
Nested Enclave: Supporting Fine-grained
Hierarchical Isolation with SGX

Joongun Park, Naegyeong Kang, Taehoon Kim, Youngjin Kwon, Jaehyuk Huh
School of Computing, KAIST

{jupark,ace9934,thkim,yjkwon,jhhuh}@casys.kaist.ac.kr

Abstract—Although hardware-based trusted execution envi-
ronments (TEEs) have evolved to provide strong isolation with
efficient hardware supports, their current monolithic model poses
challenges in representing common software structures with
modules produced from potentially untrusted 3rd parties. For
better mapping of such modular software designs to trusted
execution environments, it is necessary to extend the current
monolithic model to a hierarchical one, which provides multiple
inner TEEs within a TEE. For such hierarchical compartmen-
talization within a TEE, this paper proposes a novel hierarchical
TEE called nested enclave, which extends the enclave support
from Intel SGX. Inspired by the multi-level security model,
nested enclave provides multiple inner enclaves sharing the same
outer enclave. Inner enclaves can access the context of the outer
enclave, but they are protected from the outer enclave and
non-enclave execution. Peer inner enclaves are isolated from
each other while accessing the execution environment of the
shared outer enclave. Both of the inner and outer enclaves
are protected from vulnerable privileged software and physical
attacks. Such fine-grained nested enclaves allow secure multi-
tiered environments using software modules from untrusted 3rd
parties. The security-sensitive modules run on the inner enclave
with the higher security level, while the 3rd party modules
on the outer enclave. It can be further extended to provide a
separate inner module for each user to process privacy-sensitive
data while sharing the same library with efficient hardware-
protected communication channels. This study investigates three
case scenarios implemented with an emulated nested enclave
support, proving the feasibility and security improvement of the
nested enclave model.

Index Terms—trusted computing, trusted execution environ-
ments, SGX enclave, multi-level security

I. INTRODUCTION

Hardware-based trusted execution environments (TEEs)
such as Intel SGX and ARM TrustZone can provide strongly
isolated execution supports by hardware-enforced access re-
striction and memory protection [5], [6]. Such trusted execu-
tion models have evolved from a single secure world model
in TrustZone to multiple user-level enclaves in SGX. Using
multiple independent enclaves, a prior study has shown that
a task consisting of mutually untrusted components can be
mapped to distributed enclaves communicating with channels
in untrusted memory [24]. However, mapping a task to multi-
tiered enclaves requires extensive refactoring of the current
hierarchical software structure, in addition to relatively costly
communication channels through untrusted memory region
with potential vulnerability [44].

The limitation of the current enclave model stems from its
monolithic design of enclaves. An enclave provides a single

protection domain without any decomposition of security
levels within an enclave. However, providing multiple levels
of security within an enclave strengthens the security of appli-
cations with components developed by untrusted third parties.
Applications are commonly developed by composing privately
developed modules with third party libraries, and such external
modules must be protected but cannot be entirely trusted,
as vulnerabilities are often found even in these open source
libraries [1], [2], [19], [35]. These vulnerabilities adversely
affect not only the data and code inside of the libraries but
also the entire application that uses their features. When an
enclave includes the codes from untrusted 3rd parties, the
current monolithic enclave design cannot provide an efficient
representation of privilege isolation required for such software
structures.

To express the hierarchical isolation, the classic multi-
level security (MLS) concept [12], [13] can be applied to
the current TEE model. To provide MLS within an enclave
while supporting the procedural semantics of programming
languages, this paper proposes to extend the current monolithic
enclave design of SGX to nested enclave, which can support
fine-grained hierarchical isolation within an enclave. With
the nested enclave, an enclave (outer enclave) can contain
multiple inner enclaves with the higher security level than
the outer enclave. The execution environments of an inner
enclave cannot be accessed by the outer enclave, while the
inner enclave has full access permission to the outer enclave.
Peer inner enclaves within an outer enclave are isolated with
each other, while they can communicate efficiently through
the hardware-protected memory of the outer enclave. In the
MLS concept, the top secret corresponds to the inner enclave,
while the lower-level secret corresponds to the outer enclave.

