory allocator to con�rm that the current

load request is trying to read a valid memory page that is

owned by the requester. The ownership of pages is tracked

with a machine ID (MID), whose size is 8-bit. As the metadata

size becomes eight times of the recipient side’s, it is not

possible to hold all metadata in the FPGA logic. Instead, the

metadata is stored in the lower address of the HBM. Figure 7

presents the HBM memory map. Second, the donor engine

has the host DRAM memory allocator in addition to the

on-board HBM memory allocator.

6 Evaluation

6.1 Experimental Setup

We evaluate the performance of TDMem on a Linux sys-

tem equipped with an FPGA card and high-performance

network card. The evaluation is conducted with two pairs

of machines. The �rst pair of machines is equipped with

Mellanox ConnectX-5 for the evaluation of fastswap. The

second pair of machines has Xilinx Alveo U50 to evaluate

TDMem. In each pair, one machine becomes a donor and the

other becomes a recipient. Table 2 presents the machines

and their con�gurations. Table 3 presents the evaluated mac-

robenchmarks. The table shows their memory footprint and

the number of CPUs that they utilize.

6.2 Microbenchmark Results

6.2.1 On-FPGA Page Read Latency. Figure 9 presents

the 4KB page read latency where the software overhead
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Table 3. Macrobenchmarks and their memory footprint

Workload Name
Mem.

Footprint (GB)
Num of CPUs

tensorflow-inception 1.5 2

kmeans 5.3 8

quicksort 8.6 1

in-memory-analytics 7.6 8

graph-analytics 10.3 8

xsbench 5.5 8
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is not included. The page read latency is measured by de-

signing and deploying a microbenchmark in the FPGA. The

microbenchmark module reads 4KB pages sequentially for

a given range of memory addresses. The total elapsed cy-

cles are measured, and the elapsed cycles are divided by the

number of pages read. As the microbenchmark is designed

to operate at 250MHz, the clock period is 4ns. The average

4KB page read latency is calculated by multiplying the clock

period by the average elapsed cycles. On average, HBM takes

607.7ns, and DRAM takes 1197.36ns to read a 4KB page.

6.2.2 Recipient-Side Page Read Latency. Unlike the pre-

vious experiment, which excludes the overhead of the soft-

ware and network stacks, this experiment includes them by

measuring the page read latency in the recipient-side Linux

kernel. Figure 10 presents the average page read latency in

three types of memory tiers: recipient-HBM, donor-HBM,

and donor-DRAM. The page read latency has been measured

by sequentially reading 2,097,152 pages (8GB) from the tar-

get memory tier. The pages are stored in the target memory

before running experiments, and the elapsed time has been

measured with ji�es in the Linux kernel. CONFIG_HZ, which

is the kernel con�guration that de�nes the timer resolution,

is set to 250. The experiment result implies that the perfor-

mance gap between HBM and DRAM presented in Figure 9

is mostly hidden, and the performance overhead comes from

the network latency and page fault handling.

6.2.3 Page Encryption Latency. We measured the page

encryption latency in the Linux kernel. The vanilla Linux

kernel has the tcrypt module, which evaluates the

performance of encryption algorithms. We evaluated the

performance of gcm(aes) with the key size of 128-bit.

Figure 11 presents the average page encryption and

decryption latencies. It takes 2.07us for 4KB page

encryption and 2.09us for 4KB page decryption. Although

the latency seems relatively high considering that the

latency of page read is between 4-6us, most of the latency

can be hidden by the readahead mechanism of the Linux

kernel.

Figure 12 shows the normalized performance of a

microbenchmark that loads 262,144 pages (1GB)

sequentially from the recipient HBM. The normalized

performance is de�ned as the performance normalized to

the baseline without encryption. The performance is the

reverse of the elapsed time. The performance of the

microbenchmark with page encryption shows 90% of the

performance without encryption. Most pages are readahead

and decrypted in the swap cache, e�ectively hiding the

memory decryption latency.

