
mNPUsim: Evaluating the Effect of Sharing Resources in

Multi-core NPUs

Soojin Hwang∗ Sunho Lee∗ Jungwoo Kim Hongbeen Kim Jaehyuk Huh

School of Computing, KAIST

Abstract

Multi-core neural processing units (NPUs) have emerged
to scale the computation capability of NPUs to efficiently
support diverse machine learning tasks. In such multi-core
NPUs, workloads in different cores can affect other co-runners
by incurring contentions on shared resources such as external
memory bandwidth and memory management unit (MMU)
for address translation. However, many recent NPU studies use
a single-core NPU framework without considering dynamic
effect by the shared resources. For this study, we develop a
new multi-core NPU simulator to assess the effect of resource
sharing accurately. Using the simulator, this paper reports
the sharing behaviors of multi-core NPUs with respect to
overall throughput and performance variance caused by co-
runners. The evaluation of the dual and quad core NPUs shows
that sharing MMU and memory bandwidth in general is
beneficial for throughput, with minor degradation in fairness.
The evaluation also shows that page table walkers in MMU are
one of the critical shareable resources. Due to the bursty nature
of NPU memory accesses, sharing of walker bandwidth across
multiple cores can significantly improve the performance.
The study extends the evaluation of scalability with multi-
core NPUs, investigating the effect of mapping heterogeneous
models to multiple NPUs.

1. Introduction

Neural processing units (NPUs) have been increasing
their deployments from data centers to edge devices, partly
taking over the machine learning (ML) tasks from the
traditional GPUs. Such NPU architectures share a common
design with a systolic array for matrix multiplication and
software-managed on-chip scratch pad memory (SPM) for
staging data for the systolic array. To support a diverse
range of ML model sizes, a common approach is to have
multiple NPU cores in a single chip. Such multi-core NPUs
can avoid underutilization of a large single systolic array
when it processes small tasks. As big tasks can also be
flexibly mapped to multiple cores by decomposition, multi-
core NPUs can adapt to a wide range of model sizes.

Such multi-core NPUs pose new challenges caused by
the interference on shared resources among cores. The
shared resources such as off-chip memory bandwidth and
MMU (memory management unit) can potentially disrupt
the performance predictability of ML tasks on multi-core

*. Equal contribution.

NPUs as well as reducing overall throughput. The perfor-
mance predictability is important to support service-level
objectives (SLO) on clouds, as many current SLO-supporting
schedulers assume that the latency of an inference task does
not change dynamically and rely on the profiled latency for
SLO supports [7, 36, 39]. Contentions on shared resources
can dynamically change such latencies depending on co-
runners on different cores in the same NPU.

However, most of the current NPU architecture studies
do not consider such resource sharing among NPU cores,
and thus the extents of potential benefit and interference
have not been quantified. Such current simulation frame-
works for NPUs can evaluate only a single core NPU
with a deterministic memory and MMU latency without
considering the runtime effects by memory bandwidth and
MMU sharing. However, NPUs often generate large bursts
of memory accesses from the on-chip scratchpad memory
(SPM), and they can saturate the MMU and memory
bandwidth, causing interference with co-runners. To address
the lack of evaluation on the sharing effects, we developed
a new multi-core NPU simulator, called mNPUsim, with a
detailed memory model using DRAMsim. The new multi-
core simulator can model dynamic memory latency changes
due to the contentions on the shared MMU and off-chip
memory bandwidth.

Using the multi-core NPU simulator, this paper analyzes
the behavior of sharing MMU and memory bandwidth with
co-running ML workloads, for both of the performance and
fairness aspects. The first observation from the analysis is
that resource sharing across NPUs on the same chip bring
significant benefits. Compared to an equal static partitioning
of resources across NPUs, sharing such resources improves
overall throughput, helped by the bursty nature of NPU
memory accesses. NPU accesses the MMU and off-chip
memory in a bursty manner to fill the on-chip scratchpad
memory with double-buffering. Such behaviors allow NPUs
to utilize the resources more efficiently by sharing than
by partitioning. Fairness for SLO support is degraded by
sharing, but the degradation is relatively minor.

Among the shared resources, sharing page table walkers
can bring the most benefit. As shown by the prior work [16],
bursty memory accesses make the page table walker band-
width critical for a single-core NPU. Sharing the page table
walkers multiplies the available page table walkers for a
core, as the bursts of memory accesses from different NPUs
often do not occur simultaneously. We further investigate
whether various static partitioning schemes with different

Core
Core

Off-chip
Memory

Chip

TLB

IOMMU

PTW

Shared Resources

Core

Systolic
Array SPM

DMA Engine
Memory

Controller

On-chip Boundary

Channel

Channel

Figure 1: Multi-core NPU architecture. Memory-related

resources are shared by multiple cores.

ratios between NPUs, but such partitioning did not improve
the throughput. We also investigate the effect of assigning
co-runners when multiple multi-core NPUs are used to
serve heterogeneous models. We open-source the simulator
at https://github.com/casys-kaist/mNPUsim.

2. Background

2.1. Multi-core NPU Architecture

Neural processing unit (NPU) is a dedicated process-
ing unit for executing machine learning workloads. An
NPU includes computational units composed of multiple
processing engines (PEs) and interconnection between PEs
as well as the on-chip scratchpad memory (SPM) feeding
data to PEs. To increase the amount of data being fetched
from the SPM and forwarded to next PEs and to execute
more computation in a clock cycle, several prior work
have proposed NPU architectures with a large number of
computational units [17]. However, large NPU cores may
not be fully utilized due to characteristics of operations
or dimensions of tensors [17]. For example, in the systolic
array-based NPU architecture, a considerable proportion of
PEs are not properly utilized if a dimension of tensors are
smaller than the width or height of the systolic array.

To address the under-utilization problem of a big
monolithic NPU architecture, there has been increasing
interests in the multi-tenant DNN execution in NPU utiliz-
ing multiple relatively-small computational units [4, 5, 8,
10, 26]. Multi-core NPU architectures can be more efficient
than the monolithic NPU architecture as both small and
large workloads can utilize the resource (i.e., computation
unit, on-chip SPM, off-chip memory bandwidth, etc.) of
small NPUs efficiently.

Therefore, state-of-the-art NPU architectures such as
Google Cloud-TPU [11] and ARM Ethos-N77 [3] are or-
ganized with multiple moderate-size cores sharing some
resources. Figure 1 shows the general design of a multi-core
NPU system. Each core contains a private computation unit
(systolic array), a local SPM, and a private DMA engine
for DMA access between SPM and off-chip memory. On
the other hand, memory-related resources including TLB,
page table walkers, and off-chip memory are shared among
cores as displayed in blue in Figure 1.