Figure 1 shows the concept of nested enclave compared to
the current monolithic enclave model. In the current mono-
lithic SGX model, multiple enclaves can exist in a system.
However, communicating and transferring controls must be
done through the unsecure environments with costly software-
based encryption for communication. In the nested enclave
model, hierarchical enclaves are supported, with multiple
isolated inner enclaves sharing the same outer enclave. The
figure shows the asymmetric access permission between the
inner and outer enclaves.

Nested enclave enables the efficient representation of call-
based program structures with multiple security levels within
an application. First, the hierarchical model provides natural



support for the security isolation between the inner enclave
with the higher level of permission and the outer enclave with
the lower level. For example, the third-party library can exist in
the outer enclave while the privacy-sensitive processing is done
in the inner enclave. The combined execution environment of
the inner and outer enclaves is protected from the vulnerable
privileged software and hardware attacks while running on
untrusted cloud environments. Second, multiple inner enclaves
sharing the same outer enclave allow fine-grained isolation
within an enclave. For example, if an application serves
multiple users, the privacy-sensitive code for each user can run
separately in an inner enclave, while only the sanitized data
can be fed to the shared libraries in the outer enclave. Finally,
fine-grained communication across inner enclaves becomes
more efficient, as they access the protected enclave memory of
the outer enclave. The enclave memory is efficiently protected
by the hardware engine (Memory Encryption Engine in SGX),
and thus the data can be securely transferred across inner
enclaves without any software intervention for encryption.

While the nested enclave can provide the rich semantics
of hierarchical module-based software structures with strong
isolation, it does not require any significant new hardware
changes. The internal meta-data of enclaves are extended to
represent the nested relationship between inner and outer en-
claves. The extra hardware changes for supporting nested en-
claves are minimized mostly to the access control mechanism
for the enclave memory region. In SGX, the access control
is conducted during handling TLB (Translation Lookaside
Buffer) misses, by validating translation entries to be inserted
to the TLB. The required change is to allow an inner enclave
to access the memory range of its outer enclave, but not vice
versa.

To show how the nested enclave model can improve the
restrictions of the current monolithic one, we implemented
three case studies with an emulated nested enclave support
by modifying the SGX emulation framework. The first case
study uses nested enclave to isolate the 3rd party library
from the rest of the critical code in an application. We use
the OpenSSL library to show the effectiveness of isolation
between the inner and outer enclaves. The second case study
investigates how multiple inner enclaves sharing the same
outer enclave can improve privacy protection with machine
learning and database server applications. The last case study
shows how data sharing can be facilitated by the outer enclave
with multiple inner enclaves. The outer enclave becomes a
secure communication channel across inner enclaves.

This study is one of the first studies for efficiently separating
security levels within an enclave by hardware extension. The
main contributions of this paper are as follows:

• It proposes a new semantic of enclave model to pro-
vide multiple levels of security within an enclave. The
nested enclave model opens a new semantic expansion
of hardware-based trusted execution.

• It shows the required hardware and software extensions
for the nested enclave are minimal and feasible to add in
the current SGX.

!""#$$%&#'()$$)*+

,*+-'*.%/'0+$)-)*+

1+".02# 1+".02#

4+-'5$-#6%!77.)"0-)*+

(a) SGX Enclave

3++#'

1+".02#

3++#'

1+".02#

85-#'%1+".02#

4+-'5$-#6%!77.)"0-)*+

(b) Nested Enclave

Fig. 1. Overview of nested enclave (b) compared to SGX enclave (a)

• It investigates case studies proving the effectiveness of
the proposed nested enclave with a prototype design by
extending the enclave emulation framework.

The rest of the paper is organized as follows. Section II
presents the background of Intel SGX. Section III discusses
the motivation for hierarchical isolation within an enclave and
threat model of this work. Section IV describes the design
of nested enclave and its required hardware and software
changes. Section V shows the methodology of this work, and
Section VI explores the case scenarios with nested enclave.
Section VII discusses the security guarantee of nested enclave,
and Section VIII discusses potential extensions of nested
enclave. Section IX presents the prior work, and Section X
concludes the paper.