6.3 Macrobenchmark Results

Geomean of normalized performance: Figure 13

presents the geomean of normalized performance of

workloads for a given con�guration. The normalized

performance is de�ned as the performance of a workload

with a given con�guration divided by the performance of

the workload run with 100% local memory. The geomean of

normalized performance is the geomean of all normalized

performance of workloads. Workloads are run with �ve

con�gurations: fastswap, TDMem-HBM-plain,

TDMem-HBM-crypt, TDMem-DRAM-plain, and

TDMem-DRAM-crypt. The experiments are run while varying

the local memory ratio between 40% and 100% with the 10%

step size. Fastswap shows 63.1% performance compared to

the non-swapped run, and TDMem experiences negligible

performance loss, presenting the 3-7% lower performance

compared to fastswap. Please note that the performance

overhead from software encryption is mostly hidden

because of the readahead mechanism in the Linux kernel, as

we have shown in Section 6.2.3.

Normalized performance (TDMem-DRAM-crypt): Among

the experiment con�gurations presented in Figure 13, we

choose TDMem-DRAM-crypt and illustrate workloads’

performance degradation while varying the local memory

ratio in Figure 14. The performance loss from losing local

memory di�ers for each workload. While quicksort

presents 75.48% of its performance with the 40% local

memory ratio, kmeans shows 7.19% of its performance. We

qualitatively analyze the root cause with the tools presented

in prior studies [17, 30], which allow us to analyze the

memory access frequency. We found that the reason behind
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the di�erent sensitivity on the local memory ratio is the

various memory access patterns and intensity. While the

memory footprint of quicksort is 8.6GB, only a small part

of memory is intensively accessed. On the other hand, the

total allocated memory of kmeans is intensively accessed,

being more sensitive to the local memory loss.

6.3.1 Max Memory Bandwidth. In this experiment, we

measure the memory bandwidth of TDMem and compare it
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Figure 16.Memory bandwidth measured with the STREAM

Triad benchmark

with fastswap’s. The memory bandwidth is measured with

the STREAM benchmark. STREAM allocates 4GB memory

and runs several sub-benchmarks to measure the

bandwidth. Among the sub-benchmarks, we use the Triad

to measure the average memory bandwidth. We measure

the memory bandwidth of �ve con�gurations: fastswap,

TDMem-HBM-plain, TDMem-HBM-crypt, TDMem-DRAM-plain,

and TDMem-DRAM-crypt. fastswap presents the case where

the swapped-out pages are stored in remote memory with

RDMA. The con�gurations starting with TDMem is run with

TDMem. The HBM and DRAM keywords show the target

memory tier where the swapped-out pages are stored at.

The crypt keyword means that the encryption latency is

added on page loads. The experiments are run with various

local memory ratios, which include 90%, 70%, and 50%. The

local memory ratio is de�ned as the memory size in the

recipient DRAM divided by the maximum memory

footprint size. The memory footprint has been measured

with the cgroup’s memory.usage_in_bytes.

Figure 16 shows the memory bandwidth with the

con�gurations. fastswap performs the best with the 90%

and 70% local memory ratios. At the 90% local memory

ratio, fastswap, TDMem-HBM-crypt, and

TDMem-DRAM-crypt present 1480.5MB/s, 1176.4.4MB/s,

1175.9MB/s, respectively. Please note that the memory

bandwidth gap between TDMem-HBM-crypt and

TDMem-DRAM-crypt is negligible, implying that the major

bottleneck for the memory bandwidth is not the memory

itself. The memory bandwidth loss of TDMem-DRAM-crypt

compared to fastswap are 21%, 23%, and 28% at the 90%,

70%, and 50% local memory ratio, respectively. The

maximum memory bandwidth is reduced for our prototype,

requiring further optimizations on the guest OS change and

data path implementation on the FPGA board.