2.2. Shared Resource in Multi-Core Systems

The management of shared resources has been a key
issue in multi-core systems for making them run efficiently

and fairly across multiple cores. The unbalanced distribu-
tion and monopolization of shared resources would cause
performance degradation and increase of tail latencies. On
the other hand, properly managing shared resources would
bring a significant performance improvement compared
to the design with statically-partitioned resources. In this
study, we concentrate on three shared resources in multi-
core NPU systems: 1) off-chip memory (DRAM) bandwidth,
2) page table walker (PTW), and 3) translation lookaside
buffer (TLB).
Off-chip memory bandwidth: In a multi-core system,
off-chip memory bandwidth is partitioned or shared by
the memory controllers. While dedicating per-core band-
width improves fairness by resource isolation, sharing the
entire bandwidth can bring performance improvement by a
higher utilization. With the pros and cons of sharing, the
dynamic contention of shared memory bandwidth should
be considered for modeling multi-core systems.
Memory management unit (MMU): In conventional
systems with NPU or GPU, IOMMU is shared among devices
in the same system [12, 40]. With the shared MMU, its page
table walkers (PTWs) and TLBs are shared among cores.
However, such a page-table walker bandwidth for handling
TLB misses is one of the key performance bottlenecks
in memory intensive workloads, and thus, sharing PTW
can potentially cause severe interference in co-runner
performance. The prior work, DWS [28], addresses the
shared PTW management for multi-tenant GPU systems.
The PTW contention from inter-GPU interleaving of PTW
accesses incurs a significant performance degradation in
such systems. To reduce the degradation, DWS proposes a
dynamic PTW stealing technique to control the sharing of
PTW among GPUs.
Translation lookaside buffer (TLB): To reduce TLB
misses, a multi-core system can share TLB capacity among
cores expecting hit rate improvement through expanded
TLB coverage, while TLB conflict misses between cores
would cause performance interference among co-runners.
Least-TLB [21] proposed a contention-aware TLB design
for multi-GPU systems. Using separated TLBs as well as
a shared IOMMU TLB, Least-TLB improves the hit rate of
TLBs through spilling.

2.3. Characteristics of NPU workloads

The prominent characteristic of workloads used in
NPUs is their regularity. Major operations in DNN models
such as convolution and general matrix-matrix multipli-
cation (GEMM) operations can be naively represented in
the form of multi-level nested loops. Since nested loops
deterministically offer data locality, there have been a
number of research about mapping operations into DNN
accelerators for efficiently leveraging such data locality in
DNN models [6, 20, 27, 43]. Especially, tiling strategies
have been employed in accelerators because nested loops
of convolution and GEMM operations can be reordered
when there is no dependency except reduction [24, 32].
Partitioning of input data into smaller subsets can exploit
parallelism in spatial accelerators to reduce data traffic [17].

DRAM → SPM

Computation

SPM → DRAM

Tile 0

Tile 0

Tile 0

Time (cycles)

Tile 1

Tile 1

Tile 1

Tile 2

Tile 2

Tile 2

(a) NPU pipelining to overlap memory access and computation.

0K 50K 100K 150K 200K
Time (cycles)

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

of

 R
eq

ue
st

s

(b) The number of memory requests for NCF in a single-core NPU.

Figure 2: Overlapping memory access and computation

Another interesting characteristic of NPU workloads is
bursty memory requests due to pipelining techniques used
in conventional NPUs such as double buffering [26]. The
double buffering technique divides SPM into two half-sized
SPMs, and allocates them for two consequent operations.
Figure 2 (a) illustrates an example of pipelining widely
used in conventional NPUs. When the tensor size is larger
than a half of SPM capacity, it can be split into multiple
tiles. With the tiling method, the memory access time and
computation time are overlapped to improve PE utilization
in NPUs.

Figure 2 (b) shows the moving average of memory
requests between SPM and off-chip memory during 1000
cycles window when executing the NCF workload in a
single-core NPU configuration of our simulator, which
will be explained in Section 3 and Section 4.1 in detail.
As described in Figure 2 (b), memory requests occurring
when the tile read or write phase begins do not occur
constantly, but a large amount of accesses may occur in
a short period of time [12, 16]. Moreover, because of the
virtually-addressed SPM replacing physical cache, every
off-chip memory request requires address translation. For
example, when the SPM size is tens of MB, thousands of
pages are included in one tile as the tile size is a half
of SPM size in common NPU architectures. Accordingly,
thousands of address translations are required to read and
write a tile in SPM. Moreover, reading or writing a tile
may require many memory transactions, because a tile is a
multi-dimensional tensor mapped in 1D off-chip memory
address space [16].

The burstiness of address translation and memory access
requests varies across layers even within a single DNN
model. For example, in a convolution neural network, the
computational intensity and memory intensity of each
convolution layer can be different depending on various
factors such as the size of the input feature map or the
number of channels. To handle the large burstiness of
memory-intensive layers, memory resources such as off-chip
memory bandwidth and PTWs need to be fully utilized for a
relatively long duration. On the other hand, in computation-
intensive layers, memory resources might need to be fully

utilized only for short periods or be partially utilized to
handle relatively small burstiness. Similarly, the utilization
of the computational units in NPU can significantly vary de-
pending on the characteristics of layers. However, efficiently
computing layers with different characteristics on the same
architecture is a difficult problem because various factors
such as the characteristics of workloads, configuration of
the architecture, and SLO support must be considered.

3. Simulator Design

To model the dynamic contention of shared resources
accurately, we developed mNPUsim, a C++ based cycle-
accurate multi-core NPU simulator. mNPUsim simulates
homogeneous and heterogeneous systems with multiple
systolic array-based NPU cores.

3.1. Modeling Multi-core NPU System

As a multi-core NPU simulator, mNPUsim satisfies
two major requirements: 1) dynamic modeling of shared
resources with multiple levels of sharing and 2) supporting
various heterogeneous core configurations.
Resource sharing: As shown in Figure 1, there are three
major shareable resources in a multi-core NPU architecture:
1) off-chip memory bandwidth (DRAM bandwidth), 2) page
table walker (PTW), and 3) TLB. To simulate dynamic
changes in shared resource occupation, mNPUsim first sup-
ports out-of-order access for shared resources considering
read-after-write dependency and execution delay. The non-
deterministic delay of off-chip memory access is modeled
by integrating DRAMsim3 [22]. Moreover, when modeling
resource sharing, mNPUsim considers restrictions other than
the total amount of resource such as TLB set index, DRAM
bank and channel interleaving. We will cover the details of
resource sharing in Section 4.
Heterogeneous NPU cores and clock domain: mNPUsim
supports heterogeneous NPU cores with different per-core
configurations. Different clock frequencies in NPU cores
and DRAM incur asynchrony for requests between NPU
and shared resources. To handle this, mNPUsim defines two
types of clocks: 1) global clock running with DRAM clock
frequency and 2) local clocks for each NPU core frequency.
Shared resource access requests are synchronized to the
global clock, and access latency is translated into the local
clock if necessary.
Operation mapping strategy: Other than those, mN-
PUsim follows the conventions of general NPUs. For
example, as most operations in DNN models including
convolution layers and fully connected layers can be
expressed as GEMM operations, conventional systolic array
based NPUs are designed with a focus on GEMM [42, 44].
Therefore, we also consider GEMM-based systolic array
designs in mNPUsim, adapting the image-to-column (im2col)
algorithm that rearranges an image or a batch into a matrix,
transforming convolution operations into GEMM operations
to be suitable for the systolic array. Since im2col is for
preprocessing data for GEMM, we assume that im2col can
be performed in advance on the CPU or on-the-fly if there

DNN
Topology

Software
Request

Generator

Hardware
Specification

(NPU, Memory)
SPM

Systolic
Array

SPM

Systolic
Array

SPM

Systolic
Array

DRAMsim3

NPU-Group
(C++ based NPU Modeling)

SW Stack HW Stack

Figure 3: mNPUsim infrastructure.

exists the specific im2col module in NPU [9]. Note that we
adopt the early im2col computation on CPU in this paper.