II. BACKGROUND

A. Intel Software Guard Extensions (SGX)

Intel SGX provides a trusted execution environment called
enclave protected from untrusted system software. SGX iso-
lates the execution of an enclave through data protection and
access restriction. The protected memory pages for enclaves
are allocated in Enclave Page Cache (EPC) which is mapped
to a reserved protected memory region, called Processor
Reserved Memory (PRM). EPC pages are encrypted and
integrity-protected by a hardware encryption engine in SGX-
enabled processors [22]. The owner enclave code can access its
EPC pages mapped to its virtual address space. However, non-
enclave or non-owner enclave codes cannot access the EPC
pages of another enclave, as a hardware-based access control
technique blocks any unauthorized accesses during address
translation. In addition, with attestation support, a user can
verify the identity and measured digest of enclave itself and
platform setting where the enclave runs.

The meta-data of an enclave is stored in its SGX Enclave
Control Structures (SECS) allocated in EPC pages. SECS
contains the required meta-data defining an enclave. Therefore,
the physical address of an SECS structure is unique for each
enclave. An enclave can have multiple threads, and the context
of each thread is stored in Thread Control Structure (TCS)
which is also allocated in EPC pages.



B. Memory Protection for Enclave

EPC pages are protected both from physical attacks on the
DRAM and from software attacks by user processes or the
kernel running on the processor. The resilience to physical
attacks is supported by the hardware memory encryption
engine, which encrypts the reserved memory at cacheline gran-
ularity. EPC memory pages exist only as encrypted text in the
physical DRAM. In addition, a variant of hash tree validates
the integrity of data brought from the physical DRAM [22],
[39], [46]. With the two mechanisms, the confidentiality and
integrity of EPC pages are protected.

Memory access control from the software running in the
processor is enforced by the address translation mechanism
for virtual memory support. Two conditions for the security
of an EPC page must be satisfied:

1) An EPC page must be accessed only by the owner
enclave. Any access attempt by non-enclave execution
or non-owner enclave must be blocked.

2) An EPC page must be mapped to the virtual address of
the enclave, which is fixed at the enclave initialization1.
It follows the virtual memory layout specified by the
enclave author.

A key internal data structure for the protection of EPC pages
is Enclave Page Cache Map (EPCM). For each EPC page,
the corresponding entry in EPCM must contain two fields,
the owner enclave ID and the virtual address mapped for the
EPC page. EPCM indexed by physical addresses contains the
reverse mapping from the physical page address to the virtual
page address for all EPC pages.

The actual access validation is done during the address
translation. For efficient validation, the access checking is
conducted for each TLB (Translation Lookaside Buffer) miss.
During the handling of a TLB miss, the validity of the access
is checked. Once it is verified, the page translation entry
is inserted into TLB. With the TLB-based validation, a key
invariant for access control is that TLB must always contain
only valid translations. To satisfy the invariant, TLB must be
flushed during the transition between enclave and non-enclave
environments.

A restriction on the virtual address layout for an enclave
for efficient validation is that the virtual address range of
an enclave must be contiguous, represented by the start-
ing virtual address and size, called Enclave Linear Address
Range (ELRANGE). The virtual address range (ELRANGE)
is fixed during the initialization of an enclave, and cannot
be changed. With the contiguous virtual address range (EL-
RANGE), whether an address is within the ELRANGE is
quickly checked by a simple hardware component.

Figure 2 shows the validation steps during a TLB miss
handling, which checks the validity of the corresponding page
table entry. 1) It checks whether the core is running in enclave
mode. 2) In enclave mode, it validates the enclave ID of the
running enclave is equal to the one in the EPCM entry. 3)
After verifying the enclave ID, it checks whether the virtual

1SGX2 [33] allows dynamic EPC allocation to an existing enclave.

!"#$%&'()**#+,,(-.&/+

01)2()**#+,,(-.&/+

345

641)786

69:2

;<3
2<--

!&'"*&$"=>

:?+/@A

69:

67:4)!6-6:-

!)

