
Author Retrospective for

A NUCA Substrate for Flexible CMP Cache Sharing

Jaehyuk Huh
KAIST

Changkyu Kim
Google

Hazim Shafi
Samsung

Lixin Zhang
Institute of Computing

Technology
Chinese Academy of Sciences

Doug Burger
Microsoft Research

Stephen W. Keckler
NVIDIA and UT-Austin

ABSTRACT

In 2005, as chip multiprocessors started to appear widely, it
became possible for the on-chip cores to share the last-level
cache. At the time, architects either considered the last-
level cache to be divided into per-core private segments,
or wholly shared. The shared cache utilized the capacity
more efficiency but suffered from high, uniform latencies.
This paper proposed a new direction: allowing the caches to
be non-uniform, with a varying number of processors shar-
ing each section of the cache. Sharing degree, the number
of cores sharing a last-level cache, determines the level of
replication in on-chip caches and also affects the capacity
and latency for each shared cache. Building on our previ-
ous work that introduced non-uniform cache architectures
(NUCA), this study explored the design space for shared
multi-core caches, focusing on the effect of sharing degree.
Our observation of a per-application optimal sharing degree
led to a static NUCA design with a reconfigurable sharing
degree. This work in multicore NUCA cache architectures
has been influential in contemporary systems, including the
level-3 cache in the IBM Power 7 and Power 8 processors.

Original paper: http://dx.doi.org/10.1145/1088149.1088154

Categories and Subject Descriptors: C.1.2 [Processor

Architectures]: Multiple Data Stream Architectures (Mul-
tiprocessors); B.3.2 [Memory Structures]Design Styles –
Shared memory

Keywords: NUCA design, sharing degree, multicore pro-
cessors

1. BACKGROUND

In the early 2000s, as power limitations hampered single-
core performance improvements, the industry shifted en masse
to chip multiprocessors (CMPs). The on-chip integration of
multiple cores and caches expanded the possible space of

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

ICS 25th Anniversary Volume. 2014

ACM 978-1-4503-2840-1/14/06.

http://dx.doi.org/10.1145/2591635.2591667.

cache hierarchy designs. Instead of the private, per-core
caches used in traditional multi-processors, CMPs enabled
shared cache designs. These shared caches reduce cache
misses significantly by reducing replication of cache blocks
and by resolving capacity imbalances among working sets
accessed by multiple cores sharing a cache.

Shared multicore caches, however, also incurred large ac-
cess latencies. The increased capacity and physical dis-
tance from some of the cores led to long hit times, which
could reduce or eliminate the benefit of the reduced misses.
To mitigate increasing cache latencies, previous work pro-
posed Non-Uniform Cache Architectures (NUCA) which re-
designed cache structures to account for variable cache bank
access latency [10]. NUCA designs consist of a set of small
cache banks connected via an interconnection network to
allow hit latency to vary depending on the location of ac-
cessed cache blocks. The original NUCA work focused on
the last level cache for uniprocessors. The latency problem
targeted by the NUCA work is typically worse for shared
CMP caches, as the capacity needs to be larger to support
multiple working sets.

At that time, the caching efficiency/latency tradeoff was
well understood, but the consensus at the time was that
caches should either be private or shared by all cores, and
that caches would have a uniform access latency. Adding
NUCA capabilities brought down the average latencies of
large shared caches, making them faster, and thus enabling
larger sharing degrees. The study in this paper focused on
the tension between cache sharing and latency, using NUCA
caches as a way to better balance these two constraints [8].

Other contemporaneous work took a different approach to
mitigate the long latencies of large, last-level shared caches.
Rather than adjusting the sharing degree, this other ap-
proach moved individual cache blocks closer to the requester,
either by selectively replicating the blocks, or by migrating
them to a closer portion of the cache [4, 13, 2]. This paper’s
approach instead asked the question of how may cores should
share a cache to maximize the caching efficiency, while pre-
serving low cache hit latency. The answer to this question
determines how many replications of cache blocks can exist
in a processor, how large a shared cache segment should be,
and how fast a block access takes in the shared cache.

Our results showed that by adjusting the sharing degree
and using a NUCA substrate, a better balance between hit
latencies and misses can be struck. We also found that
choosing the sharing degree on an application by applica-



tion basis, or even a cache line by line bases, can improve
the CMP performance even further than a single ideal shar-
ing degree. While our paper did not propose a mecha-
nism to identify these ideal sharing degrees for individual
applications or individual lines, our conclusion that these
were promising approaches have been validated by other re-
searchers’ follow-on work.