3.2. Simulation Details

3.2.1. Configuration. mNPUsim receives five kinds of
configuration files as input: 1) network_config contains
DNN topology information, including the dimension and
type of each layer as well as the connection between
layers. 2) arch_config specifies the hardware configuration
for NPU computation resources such as size of systolic
array, tile size, and dataflow. 3) npumem_config defines
the additional NPU hardware configuration. It specifies the
memory-related component configuration such as TLB and
(PTW) configurations. 4) dram_config describes the shared
resource configuration including DRAMsim3 configuration
file path, DRAM capacity, and level of resource sharing
(details in Section 4). 5) misc_config summarizes the exe-
cution mode of NPU core such as execution initiation time,
number of iterations, and the shared partition options of
page table walkers. Note that mNPUsim requires N numbers
of network_config, arch_config, and npumem_config for
N -core NPU architecture as they are per-core configuration,
while only one dram_config and misc_config are needed
because DRAM is always shared by all NPUs in mNPUsim.

3.2.2. Simulation steps and results. As shown in Figure 3,
mNPUsim is composed of two parts: 1) SW request generator
(Software stack) and 2) HW simulator (Hardware stack).
The SW request generator first parses arch_config and
network_config files. With the given information, the
SW request generator and pre-run step produce the list
of memory requests for every tile. Memory requests consist
of address, size, and type of memory requests. The HW
simulator then follows the SW request generator to simulate
the multi-core NPU architecture from three inputs (memory
requests, npumem_config, and dram_config). HW simulator
runs an execution-driven simulation with given inputs,
modeling constraints described in Section 3.1.

The output of mNPUsim contains three types of in-
formation: 1) execution cycles, 2) PE utilization, and 3)
request logs of shareable resources. mNPUsim provides
the layer-wise execution cycle of each workload in NPU
clock and PE utilization information. Request logs are
generated by mNPUsim to trace TLB, PTW, and DRAM

Type Model

CNN
Resnet50 (res) [13]
Yolo-tiny (yt) [31]
AlexNet (alex) [19]

RNN Selfish-RNN (sfrnn) [23]
DeepSpeech2 (ds2) [1]

Recommendation DLRM (dlrm) [25]
NCF (ncf) [14]

Attention gpt2 (gpt2) [29]
TABLE 1: Evaluated benchmark models.

Cloud-scale NPU

Model TPU (v4) [11]
Systolic Array 128 × 128

On-chip SPM Size 36MB
Frequency 1GHz

TLB associativity 8-way
of TLB Entry per NPU 2048

of PTW per NPU 8
Off-chip Memory

Model HBM2
Bandwidth per NPU 128GB/s
Capacity per NPU 4GB

Frequency 1GHz
TABLE 2: Basic configuration of mNPUsim.

requests. These log files include useful fields such as time
(cycle), address, NPU index, channel number (optional).
As described in Appendix, there are several options for
additional information.

4. Shared Resource Analysis

4.1. Evaluation Setup

4.1.1. Workloads. We use 3 CNNs, 2 RNNs, 2 recommen-
dation systems, and 1 attention-based deep neural network
benchmarks for evaluation as specified in Table 1. To
measure contention in multi-core NPU usage scenarios,
we configure mixed workloads by selecting two or four
out of eight DNN benchmarks (i.e. dual-core and quad-
core scenarios). All 36 (M(8, 2) =

(8+2–1
2

)
for repeated

combination) possible cases for a dual-core NPU and
330 (M(8, 4) =

(8+4–1
4

)
) mixes for a quad-core NPU are

considered. We assume simultaneous execution of multiple
NPU cores with the mixed workloads.

4.1.2. NPU and DRAM setup. While mNPUsim sup-
ports a wide range of hardware configurations, we used
a representative NPU and DRAM configuration for our
evaluation: a cloud-scale NPU with HBM2 as off-chip DRAM.
For PTW and TLB configuration, we use the design of
NeuMMU [16]. Table 2 shows detailed parameters for the
baseline configuration with a single NPU core, and note that
the amount of certain resources are specified per NPU. For
example, the baseline configuration for the two-NPU system
includes 16 PTWs and 4096 TLB entries, with an off-chip
bandwidth of 256GB/s. We implement operations which are

yt
-y
t

yt
-a
le
x

yt
-re
s

yt
-d
s2

yt
-s
frn
n

yt
-d
lrm

yt
-g
pt
2

yt
-n
cf

al
ex
-a
le
x

al
ex
-re
s

al
ex
-d
s2

al
ex
-s
frn
n

al
ex
-d
lrm

al
ex
-g
pt
2

al
ex
-n
cf

re
s-
re
s

re
s-
ds
2

re
s-
sf
rn
n

re
s-
dl
rm

re
s-
gp
t2

re
s-
nc
f

ds
2-
ds
2

ds
2-
sf
rn
n

ds
2-
dl
rm

ds
2-
gp
t2

ds
2-
nc
f

sf
rn
n-
sf
rn
n

sf
rn
n-
dl
rm

sf
rn
n-
gp
t2

sf
rn
n-
nc
f

dl
rm
-d
lrm

dl
rm
-g
pt
2

dl
rm
-n
cf

gp
t2
-g
pt
2

gp
t2
-n
cf

nc
f-n
cf

G
eo
m
ea
n0.0

0.2
0.4
0.6
0.8
1.0

Pe
rfo
rm
an
ce

Static +D +DW +DWT

Figure 4: Performance (geometric mean of speedup) of per each workload in dual-core mix workloads with Static, +D,
+DW, and +DWT, normalized to Ideal.

0.5 0.6 0.7 0.8 0.9 1.0
Performance of Quad-core NPU

0.0
0.2
0.4
0.6
0.8
1.0

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y Static +D +DW +DWT

Figure 5: The cumulative distribution function (CDF) for

performance of Static, +D, +DW, and +DWT per each workload

in quad-core mix workloads, normalized to Ideal.

primarily executed in systolic arrays such as convolution
or GEMM, corresponding to the output stationary dataflow.
Implementing other dataflows such as weight stationary is
our future work.

4.1.3. Levels of resource sharing. As discussed in Sec-
tion 3.1, there are three major shareable resources in our
simulated multi-NPU system: 1) DRAM, 2) PTW, and 3) TLB.
For simpler explanation, we define the abbreviation for each
shared resource: Each of D, W and T denotes shared DRAM,
shared PTWs and shared TLB respectively. In this section,
we assume four levels for resource sharing: 1) Static, 2) +D,
3) +DW, and 4) +DWT. In Static configuration, all shareable
resources (D, W, T) are split statically and equally to all
cores, following the configuration of Table 2. For instance,
assuming Static for a dual-core system, each core will use
128GB/s DRAM bandwidth, 8 PTWs and 2048 TLB entries
without any contention. On the other hand, in +D, +DW,
and +DWT configurations, each NPU workload cumulatively
shares D, W, and T with co-running workloads. For example,
in +DW, each NPU workload uses a separate T (TLB) by itself,
but D (DRAM) and W (PTW) are shared with other NPU cores.
All shared resources are shared among cores dynamically
without any control on shared resource possession (i.e. first-
come-first-served). In addition to the four levels of resource
sharing, we also define the baseline configuration: Ideal.
Each NPU workload monopolizes all shareable resources
alone without being affected by other workloads in the
Ideal configuration. For example, when we set a dual-core
system to run with the Ideal configuration, each core will

use the entire 256GB/s DRAM bandwidth, 16 PTWs and
4096 TLB entries exclusively.