!!! 6>/'&B+(<0

"

-6:-

-8C

Fig. 2. TLB miss handling procedure of EPC pages. For a TLB miss, the
translation from the page table is validated by the hardware component.

address of the EPC page matches the virtual address stored in
the EPCM entry.

C. Attestation

SGX enables an enclave to verify other enclaves in the
same physical machine. When the code and data are loaded in
an enclave, the enclave generates a digest by keyed-hashing
the initial state of the enclave, including the initial meta-data,
virtual address layout, code, and data contents, etc. In addition,
the enclave certificate contains the expected digest of the
enclave signed by the enclave author. During the initialization
of an enclave, the author’s signature is verified, and the hash
of the signature is added to the enclave SECS to be used
for later attestation (MRSIGNER). The expected digest by the
author in the enclave certificate is also compared to the actual
measurement of the enclave during the initialization. Once an
enclave is properly initialized, the measurement of the enclave
and the certificate hash are used for validating the enclave
during local attestation procedures.

III. MOTIVATION AND THREAT MODEL

A. Motivation

Modern applications are complex to make them secure.
Applications rely on the existing untrusted, third-party libraries
to reduce development complexity and handle a various range
of data from the privacy-sensitive to the ordinary one. To
secure such applications, a strong isolation mechanism is the
cornerstone. With the isolation mechanism, developers com-
partmentalize a large application into smaller pieces and map
them in different protection domains, confining unintended
damages by malicious or misbehaving pieces. SGX provides
an attractive way; developers deploy the compartmentalized
pieces to each enclave, and the enclave provides the hardware-
protected isolated environment. However, despite the strong
isolation, the current SGX model may not provide sufficient
mechanisms to meet applications’ requirements for isolation.
Need for confinement: Intel SGX provides a monolithic
protection model within an enclave, meaning the entire codes
in an enclave has the same protection domain. However,
application developers often need isolation between the codes
written by themselves and third-party libraries [41]. In the
current enclave application development, the in-enclave third-
party libraries linked with user enclave codes run in the same
enclave, which is vulnerable to data leak [19] or remote
code execution attack [4]. One example is the HeartBleed



attack [19] in the OpenSSL library, a collection of crypto-
graphic functions and secure communication protocols widely
used in practice. Due to a small bug in processing heartbeat
messages to maintain OpenSSL sessions, attackers could leak
information of arbitrary freed buffers from the applications
linking the OpenSSL library.
Need for multi-level protection: Often information has dif-
ferent security levels as represented by multi-level security
(MLS) [12]. According to the sensitivity, data should be
labeled with different levels of security and protected by
the access control mechanism supporting multiple security
levels. Likewise, for strong isolation, application code should
be separated by protection domains, and the code and data
associated with the higher level of security must be protected
from the code with the lower level of security permission,
reflecting the hierarchical structure of MLS.

Unfortunately, the current monolithic enclave needs non-
trivial efforts and costs to meet such applications’ require-
ments. One possible way to isolate the third party libraries
is separating the application code or third-party libraries
to multiple peer enclaves. Ryoan [24] takes the approach;
By Combining Google’s NaCl [56] with Intel SGX, Ryoan
separates modules with mutually distrusting domains. While
effective, this approach adds the substantial amount of NaCL
code to the trust computing base and converts each library call
to expensive inter-enclave IPCs.

Nested enclave addresses the above limitations by extending
the coarse-grained monolithic SGX design to the fine-grained
hierarchical one.

B. Threat Model

The trusted computing base (TCB) of SGX enclave is i)
an SGX-enabled processor chip, ii) trusted code written by
the developer and the statically linked libraries running in
enclaves. Nested enclave shares the basic attack model of
the monolithic enclave: the attacker has authority to i) access
hardware outside the CPU package, ii) fully control system
software and iii) exploit the vulnerability (if exist) of third-
party libraries used in the target application.

Unlike the dichotomy of trustworthiness in the SGX enclave
(trusted or untrusted), nested enclave is based on the MLS
model and thus the security is represented in multiple levels,
such as top secret, secret, and untrusted. Extending the threat
model for MLS, nested enclave guarantees the integrity and
confidentiality of code and data running in inner enclaves (top
secret) from outer enclaves (secret) and the untrusted world
(untrusted). Likewise, outer enclaves are protected from the
untrusted world.