6.4 FPGA Resource Utilization

Figure 15 illustrates the �oorplan of the recipient engine and

donor engine, and each component is �lled with di�erent

colors. The recipient engine consumes 18% of LUT, 5% of

LUTRAM, 12% of FF, 30% of BRAM, and 2% of URAM. The

donor engine accounts for 19% of LUT, 9% of LUTRAM, 17%

of FF, 24% of BRAM, and 2% of URAM.
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In both engines, DMA engines are the major consumer of

logic resources. In the recipient engine, the HBM memory

allocator accounts for 15.8% of the BRAM consumption of

the recipient engine. BRAM is used to manage the memory

allocation status of HBM memory. On the other hand, as the

donor engine manages the memory allocation status in the

on-board HBM, the BRAM usage of memory allocators is

relatively low. The response generator consumes BRAM for

the free lists in the store response generator. All BRAMs in

the response generator are consumed by the store response

generator.

7 Related Work

Disaggregated Memory System: As disaggregated

memory system is an emerging technique for modern

memory-intensive workloads, several HW/SW approaches

were proposed as prior work. In�niSwap introduces a

paging system designed for RDMA [15]. DeACT proposes a

virtual memory support for a speci�c disaggregated

memory system [21]. Kona, on the other hand, exploits

cache coherence instead of virtual memory [7].

ThymesisFlow presents interconnect stack for huge scale

disaggregated memory [32]. AIFM enhances the

performance of remote memory through application-centric

approach [35], while Fastswap focuses on swapping

mechanism [2].

To protect RDMAs from network attackers, sRDMA

incorporates the encryption support for network interface

cards [39]. However, our approach provides the protection

of the entire VM accessing the remote memory with

obliviousness support.

Trusted Execution Environment: Several important

studies have been conducted to enable the execution of

native applications within trusted execution environments

(TEEs). Haven ensures application integrity and

con�dentiality by running it within an enclave and isolating

it from the underlying system [6]. Graphene-SGX is a

library operating system that securely runs unmodi�ed

applications within Intel SGX enclaves, o�ering strong

isolation and security guarantees [40]. SCONE enables

secure and con�dential execution of containerized

applications [5]. To reduce memory management overhead

in Intel SGX’s limited memory space, various software

approaches have been investigated. Eleos addresses

performance issues by introducing exit-less system calls

and customized paging with a user-level library [27].

ShieldStore, an in-memory key-value store designed for

Intel SGX, minimizes SGX’s page swapping with

�ne-grained memory encryption of unprotected

memory [20]. Vault proposes a variable arity uni�ed tree

that combines MAC sharing and compression to reduce the

paging overhead [38]. MMT proposes migratable merkle

tree, a design that utilizes an integrity forest and allows

secure delegation of memory subtrees between enclaves

without the need for software re-encryption [13]. There are

recent studies to support obliviousness with TEEs. Oblix

proposed an oblivious search index structure with Intel

SGX [26]. ZeroTrace provides ORAM supports for SGX

enclaves [36].

Disaggregation with CXL: Compute eXpress Link

interface (CXL) has been proposed to be used in memory

disaggregation system [10]. The interface emerges to

enhance the speed of exchanging data from connected

devices, especially remote nodes in disaggregated system.

Kona has shown a possibility of disaggregated memory

system using a future FPGA that supports CXL interface [7].

By leveraging the full bene�t of CXL, Kona shortens the

critical path in loading remote data and reduces dirty data

ampli�cation to prevent memory waste. TPP proposes a

system that identi�es and allocates hot and cold pages to

appropriate memory tier [25]. TPP ensures memory

headroom for new short-lived hot page allocations, and

promoting hot pages from slow CXL-memory to fast local

memory. Pond structures CXL communication layers in a

NUMA system to estimate the latency of accessing data and

builds an emulated NUMA system, with a prediction model

to reduce the performance impact of the pool memory [23].

8 Conclusion

This paper proposed a new hardware-assisted memory

disaggregation system, TDMem. Combined with trusted

virtual machines, it allows �ne-grained page-level

management of memory pools in donor nodes, while access

validation is enforced by the secure hardware engine

protected from vulnerable privileged software. In addition,

it further secures the con�dentiality of memory pages with

page address obliviousness supports as well as encryption.

We prototyped TDMem with a FPGA-based implementation.

The security features of TDMem cause a minor performance

overhead, which causes 4.4% performance degradation

compared to the latest page-granular far memory system,

fastswap without the security supports for remote memory

pages.
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