4.2. Overall Result

4.2.1. Performance. The performance metric for shared
resource analysis is a relative speedup compared to the
ideal case (Ideal). When a speedup is lower than 1.0, the
performance of the case is slower than Ideal. For mix
workloads, we use the geometric mean (geomean) of speedups
for the workloads in a workload mix to compare the overall
performance of the multi-NPU system.

Figure 4 and Figure 5 present the overall performance
trends of mix workloads for dual-core and quad-core NPUs,
respectively. Note that we visualize the quad-core scenario
using cumulative distribution function (CDF) instead of
bar graphs as used for the dual-core scenario, considering
the number of combinations with 330 workload mixes
in total. All the three sharing scenarios (+D, +DW, +DWT)
outperform the static equally partitioned configuration
(Static). Figure 4 and Figure 5 illustrate three points in
overall performance trends: 1) +D: Sharing DRAM band-
width provides modest performance improvements over
Static, and it achieves 75.5% and 63.0% of performance
in dual and quad cores, compared to Ideal in geometric
mean. 2) +DW: Shared PTW shows notable performance
improvements, improving speedups by 13.2% in dual-core
and 23% in quad-core from +D on average. 3) +DWT: Shared
TLB has a negligible effect on overall performance, less
than 1% variation compared to +DW. We will discuss the
reason of performance trends in Section 4.3 and Section 4.4.

4.2.2. Fairness. In addition to the performance, we consider
the fairness metric shown in Equation 1 proposed by Van
Careynest et al. [41].

Fairnessi = 1 –
σi
µi

(1)

Fairnessi represents the fairness of the i-th mix work-
load. µi and σi are the average and the standard deviation
of slowdown (inverse of speedup) of workloads in a mix
workload. For example, in the i-th mix workload composed
of alex and yt, µi is the average of Slowdowni(alex)
and Slowdowni(yt) in which Slowdowni(alex) means the
inverse of speedup of alex compared to the Ideal con-
figuration. As a smaller σi results in a larger Fairnessi,

yt
-y
t

yt
-a
le
x

yt
-re
s

yt
-d
s2

yt
-s
frn
n

yt
-d
lrm

yt
-g
pt
2

yt
-n
cf

al
ex
-a
le
x

al
ex
-re
s

al
ex
-d
s2

al
ex
-s
frn
n

al
ex
-d
lrm

al
ex
-g
pt
2

al
ex
-n
cf

re
s-
re
s

re
s-
ds
2

re
s-
sf
rn
n

re
s-
dl
rm

re
s-
gp
t2

re
s-
nc
f

ds
2-
ds
2

ds
2-
sf
rn
n

ds
2-
dl
rm

ds
2-
gp
t2

ds
2-
nc
f

sf
rn
n-
sf
rn
n

sf
rn
n-
dl
rm

sf
rn
n-
gp
t2

sf
rn
n-
nc
f

dl
rm
-d
lrm

dl
rm
-g
pt
2

dl
rm
-n
cf

gp
t2
-g
pt
2

gp
t2
-n
cf

nc
f-n
cf

G
eo
m
ea
n0.0

0.2
0.4
0.6
0.8
1.0

Fa
irn
es
s

Figure 6: Geometric mean of fairness of each workload in dual-core mix workloads with Static, +D, +DW, and +DWT, calculated
via Equation 1.

0.5 0.6 0.7 0.8 0.9 1.0
Fairness of Quad-core NPU

0.0
0.2
0.4
0.6
0.8
1.0

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y Static +D +DW +DWT

Figure 7: The cumulative distribution function (CDF) for

fairness of Static, +D, +DW, and +DWT in quad-core mix

workloads, calculated via Equation 1.

fairness closer to 1 implies better performance balance
among workloads in a workload mix.

Figure 6 and Figure 7 show the overall trends of
fairness with the dual and quad-core NPUs. Compared
to the statically partitioned configuration, resource sharing
degrades fairness although the degradation is relatively
small. For the dual-core, while Static provides a high level
of balance with fairness of 0.97 on average, the fairness
drops to 0.91 with +D. For the quad-core, Static provides
fairness of 0.95 on average, +D reduces it to 0.88. The
workloads running on the quad-core system are disturbed
by co-runners more extensively than the dual-core system,
resulting in the higher possibility of interference between
cores. Sharing PTW, however, makes system experience
a similar level of imbalance in both dual-core and quad-
core cases, reporting fairness of 0.87 on average. The gap
between +DW and +DWT is almost negligible, as sharing TLB
does not have any significant effect on fairness.

4.2.3. Contention sensitivity. Although the overall con-
tention in mix workloads can be discussed by the result of
Section 4.2.1 and Section 4.2.2, the influence of contention
on each workload in mix workloads is not fully explained.
Therefore, we evaluate the sensitivity of each workload in
mix workloads to the contention from co-runners through
the distribution of performance change.

Figure 8 visualizes the range of performance for each
workload with various co-runners, in the dual-core NPU
with all resources shared (i.e. +DWT). For each box, horizontal
lines represent the summary of statistics. For each workload,
the uppermost line is the maximum value, the lowermost
line is the minimum, the upper side of each box is the 3rd

yt alex res ds2 sfrnn dlrm gpt2 ncf
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rfo
rm
an
ce

Figure 8: Performance distribution of +DWT affected by co-

runners in dual-core, normalized to Ideal.

quartile, the lower side of box is the 1st quartile, and the line
in the middle of the box is for median. The wider range of
performance distribution will result in larger gaps between
lines and top/bottom sides of each box. The difference of
position and size (i.e. gaps between lines and sides of the
box) of each box in Figure 8 shows that every workload has
a different sensitivity by the impact from the co-running
workload. As all shared resources are related to off-chip
memory accesses in our multi-core NPU system, memory-
intensive workloads will be affected by their co-runner
more than computation-intensive workloads. For example,
yt and res, which only contain relatively computation-
intensive convolution layers, show narrower performance
distribution range compared to memory-intensive DNNs
(sfrnn and dlrm).

4.3. Memory Bandwidth

In this subsection, we discuss the effect of DRAM
bandwidth sharing in detail. +D assumes totally dynamic
sharing of DRAM bandwidth among NPU cores without
any limitation. Hence, we compare the performance and
fairness of dynamic DRAM bandwidth sharing with static
partitioning strategies with various ratios. For static parti-
tioning schemes in the dual-core NPU scenario, we partition
the total DRAM bandwidth of 256GB/s into the ratios of
1:7, 2:6, 4:4, 6:2, and 7:1, in which 1:7 implies that the
first core and the second core use 1/8 and 7/8 of the
total DRAM bandwidth respectively. To isolate the effect
of DRAM bandwidth on overall performance, we remove
address translation for experiments of this subsection.

Figure 9 shows the geometric mean of performance for
each bandwidth partitioning scheme normalized to that of
Ideal, and a larger y value means a better performance (i.e.
closer to the ideal performance). The scheme marked as
Static Best represents the values obtained using the best

Static
1:7

Static
2:6

Static
4:4

Static
6:2

Static
7:1

Static
Best

Dynamic0.0
0.2
0.4
0.6
0.8
1.0

G
eo

m
ea

n
of

Pe
rfo

rm
an

ce

Figure 9: Geometric mean of performance for each band-

width partitioning scheme in dual-core NPU. The normal-

ization point is Ideal.