2. SHARING DEGREE: IDENTIFYING IN-

HERENT TENSIONS

Unlike previous shared cache studies that assumed the en-
tire last-level cache of a CMP is composed of either per-core
private caches or a single per-chip shared cache, we gener-
alized the design space into a range of degrees of sharing,
including the intermediate points where some cache banks
were shared by a subset of the processors. This paper de-
fined the term sharing degree to denote the number of cores
sharing a given partition of the cache in a CMP design.
The goal of the sharing degree concept was to better bal-

ance the tensions inherent in shared cache designs. With
a low sharing degree, cache blocks are replicated in more
places, reducing caching efficiency and potentially increasing
coherence overheads. This additional replication, however,
can result in lower latencies, especially when the working
sets fit in the local cache partitions and the data are not
often written. With a high sharing degree, conversely, the
replication is reduced, thus using the cache space more effec-
tively. Also, as more cores share a cache, the chance to share
the capacity increases, balancing dynamic shifts in the re-
quired capacity among cores. However, the access latencies
of shared caches increase with higher sharing degrees.
To empirically identify the tensions caused by the degree

of replication, we started from a start-of-the-art cache design
for reducing cache hit latencies. Based on NUCA caches, we
simulated and evaluated our target processors with several
different sharing degrees. Our initial goal was to understand
the behaviors of parallel applications with different sharing
degrees and hit latencies determined by cache capacity. The
performance of each application was evaluated in several dif-
ferent designs with a static sharing degree. The study in-
cluded three different NUCA designs from static mapping
to fully dynamic mapping policies to understand the effect
of sharing degree, when dynamic migration within a shared
cache is enabled or not.
With static NUCA, a cache block can be located in a

fixed position in a shared cache, but in a dynamic NUCA
policy, a cache block can be migrated toward a frequently
accessing core by block migration mechanism. In single-
core NUCA designs, the dynamic NUCA policies exhibited
better performance by reducing hit latencies. In our study,
we explored both static and dynamic NUCA cache policies
to understand their effect on optimal sharing degree.
Our evaluation led to somewhat unexpected results, al-

though the results were (of course) obvious after the tension
of sharing degree become understood. We found that each
application may respond differently to various sharing de-
grees. Some applications benefit from reduced cache misses
due to higher sharing degrees, while others suffer from in-
creased hit latencies without much benefit from miss reduc-
tion. The range of optimal sharing degrees across applica-
tions led to the next contribution of this paper: a cache

architecture that could flexible support different sharing de-
grees at different times.

3. FLEXIBLE SHARING DEGREE

Our observation of per-application optimal sharing de-
gree led to a cache design supporting flexible sharing degree.
The design borrows its base structure from the single-core
NUCA design with an interconnected array of cache banks
in a multi-core processor. The NUCA substrate supports a
reconfigurable sharing degree, to support a different optimal
sharing degree for each application. A key component is a
central flexible directory and sharing bits embedded in each
cache tag. The central directory provides coherence among
different cache partitions, sharing bits in the tags to support
coherence among L1 caches within a shared cache domain.

The main contribution of this paper (flexible sharing de-
gree) was a very different result than we set out to demon-
strate. Initially, we were trying to provide a single large
cache that leveraged D-NUCA techniques to permit the shar-
ing efficiency and use migration to address the latency issue.
With this goal in mind, we explored the design space with
three NUCA substrates: static NUCA, 1D dynamic NUCA,
and 2D dynamic NUCA. We were surprised to find that
the performance benefit of the dynamic NUCA organiza-
tions over static NUCA was relatively small compared to
the benefit of dynamic NUCA in uniprocessor caches. The
flexible sharing degree ended up being a more important
design factor than dynamic data migration within a shared
cache region. If an application has a low optimal sharing
degree, cache latencies are already relatively short. If an
application has a high optimal sharing degree, there may be
highly shared data accessed by many cores. For such highly
shared data, dynamic migration of blocks was not very ef-
fective as most of the cores attempt to migrate the shared
blocks closer to them. We concluded that a static NUCA
architecture combined with flexible sharing degree provides
an effective design with low complexity. This study showed
that the proposed dynamic NUCA designs are not effective,
despite their performance potential measured in the earlier
paper. The limited gains for multi-cores made them clearly
not worth the complexity.

Our paper was limited in that it applied the same sharing
degree to all cache lines in an application. However, even
within an application, different memory regions may require
different optimal sharing degrees. In an extension of this pa-
per, we briefly showed the potential of such sharing degree
per cache line or memory region of an application [9]. Al-
though the analysis showed potential performance improve-
ments, we were not able to propose a viable mechanism to
support per-line or per-region sharing degree. Hardavellas
et al. later proposed to use two sharing degrees, private and
shared, for different memory regions of the same applica-
tion [7]. That paper proposed to use the TLB and paging
mechanism to separate private and shared pages, and to map
them differently to the NUCA substrate.

Another limitation of this study is that it focused primar-
ily on the identification of the sharing degree problem and
the NUCA mechanism to change the sharing degree, and did
not include a deep study of how to find the optimal sharing
degree for each application. A range of techniques that drive
profiling, dynamic phase detection and reconfiguration can
be applied to this problem.