As nested enclave is based on SGX, it shares the same vul-
nerability for side-channel attacks as the monolithic enclave.
Nested enclave is vulnerable to side-channel attacks such as
foreshadow attacks [15] and cache side-channel attacks [17],
[18], [43]. In addition, we do not consider availability attacks
such as denial of service.

IV. DESIGN

A. Overview

Nested enclave provides fine-grained, hierarchical isolated
domains for trusted execution environments, supporting multi-
level security semantics within an application. An enclave
(outer enclave) can contain more than one enclave (inner
enclave). An inner enclave can have full access permission
to the execution environments and memory region of the
outer enclave, while the inner enclave is completely isolated
from the outer enclave. The asymmetric permission between
the inner and outer enclaves inspired by multi-level security
model [12], allows a security hierarchy inside a trusted ex-
ecution environment. Peer inner enclaves sharing the same
outer enclave are isolated from each other. The inner enclaves
can communicate through the outer enclave. Such support for
multiple inner enclaves within an outer enclave can provide
fine-grained privilege isolation within an enclave.

The concept of nested enclave can be extended to any
levels of nesting. As will be discussed in this section, the
extra hardware support for nested enclave is to extend the
access validation during TLB misses, and thus, arbitrary levels
of nesting only increase the validation time without extra
hardware complexity. However, for practical purposes, two
levels of enclaves can represent many real-world problems,
and thus in the rest of the paper, we use two levels (inner and
outer) of enclaves. An inner enclave can be associated only
with a single outer enclave in the same process, while an outer
enclave can have multiple inner enclaves. Although the nested
enclave design can be extended to allow an inner enclave to be
associated with multiple outer enclaves, as will be discussed in
§ VIII, this paper will be focused on the single-outer per inner
enclave model. Functions for crossing the boundary of inner
and outer enclaves are pre-defined by the enclave author. By
adding new instructions for transitioning between inner and
outer enclaves, switching between inner and outer enclaves
can be done directly between them, and it does not require to
jump to the non-enclave context and to jump back to an inner
or outer enclave.

Nested enclave can be used in several different ways. First,
the nested structure can be used to separate the privilege be-
tween the privacy-sensitive execution from that with untrusted
third-party libraries. The third-party library can only observe
the sanitized data by the privacy-sensitive code running in
an inner enclave. Second, when multiple users are served by
the application, the sensitive processing for each user can be
isolated within an inner enclave, as multiple separate enclaves
share an outer enclave.

Finally, the communication of peer enclaves can be facili-
tated by the outer enclave, as the channel via the outer enclave
is protected from the outside non-enclave contexts. In the cur-
rent monolithic model, multiple enclaves can communicate via
untrusted memory, and thus all the communicated data must
be encrypted and integrity-protected by the enclave software.
Such communication overheads can be reduced significantly
by using the outer enclave as the communication channel.



!""#$%&"'()*#%+

,-.#$%&"'()*#

/&0/

!""#$%&"'()*#%1

/&0/

234#5.5

!""#$&!2 +

!""#$&!2 1%

&"'()*#%!2

6

6

,-.#$&!2

234#5.5

&"'()*#%!2

/&0/

6

,-.#$&!2

234#5.5

&"'()*#%!2

Fig. 3. Modified SECS structures for nested enclave

TABLE I
INSTRUCTIONS FOR SOFTWARE INTERFACE OF NESTED ENCLAVE

Instructions Privilege Description

NEENTER user make transition to inner enclave
from outer enclave

NEEXIT user make transition to outer enclave
from inner enclave

NASSO kernel make inner-outer association

NEREPORT user get REPORT with inner-outer
relations of the enclave

The memory reserved for the outer enclave is protected by
the hardware memory encryption engine (MEE), and thus the
fine-grained data transfers are efficient with the cacheline-unit
encryption by MEE. Furthermore, if the size is small, the data
transfers can be done via the large on-chip last-level cache. In
such cases, the encryption by MEE is not invoked as the data
exist in plaintext within the CPU boundary.