Static
1:7

Static
2:6

Static
4:4

Static
6:2

Static
7:1

Static
Best

Dynamic0.0
0.2
0.4
0.6
0.8
1.0

G
eo

m
ea

n
of

Fa
irn

es
s

Figure 10: Geometric mean of fairness for each bandwidth

partitioning scheme in dual-core NPU.

value among the five static DRAM bandwidth partitioning
schemes for each workload. In most cases, the equal static
partitioning (4:4) scheme is the best among five static
partitioning options. Unequal static partitioning schemes
often exhibit severe performance degradation, and the equal
static partitioning (4:4) shows 27% performance degradation
compared to the Ideal. The dynamic sharing scheme
achieves 84% of ideal performance on average, which is
1.14× faster than the equal static partitioning. Moreover, as
shown in Figure 10, unequal static partitioning still suffers
for low fairness while the dynamic partitioning scheme has
a similar fairness to the equal static partitioning, which
will provide the best fairness.

Such characteristic comes from the bursty nature of
memory requests in NPU workloads. Figure 11 visualizes
the change of speedup with respect to the change of
DRAM bandwidth for the NPU workloads listed in Table 1.
Although a higher DRAM bandwidth would allow faster
execution of NPU workload, the relationship between
DRAM bandwidth and the performance is not linear. This
implies that even the most memory-intensive NPU workload
would not be memory-intensive for all of its lifetime, while
the burstiness of its memory requests would require the
ideal DRAM bandwidth to be higher than currently available
peak bandwidth.

Figure 12 shows the impact of the burstiness, as an
evidence of performance degradation in static partitioning.
The x-axis shows elapsed cycles, and the y-axis is the
DRAM bandwidth consumption normalized to the peak
bandwidth (256 GB/s). Two lines, ds2 and gpt2 represents
the bandwidth utilization when each of them run separately
on the Ideal configuration, and ds2+gpt2 shows the sum
of bandwidth utilization of two workloads. The equal static
partitioning scheme restricts the upper bound of bandwidth
to be equal to the half of the peak bandwidth for each core.

32
GB/s

64
GB/s

128
GB/s

192
GB/s

224
GB/s

256
GB/s

384
GB/s

448
GB/s

512
GB/s

1
2
3
4
5

Sp
ee
du
p

yt
alex

res
ds2

sfrnn
dlrm

gpt2
ncf

Figure 11: Speedup with respect to DRAM bandwidth change

in single-core NPU, normalized to 32GB/s performance.

0K 100K 200K 300K 400K 500K
Time (cycles)

0.0
0.5
1.0
1.5
2.0

N
or

m
al

iz
ed

 D
R

AM
BW

 U
til

iz
at

io
n ds2 gpt2 ds2+gpt2

Figure 12: DRAM bandwidth utilization of executing ds2
and gpt2 in dual-core NPU, Ideal configuration.

However, Figure 12 shows that the actual requirement of
bandwidth for each core is much higher than the half of
the peak bandwidth (i.e. y > 0.5) during the majority of
execution time. Dynamic sharing, on the other hand, takes
advantage from the time-sharing of bandwidth benefited
from diverse memory access patterns of workloads and
different timings of burst occurrences. Such burstiness
incurs the situation shown in Figure 9 and Figure 10.
Since the required bandwidth of ds2+gpt2 exceeds the
peak bandwidth (i.e. y > 1.0), even dynamic partitioning
has a lower performance compared to Ideal. However, the
dynamic partitioning allows effective bandwidth sharing
through flexible resource management than static partition-
ing, resulting much less slowdowns.

4.4. Address Translation

4.4.1. Shared PTW management. In NPUs with SPM, one
of the major bottlenecks in off-chip memory accesses is the
page table walk bandwidth. Therefore, the sharing strategy
of PTW is as important as those of DRAM bandwidth.
To analyze the importance of PTW sharing schemes, we
compare the static PTW partitioning with the dynamic
sharing with +DW.

Figure 13 shows the geometric mean of performance
for each PTW partitioning scheme normalized to Ideal,
and Figure 14 represents the fairness of each partitioning
scheme in the dual-core NPU system. Similar to the results
of Section 4.3, the system prefers dynamic PTW sharing
rather than static partitioning for performance. The bursty
nature of memory requests in NPU workloads allows such
performance trends as well as fairness trends.

4.4.2. Shared TLB. As shown in the Section 4.2.1 and
Section 4.2.2, unlike DRAM and PTW bandwidth, sharing
TLB capacity does not have significant effects on both

Static
1:7

Static
2:6

Static
4:4

Static
6:2

Static
7:1

Static
Best

Dynamic0.0
0.2
0.4
0.6
0.8
1.0

G
eo

m
ea

n
of

Pe
rfo

rm
an

ce

Figure 13: Geometric mean of performance for each page

table walker (PTW) partitioning scheme in dual-core NPU,

normalized to Ideal.

Static
1:7

Static
2:6

Static
4:4

Static
6:2

Static
7:1

Static
Best

Dynamic0.0
0.2
0.4
0.6
0.8
1.0

G
eo

m
ea

n
of

Fa
irn

es
s

Figure 14: Geometric mean of fairness for each page table

walker (PTW) partitioning scheme in dual-core NPU.

performance and fairness. Unlike DRAM and PTW whose
unused bandwidth by a core can be utilized by other NPU
cores quickly, each NPU core takes up a certain amount
of TLB capacity constantly. Therefore, a modest increase
of effective TLB capacity for memory intensive workloads
by sharing TLBs is not large enough to help improve the
performance. However, associativity is important when TLB
is shared to avoid conflict misses. With a lower associativity
for shared TLBs than 8 ways, inter-NPU conflict misses
degraded the performance. The evaluated multi-core NPU
system uses a 8-way set associative TLB to avoid set
conflicts for the shared TLB configuration with a reasonable
hardware overhead.

4.5. Scalable Page Size

Based on the analysis in Section 4.4, the shared page
table walk bandwidth has a significant impact on overall
performance of NPU system. The bottleneck of page table
walk can be resolved in two ways: The first approach is to
increasing the available PTW bandwidth by increasing the
number of PTWs and/or sharing them dynamically between
multiple cores. The second approach is to decrease the PTW
bandwidth requirement by increasing the page size so that
TLB miss rates could be decreased by orders of magnitude.
The section evaluates the second approach of increasing
page sizes.

4.5.1. Single-core NPU. Figure 15 shows the performance
changes by three different page sizes in a single-core NPU.
We use two large page sizes, 64KB and 1MB, based on
the ARM64 architecture [2]. Although the increased page
sizes result in performance gain, the correlation between
the page size and the performance is non-linear: While the
performance with 64KB page is 17.6% faster than that with
4KB page, 1MB page provides only 1.6% faster performance

yt alex res ds2 sfrnn dlrm gpt2 ncf geomean0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Sp
ee
du
p

4KB 64KB 1MB

Figure 15: The speedup of 64KB and 1MB page over 4KB

page in single-core NPU.

Single
NPU

Dual
NPU

Quad
NPU

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Pe
rfo
rm
an
ce

Single
NPU

Dual
NPU

Quad
NPU

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Fa
irn
es
s

4KB 64KB 1MB

Figure 16: The geometric mean of performance and fairness

for 64KB and 1MB page with single-core, dual-core, and

quad-core NPU within +DWT. Performance is normalized to

4KB page, and the baseline of fairness is Ideal.

than 64KB page. Moreover, the sensitivity of performance
to the change of page size varies depending on workload:
While gpt2 only experiences at most 5.8% speedup over
4KB page, dlrm runs 30% faster with 1MB page. This is
because of the characteristic of page table walks caused by
TLB misses. As explained in the Section 4.4.2, each TLB
miss and its page table walk can have a different impact
on the overall performance.