4. IMPACT

This work has had significant influence on the memory
system design for some of industry’s contemporary multipro-
cessor architectures. The L3 cache of the IBM POWER 7
processor is a NUCA design for 8 cores with private L1 and
L2 caches [11]. The 32MB eDRAM-based L3 consists of
eight L3 regions that are shareable across the cores. In
POWER 7, non-uniformity appears at two levels of the L3
organization. First, the access latency to an L3 region de-
pends on the distance between it and the requesting proces-
sor core. Second, each L3 region is composed of four banks;
access latencies to each bank within a region also varies by
the distance to a core. The POWER 7 L3 cache has a mecha-
nism to control sharing degree dynamically. The L3 changes
the broadcast scope among L3 regions; if the same copy of a
cache block is found in another L3 region in the same broad-
cast scope, the duplicate copies are merged. By changing
the broadcast scope across L3 regions, the L3 can adjust
the sharing degree. The subsequent POWER 8 processor
extended the NUCA design to a 96MB L3 cache [12]. For
twelve 12 cores, the L3 is decomposed into twelve 8MB re-
gions, and each region consists of 8 banks with non-uniform
access times even within a region.
In addition the industrial influence, this paper also had

significant academic influence. Many follow-on papers have
continued to explore the design space of hybrid private and
shared cache architectures. Chang and Sohi proposed a hy-
brid shared cache architecture based on private caches co-
operating to hold victim cache blocks from other caches [3].
Such cooperative caching improves caching efficiency of pri-
vate caches by selectively sharing capacity. Reactive NUCA [7]
uses two distinct mapping policies, private and shared, for
different memory pages of an applications. It uses private
mapping for private memory regions to minimize access la-
tencies, while shared data are mapped differently to avoid
replication. Beckmann et al. proposed an adaptive replica-
tion mechanism for NUCA-based multi-core caches, which
can control per-line sharing degree dynamically [1]. Dybdahl
et al. investigated cache partitioning schemes for NUCA-
based shared caches [6]. Given that dynamic NUCA showed
only marginal improvements for shared CMP caches, Cho et
al. investigated a static shared NUCA that used the operat-
ing system to optimize the placement of pages by OS-level
page mapping [5]. Instead of using complex and expensive
hardware-based dynamic migration, the OS page allocation
policy places pages in caches close to requesting cores. That
paper adapted some of our earlier work that used OS-page
placement for on-chip uniprocessor memory for multiproces-
sor caches [14]. Our earlier paper hypothesized in the con-
clusions that multicore gains would be higher, but missed
the opportunity to apply this technique to caches, which
was an inspired leap by Cho et al.

5. REFERENCES

[1] B. M. Beckmann, M. R. Marty, and D. A. Wood.
ASR: Adaptive Selective Replication for CMP Caches.
In International Symposium on Microarchitecture
(MICRO), pages 443–454, December 2007.

[2] B. M. Beckmann and D. A. Wood. Managing wire
delay in large chip-multiprocessor caches. In 37th
International Symposium on Microarchitecture
(MICRO), December 2004.

[3] J. Chang and G. S. Sohi. Cooperative Caching for
Chip Multiprocessors. In International Symposium on
Computer Architecture (ISCA), pages 264–276, June
2006.

[4] Z. Chishti, M. D. Powell, and T. N. Vijaykumar.
Optimizing replication, communication, and capacity
allocation in cmps. In Proceedings of the 32nd annual
international symposium on Computer Architecture,
2005.

[5] S. Cho and L. Jin. Managing Distributed, Shared L2
Caches Through OS-Level Page Allocation. In
International Symposium on Microarchitecture
(MICRO), pages 455–468, December 2006.

[6] H. Dybdahl and P. Stenstrom. An Adaptive
Shared/Private NUCA Cache Partitioning Scheme for
Chip Multiprocessors. In International Symposium on
High-Performance Computer Architecture (HPCA),
pages 2–12, February 2008.

[7] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Reactive NUCA: Near-optimal Block
Placement and Replication in Distributed Caches. In
International Symposium on Computer Architecture
(ISCA), pages 184–195, June 2009.

[8] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. W. Keckler. A NUCA Substrate for Flexible CMP
Cache Sharing. In Proceedings of International
Conference on Supercomputing (ICS), pages 31–40,
June 2005.

[9] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. W. Keckler. A NUCA Aubstrate for Flexible CMP
Cache Sharing. IEEE Transactions on Parallel and
Distributed System, 18(8):1028–1040, August 2007.

[10] C. Kim, D. Burger, and S. W. Keckler. An Adaptive,
Non-Uniform Cache Structure for Wire-Delay
Dominated On-Chip Caches. In International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
211–222, October 2002.

[11] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le,
R. Cargnoni, J. A. Van Norstrand, B. J. Ronchetti,
J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q.
Nguyen, B. Blaner, C. F. Marino, E. Retter, and
P. Williams. IBM POWER7 Multicore Server
Processor. IBM Journal of Research and Development,
55(3):1:1–1:29, May 2011.

[12] J. Stuecheli. POWER8. Hot Chips 25: A Symposium
of High Performance Chips, August 2013.

[13] M. Zhang and K. Asanovic. Victim replication:
Maximizing capacity while hiding wire delay in tiled
chip multiprocessors. In Proceedings of the 32nd
annual international symposium on Computer
Architecture, 2005.

[14] R. Desikan, C.R. Lefurgy, S.W. Keckler, and
D. Burger. On-Chip MRAM as a High-Bandwidth,
Low-Latency Replacement for DRAM Physical
Memories. Department of Computer Sciences
Technical Report TR-02-47, The University of Texas
at Austin, 2002.