B. Meta-Data and New Instructions

Enclave Meta-data: Changes in the meta-data for supporting
nested enclaves are limited to minor extra fields in the meta-
data of each enclave, called SECS (SGX Enclave Control
Structures) as described in Figure 3. The SECS of an inner
enclave must have a pointer (OuterEID) to the SECS of
its outer enclave if it exists. Otherwise, OuterEID is set
to zero. The SECS of an outer enclave contains a list of
pointers (InnerEIDs) for all SECSes of its inner enclaves. Once
the initialization of each enclave is finalized by EINIT, an
extra instruction is executed to associate a pair of inner and
outer enclaves, which sets the corresponding OuterEID and
InnerEIDs fields of their SECSes.
New Instructions: Table I shows extra instructions added to
support nested enclave. NASSO associates a pair of inner and
outer enclaves. When NASSO instruction is executed with a
pair of enclaves, it reads the digest value (MRENCLAVE)
and signature (MRSIGNER) from the SECS of each enclave.
Those values of an outer enclave are validated against the

!
"
#
!

! $%&'()*+,-(./)*/)'0,+)/)-(*1*2-.(.'3.4'(.5-

!
"
#
!

2--)+605 7,()+605

2--)+60.8-)&605 7,()+60.8-)&605
" 95'&*.--)+ 1*
5,()+*)-:3';)*

/)'0,+)/)-(*

# !.8-*<=*
)>%):()&

/)'0,+)/)-( $ ">:?'-8)*

/)'0,+)/)-(

@
A
B

"
@
#

"
@
#

% C005:.'()

Fig. 4. Initialization steps for nested enclave

expected values by the inner enclave, which are included in
the inner enclave file, and vice versa. Once the validation
successes, the SECSes of the paired enclaves are updated,
by setting the OuterEID field of the inner enclave and the
InnerEIDs field of the outer enclave.
NEENTER is similar to EENTER in SGX, but it enters an

inner enclave from its outer enclave. The original EENTER and
EEXIT are used to transit from inner or outer enclaves directly
to non-enclave mode. NEENTER jumps to the destination
in the inner enclave specified in the input Thread Control
Structure (TCS). Before the transition is performed, it checks
whether the destination enclave exists and its TCS is currently
idle. In addition, the core must be in the enclave mode of the
outer enclave, and the destination TCS must belong to the
inner enclave of the current enclave. If valid, it flushes the
TLB, sets the TCS busy, and transfers control to the destination
enclave’s entry point. Any invalid invocation results in a
general protection fault (GP).
NEEXIT exits an inner enclave to its outer enclave. It clears

all the information of the inner enclave by flushing the TLB
and setting 0s for all registers. In addition, it checks and
updates TCS states as it does for NEENTER. Asynchronous
enclave exits (AEX) from either inner or outer enclaves
can occur for hardware exceptions. Unlike NEEXIT, in such
cases, the processor exits the enclave mode and jumps to the
exception handler. Figure 5 shows the transition among the
protection boundaries. The semantics of EENTER (entering
enclaves from untrusted code) and EEXIT (exiting to untrusted
code) remains the same with the original SGX. To allow
transition between outer and inner enclaves, NEENTER and
NEEXIT are used.
NEREPORT is an instruction to report the measurement of

current enclaves and their connectivity for attestations. The
difference between NEREPORT from EREPORT of SGX is
that NEREPORT includes the association relationship of two
target enclaves.

C. Initialization

Creating nested enclaves consists of two steps: 1) Each
enclave is created with the current SGX enclave creation
procedure. 2) After the creations of all enclaves are finished,
the nested relationship is specified by NASSO. Each enclave
is created by ECREATE, and its memory is added by EADD.



Untrusted

App

Outer

Enclave

Inner

Enclave

EENTER

EEXIT

EEXIT

EENTER NEENTER

NEEXIT

Fig. 5. Nested enclave state transition

During the addition of memory pages, the virtual memory
layout must follow the specified layout by the author of the
enclave. ECREATE and EADD measure the initial state and
virtual memory layout, accumulating the hashed measurement.
For each EADD, EEXTEND measures the content of the page.
The enclave creation is finalized by EINIT.