4.5.2. Multi-core NPU. We evaluate the performance and
the fairness of each page size choice in multi-core NPU
systems with +DWT. Figure 16 visualizes the evaluation result
of the multi-core (i.e. dual and quad-core) NPU system. The
graph on the left shows the geometric mean of performance,
and the graph on the right is for the fairness. Note that
the normalization point of performance is 4KB page, while
the baseline of fairness is Ideal.
Performance: With larger page sizes, the overall perfor-
mance increases for both dual and quad-core NPU systems.
The dual-core NPU with 64KB and 1MB pages is 12.6% and
15.6% faster than 4KB page in geometric mean. The quad-
core NPU with 64KB and 1MB pages is 9.2% and 12.5% faster
than 4KB page on average, respectively. The performance
gap between 64KB and 1MB page is still not large (around
3% for both cases) due to the similar reason to single-
core NPU. Also, more NPU core results in less speedups
since the increasing number of cores causes additional
interference between cores and it reduces the effect of
translation overhead.
Fairness: On the other hand, larger page size turned out to
have negligible impact on fairness improvement. For both
dual and quad-core NPUs, increasing page size from 4KB
to 64KB/1MB size resulted in fairness gain at most 2.3% in
the geometric mean. This is because the shared TLB does

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Performance of Dual-core NPU

0.0
0.2
0.4
0.6
0.8
1.0

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y Predicted Worst Expected Oracle

Figure 17: The cumulative distribution function (CDF) for

the performance of system with mapping, normalized to

the baseline without mapping.

not affect on balancing workload, as shown in Figure 6 and
Figure 7 and explained in Section 4.4.2.

4.6. Workload Mapping in Multiple NPUs

In this section, we evaluate the effect of mapping co-
runners on the system with multiple multi-core NPUs.
In this analysis, we use 4 dual-core NPUs, and map 8
workloads to the total 8 NPU cores, to assess the overall
performance and fairness. We evaluate the two metrics
with all possible mappings. In addition to the exhaustive
mapping, we apply a simple performance prediction model
which estimates the performance when two models are
running on a dual-core NPU. The prediction model has
only a profiled information for each model and estimates
the potential runtime interference.

4.6.1. Performance model. Memory intensiveness, which
represents how much shared resources are utilized by each
workload in each core, has significant influences on the
contention between co-runners. Accordingly, this study
proposes to use PE utilization, memory traffic per
execution, and ratio of execution time as factors
for considering memory intensiveness. PE utilization
indicates how much computational units are utilized during
the entire process of executing each workload, and a lower
value implies a higher contention in memory resources.
Memory traffic per execution represents the amount
of memory traffic required during the entire process of
executing each workload, and a higher value indicates that
the workload is more memory-intensive. Finally, ratio
of execution time is a correction factor to tune the
error caused by some nondeterministic and unexpected
contention, e.g. inter-core TLB conflict.

Due to the numerous factors influencing contention
among co-runners, this study employs a prediction model
trained using multi-factor regression. However, to pre-
vent the overfitting from only using workloads used in
Section 4.1 as a training set, the prediction model was
trained with randomly generated neural networks. Similar
to the approach used in Deepsniffer [15], our randomly-
generated neural networks have arbitrary numbers of
convolution/GEMM layers with random dimension such as
output channels, stride, and kernel size in a realistic range.

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Fairness of Dual-core NPU

0.0
0.2
0.4
0.6
0.8
1.0

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y Predicted Worst Expected Oracle

Figure 18: The cumulative distribution function (CDF) for

the fairness of system with mapping, normalized to the

baseline without mapping.

4.6.2. Evaluation. We evaluate our performance model
with all possible eight-workload set for four dual-core chips,
total M(8, 8) = 6435 mix workloads. Figure 17 shows the
cumulative distribution function (CDF) of the speedup
of our prediction model, the worst selection, random
(expected) selection, and the oracle selection. The prediction
model finds the better cases than the random selection for
50.04% scenarios, while mostly avoiding selecting the worst
scheduling. Similarly, Figure 18 represents the fairness and
60.90% of scenarios show improved fairness by using our
prediction model. With the gap between the prediction
model result and oracle selection, a further possibility of
improving the performance model remain as future work.

5. Related Work

5.1. NPU Simulators

There are several widely-used open-source simulators
that model single-core NPUs. SCALE-Sim is a cycle-accurate
systolic array-based DNN accelerator simulator [34, 35].
MAESTRO models various dataflows within deep-learning
accelerators [20]. Gem5-Aladdin is an advanced version of
Aladdin, a trace-based accelerator simulator for System-on-
a-Chip (SoC) platform [37, 38].

Many prior studies on multi-NPU systems run a single-
NPU simulator for multiple times, and combine their results
to evaluate a multi-NPU system. However, several recent
open-source software frameworks can be used as a multi-
NPU simulator. Gemmini is a full-stack generator of SoC
DNN accelerators implemented with Chisel, which supports
generation of the cycle-accurate simulator for a given
configuration [9]. Astra-Sim is a framework for design space
exploration of distributed deep-learning training platforms,
rather than modeling a general multi-core NPU system [30].

5.2. Multi-tenant ML Execution

There have been many recent efforts to improve sup-
ports for multi-tenancy with ML workloads on GPUs and
NPUs. Choi et al. suggests the virtual GPU by leveraging
spatial partitioning, and the partitioning algorithm reflects
the contention of shared L2 cache and the external mem-
ory bandwidth [7]. PREMA proposes temporal sharing of
NPUs for multiple DNN tasks by introducing preemption

mechanism for NPUs [8]. Planaria proposes dynamic spatial
sharing of accelerators for multi-tenant DNN inference [10].
AI-MT suggests an accelerator architecture for multi-tenant
DNN execution [4]. Layerweaver proposes a layer-wise
scheduling technique, improving AI-MT [26]. STFusion
proposes to use both spatial and temporal sharing in
multiple NPUs [5]. For the multi-core accelerator, MAGMA
and MoCA address the challenges of executing multi-tenant
DNN inference workloads on a heterogeneous multi-core
accelerator system [18, 33].

6. Conclusion

This study investigated the effect of resource sharing in
multi-core NPUs. Using a new multi-core NPU simulator,
it showed that memory bandwidth and page table walker
sharing is beneficial for multi-core NPUs due to the bursty
memory accesses, improving the overall throughput sig-
nificantly from the partitioned configuration. mNPUsim is
available on https://github.com/casys-kaist/mNPUsim.

7. Acknowledgments

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
(IITP2017-0-00466 SW StarLab and IITP2021-0-01817
Development of Next-Generation Computing Techniques
for Hyper-Composable Datacenters). This work was also
supported by the National Research Foundation of Korea
(NRF-2022R1A2B5B01002133). Both grants are funded by
the Ministry of Science and ICT, Korea.

References

[1] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, J. Chen et al.,
“Deep Speech 2: End-to-end speech recognition in English and
Mandarin,” in International Conference on Machine Learning (ICML),
2016.

[2] ARM. ARM developer. [Online]. Available: https://developer.arm.com

[3] ARM, “Powering the edge: Driving optimal performance with
Ethos-N77 processor,” ARM, Tech. Rep., 2019.

[4] E. Baek, D. Kwon, and J. Kim, “A multi-nural network acceleration
architecture,” in International Symposium on Computer Architecture
(ISCA), 2020.

[5] E. Baek, E. Lee, T. Kang, and J. Kim, “STfusion: Fast and flexible
multi-NN execution using spatio-temporal block fusion and memory
management,” in Transactions on Computers (TC), vol. 72, no. 4,
2023, pp. 1194–1207.

[6] P. Chatarasi, H. Kwon, N. Raina, S. Malik, V. Haridas, A. Parashar,
M. Pellauer, T. Krishna, and V. Sarkar, “Marvel: A data-centric
compiler for DNN operators on spatial accelerators,” in ArXiv
Preprint ArXiv:2002.07752, 2020.

[7] S. Choi, S. Lee, Y. Kim, H. Park, Y. Kwon, and H. Huh, “Serving
heterogeneous machine learning models on multi-GPU servers with
spatio-temporal sharing,” in USENIX Annual Technical Conference
(USENIX ATC), 2022.

[8] Y. Choi and M. Rhu, “PREMA: A predictive multi-task scheduling
algorithm for preemptible neural processing units,” in International
Symposium on High-Performance Computing Architecture (HPCA),
2020.

[9] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao, A. Ou, C. Schmidt, S. Steffl, J. Wright,
I. Stoica, J. Ragan-Kelley, K. Asanovic, N. Borivoje, and Y. S. Shao,
“Gemmini: Enabling systematic deep-learning architecture evaluation
via full-stack integration,” in Design and Automation Conference
(DAC), 2021.

[10] S. Ghodrati, B. Ahn, J. Kim, S. Kinzer, B. R. Yatham, N. Alla,
H. Sharma, M. Alian, E. Ebrahimi, N. Kim, C. Young, and
H. Esmaeilzadeh, “Planaria: Dynamic architecture fission for spatial
multi-tenant acceleration of deep neural networks,” in International
Symposium on Microarchitecture (MICRO), 2020.

[11] Google. CloudTPU. [Online]. Available:
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm

[12] Y. Hao, Z. Fang, G. Reinman, and J. Cong, “Supporting address
translation for accelerator-centric architectures,” in International
Symposium on High Performance Computer Architecture (HPCA),
2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[14] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in International Conference on World Wide
Web (WWW), 2017.

[15] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding, C. Liu,
T. Sherwood, and Y. Xie, “DeepSniffer: A DNN model extraction
framework based on learning architectural hints,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[16] B. Hyun, Y. Kwon, Y. Choi, J. Kim, and M. Rhu, “NeuMMU:
Architectural support for efficient address translations in neural
processing units,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2020.

[17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle et al.,
“In-datacenter performance analysis of a tensor processing unit,” in
International Symposium on Computer Architecture (ISCA), 2017.

[18] S. Kim, H. Genc, V. V. Nikiforov, K. Asanovic, B. Nikolic, and Y. S.
Shao, “MoCA: Memory-centric, adaptive execution for multi-tenant
deep neural networks,” in International Symposium on
High-Performance Computing Architecture (HPCA), 2023.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Conference on Neural Information Processing Systems (NIPS), 2012.

[20] H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and
A. Parashar, “Maestro: A data-centric approach to understand reuse,
performance, and hardware cost of DNN mappings,” in IEEE micro,
vol. 40, no. 3, 2020, pp. 20–29.

[21] B. Li, H. Yin, Y. Zhang, and X. Tang, “Improving address translation
in multi-GPUs via sharing and spilling aware TLB design,” in
International Symposium on Microarchitecture (MICRO), 2021.

[22] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A
cycle-accurate, thermal-capable DRAM simulator,” in Computer
Architecture Letters (CAL), vol. 19, no. 2, 2020, pp. 106–109.

[23] S. Liu, D. C. Mocanu, Y. Pei, and M. Pechenizkiy, “Selfish sparse
RNN training,” in International Conference of Machine Learning
(ICML), 2021.

[24] G. E. Moon, H. Kwon, G. Jeong, P. Chatarasi, S. Rajamanickam, and
T. Krishna, “Evaluating spatial accelerator architectures with tiled
matrix-matrix multiplication,” in Transactions on Parallel and
Distributed Systems (TPDS), vol. 33, no. 4, 2021, pp. 1002–1014.

[25] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia,
L. Xiong, and M. Smelyanskiy, “Deep learning recommendation
model for personalization and recommendation systems,” in ArXiv
Preprint ArXiv:1906.00091, 2019.

[26] Y. H. Oh, S. Kim, Y. Jin, S. Son, J. Bae, J. Lee, Y. Park, D. U. Kim,
T. J. Ham, and J. W. Lee, “Layerweaver: Maximizing resource
utilization of neural processing units via layer-wise scheduling,” in
International Symposium on High-Performance Computing
Architecture (HPCA), 2021.

[27] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying,
A. Mukkara, R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer,
“Timeloop: A systematic approach to DNN accelerator evaluation,”
in International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2019.

[28] B. Pratheek, N. Jawalkar, and A. Basu, “Improving GPU
multi-tenancy with page walk stealing,” in International Symposium
on High-Performance Computing Architecture (HPCA), 2021.

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI,
Tech. Rep., 2019.

[30] S. Rahidi, S. Sridharan, S. Srinivasan, and T. Krishna, “ASTRA-SIM:
Enabling SW/HW co-design exploration for distributed DL training
platforms,” in International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2020.

[31] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[32] S. C. Kao and T. Krishna, “Gamma: Automating the HW mapping of
DNN models on accelerators via genetic algorithm,” in International
Conference on Computer-Aided Design (ICCAD), 2020.

[33] S. C. Kao and T. Krishna, “MAGMA: An optimization framework for
mapping multiple DNNs on multiple accelerator cores,” in
International Symposium on High-Performance Computing
Architecture (HPCA), 2022.

[34] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A systematic methodology for characterizing scalability
of DNN accelerators using SCALE-Sim,” in International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2020.

[35] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“SCALE-Sim: Systolic CNN accelerator simulator,” in ArXiv Preprint
ArXiv:1811.02883, 2018.

[36] W. Seo, S. Cha, Y. Kim, J. Huh, and J. Park, “SLO-aware inference
scheduler for heterogeneous processors in edge platforms,” in
Transaction on Architecture and Code Optimization (TACO), vol. 18,
no. 4, 2021, pp. 1–26.

[37] S. Y. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks,
“Co-designing accelerators and SoC interfaces using gem5-Aladdin,”
in International Symposium on Microarchitecture (MICRO), 2016.

[38] Y. S. Shao, B. Reagen, G. y. Wei, and D. Brooks, “Aladdin: A
pre-RTL, power-performance accelerator simulator enabling large
design space exploration of customized architectures,” in
International Symposium on Computer Architecture (ISCA), 2014.

[39] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Philipose,
A. Krishnamurthy, and R. Sundaram, “Nexus: A GPU cluster engine
for accelerating DNN-based video analysis,” in Symposium on
Operating System Principles (SOSP), 2019.

[40] S. Shin, G. Cox, M. Oskin, G. H. Loh, Y. Solihin, A. Bhattacharjee,
and A. Basu, “Scheduling page table walks for irregular GPU
applications,” in International Symposium on Computer Architecture
(ISCA), 2018.

[41] C. K. Van, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware scheduling on single-ISA heterogeneous multi-cores,”
in International Conference on Parallel Architecture and Compilation
Techniques (PACT), 2013.

[42] J. Yang, M. Wen, J. Shen, Y. Cao, M. Tang, R. Yang, J. Fei, and
C. Zhang, “BP-Im2col: Implicit Im2col supporting AI
backpropagation on systolic arrays,” in International Conference on
Computer Design (ICCD), 2022.

[43] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using
Halide’s scheduling language to analyze DNN accelerators,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[44] Y. Zhou, M. Yang, C. Guo, J. Leng, Y. Liang, Q. Chen, M. Guo, and
Y. Zhu, “Characterizing and demystifying the implicit convolution
algorithm on commercial matrix-multiplication accelerators,” in
International Symposium on Workload Characterization (IISWC), 2021.

Appendix

1. Abstract

mNPUsim is a multi-core NPU simulator written in C++.
When user inputs the several configuration files, our
simulator computes per-layer (or per-tile) execution cycles,
traces of PE computation, and records of memory requests.

2. Artifact Check-list (Meta-information)

• Compilation: g++ v7.5.0
• Run-time environment: Ubuntu 18.04 Kernel v4.15
• Hardware: x86-64
• Output: standard output, text files
• How much disk space required (approximately)?: 700MB
• How much time is needed to prepare workflow

(approximately)?: 5 minutes
• How much time is needed to complete experiments

(approximately)?: 30 seconds ∼ 24 hours per one
configuration

• Publicly available?: Yes
• Code licenses (if publicly available)?: Creative Commons

Attribution 4.0 International
• Workflow framework used?: No
• Archived (provide DOI)?: Yes (10.5281/zenodo.8297788)

3. Description

3.1. How to access.

• Zenodo: The artifact is published on Zenodo:
https://doi.org/10.5281/zenodo.8297788.

• Github: mNPUsim is shared and will be updated:
https://github.com/casys-kaist/mNPUsim.

3.2. Hardware dependencies. The simulator requires
x86-64 architecture.

3.3. Software dependencies. The simulator is capable
with Ubuntu 18.04 or later with g++ v7.5.0, and requires
software prerequisites for DRAMsim3 [22].

3.4. Data sets. Since our simulator represents the
multi-NPU operation flow of inference (not training), it
does not require any data sets.

3.5. Models. We use 3 CNNs, 2 RNNs, 2 recommendation
systems, and 1 attention-based deep neural network
benchmarks for evaluation as specified in Table 1. The
simulator includes Resnet50 (res), Yolo-tiny (yt), Alexnet
(alex)), Selfish-RNN (sfrnn), DeepSpeech2 (ds2), DLRM
(dlrm), NCF (ncf), and GPT-2 (gpt2). The architectures of
models are based on the SCALE-Sim [34, 35].

4. Installation

• Load DRAMsim3 as a submodule (Optional for
github distribution).
$ git submodule update –init –recursive

• Create shared library.
$ cd DRAMsim3
$ make libdramsim3.so
$ cd ..

• Run test.
$ make
$ make single_test1

5. Experiment Workflow

Since the detailed simulation architecture is written in
Section 3, we only briefly introduce the simulator
architecture here. Software request generator makes
memory-ideal intermediate results. These intermediate
results and several hardware configuration files are utilized
to model realistic memory system by leveraging
DRAMsim3 for cycle-accurate NPU core simulation.

6. Evaluation and Expected Results

We provide input files for configurations used in the
evaluation of the paper. Below, we provide several
examples for evaluation steps.

• Single-core NPU evaluation with test benchmark:
$ export LD_LIBRARY_PATH=./DRAMsim3/$LD_LIBRARY_PATH
$./mnpusim arch_config/core_architecture_list/tpu.txt
network_config/netconfig_list/single/test1_network.txt
dram_config/total_dram_config/single_hbm2_256gbs.cfg
npumem_config/npumem_architecture_list/single.txt
single_test misc_config/single.cfg
$ cd single_test/result

$ tail -1 avg_cycle_arch_tpu_small0_test1_network0.txt

• Dual-core NPU evaluation for NCF-NCF mix in
+DWT configuration:
$ export LD_LIBRARY_PATH=./DRAMsim3/$LD_LIBRARY_PATH
$./mnpusim arch_config/core_architecture_list/tpu_tpu.txt
network_config/netconfig_list/dual/NCF_NCF.txt
dram_config/total_dram_config/two_hbm2_256gbs_dwt.cfg
npumem_config/npumem_architecture_list/dual_dwt.txt
dual_ncf_ncf misc_config/dual.cfg
$ cd dual_ncf_ncf/result
$ tail -1 avg_cycle_arch_tpu_small0_NCF0.txt
$ tail -1 avg_cycle_arch_tpu_small1_NCF1.txt

By following the example, one can get the execution result
(i.e. raw number of execution cycle) for each NPU core.
For more information about the configuration and results,
see the following section and the README of simulator.

7. Experiment Customization

7.1. Options. There are several options for various traces.
• SRAM_TRACE: Generates the SRAM trace per each

PE in result_path/intermediate/(sram files). If
SRAM_TRACE equals to false, only cycle is written.
(Default: false)

• DRAMREQ_NPU_TRACE: Option for the trace of
DRAM requests in npu-side cycle. (Default: false)

• DEBUG: Debugging option. (Default: false)

7.2. Input customization. Users also can tuned the
hardware and network configuration files. Note that, we
use the list of single configuration files to support
multi-NPU simulation.

• arch_config: NPU-core specification.
• network_config: Model topology.
• dram_config: DRAM configuration.
• npumem_config: Information of memory-related

hyper-parameters such as page table walker (PTW).
• misc_config: Iteration details with the number of

shared PTWs. It includes the start cycle, number of
iterations, and the number of shared PTW
partitions (i.e. upper and lower bound of available
PTWs per core).

7.3. Parameters. Our simulator requires six parameters.
Configuration parameters are list of single configuration
files and result path is for output directory. The example
of whole commands are in Makefile.

• The path of core architecture
(arch_config/core_architecture_list/tpu.txt)

• The path of target network
(network_config/netconfig_list/single/test1_network.txt)

• The path of target DRAM
(dram_config/total_dram_config/single_hbm2_256gbs.cfg)

• The path of npumem config
(npumem_config/npumem_architecture_list/single.txt)

• result path
(single_test1)

• The path of execution mode config
(misc_config/single.cfg)

7.4. Result files. The whole result files are stored in
result path (fifth parameter). The result path contains four
subdirectories to save results:

• dramsim_output: The access information of DRAM
(dram.log, dramreq.log), TLB (tlb<core idx>.log), and
PTW (tlb<core idx>_ptw.log). When DRAM requests
sent, the start-cycle is written in dram.log and the
end-cycle is written in dramreq.log.

• intermediate_config: Reconstructed configuration.
Unlike original network file, it considers the
GEMM translation (e.g the im2col-out convolution)
and absolute address translation.

• intermediate: The intermediate results except the
memory constraints. Based on these intermediate
results, the simulator makes the memory requests.
The format of output lines is (cycle), (list of address).
Therefore, only first values (cycle) in SRAM traces
are remained when SRAM_TRACE is false.

• result: Text files that contains the summarization of
simulation result. The name of summarization files
for each NPU core is decided with following
convention: <prefix>_<core architecture name><core
index>_<target network name><core index>. There
exists four kinds of summary files with intrinsic
prefixes: 1) average cycles (avg_cycle), 2) the size
of memory footprint (memory_footprint), 3) per
layer execution cycle (execution_cycle), and 4) PE
utilization (utilization).

8. Notes

Each directory has README file for more explanation.