The original SGX loads the enclave binary from a signed
enclave file. To support nested enclave, the signed file of an
inner or outer enclave must contain the expected measurement
of the expected inner or outer enclave. During the execution
of NASSO, the signed digest is compared to the one in the
associated enclave. An inner enclave can be added dynamically
to an outer enclave. However, the outer enclave file must
contain the expected inner enclave signature for validation.
Figure 4 presents the initialization steps for nested enclave.
Building enclave binary: To create a binary for an enclave,
the enclave author defines Enclave Definition Language (EDL)
files. Nested enclave extends the syntax and semantics of the
original Intel SGX EDL. EDL files must include interface
functions for transitions of (inner enclave, untrusted code),
(outer enclave, untrusted code), and (inner enclave and outer
enclave). Along with the EDL files, the programmer should
supply source codes for untrusted context, inner, and outer
enclaves. The signed files are created for inner and outer
enclaves, which contain the virtual memory layout and the
digest of the compiled binary.
Ecall (transition function to enclave mode) and ocall

(transition functions to non-enclave mode) are supported in
the same manner as the original Intel SGX. In addition,
Nested enclave adds two new function interfaces: n_ecall
and n_ocall. n_ecall allows an outer enclave to call a
registered function in an inner enclave. n_ocall is for an
inner enclave to call a function in the outer enclave. With the
n_ocall, an application in an inner enclave can call library
functions isolated in the outer enclave with the same procedure
call syntax.

D. Access Validation

Nested enclave requires only minor changes in the current
hardware architecture supporting SGX. The major required
change is to extend the memory access validation logic to
consider the inner and outer enclave relationship. As discussed
in (§ II-B), the access validation occurs during TLB miss
handling. Once a validated entry is inserted into the TLB, no
more validation is done until it is flushed. Note that the page
table itself is not protected by SGX and thus the validation is
required for every TLB miss.

!"#$%&'()*++,)

-.)!,/0

123&45%.6

3.&('73)&8930

:1;

!3<=8<>)*99<3$$)?<'.$('5%8.

@A

B*)%.)1C,*@D10

@A

-.$3<5)

.3E)3.5<#)

%.)?CF)EG)H+

! B*)%.)%5$)A453<I$)

1C,*@D10

:1;

!'63)J'4(5

:1;
!"#$%&'()*++,)

-.)1!K0

:1;

!'63)J'4(5
-.$3<5)

.3E)3.5<#)

%.)?CF

@A
:1;

1!K/

3.5<#)1-+)3L4'($)

&4<<3.5)1-+0

:1;

:1;

1!K/)

3.5<#)*++,)3L4'($)

?<'.$('539)B*0

@A

@A

:1;

-$ -..3<)1.&('730)

-$ -..3<)1.&('730)

!'63)J'4(5

:1;

!"#$%&'()*++,

-.)!,/0

*M8<5

:1;

@A

-.$3<5)

.3E)3.5<#)

%.)?CF

:1;

@A

@A

:1;

@A
@A

!'63)J'4(5

@A

@A

1!K/)1-+)

3L4'($)A453<)1-+0

1!K/)

3.5<#)*++,)3L4'($)

?<'.$('539)B*0

"

$

%

#

!"#

!$#

!%#

Fig. 6. Access control flows for nested enclave. Modifications on the original
SGX access control are in shaded steps

In addition to the memory access validation by the current
SGX architecture, the additional validation for nested enclaves
is to allow an inner enclave to access the memory region
of the outer enclave. During the translation entry validation,
if access is valid by the current SGX step, the validation
succeeds. For a validation failure, if the current enclave is
an inner enclave, an additional step is added to check whether
the access is to the outer enclave memory associated with the
current inner enclave. For accesses from an inner enclave to
its outer enclave, the validation step must succeed.

Figure 6 describes the access control logic with nested
enclave. In the figure, the shaded parts represent the extra
validation steps by nested enclave. For a TLB miss, the page
table is accessed to retrieve the translation entry. First, if the
current execution is not in enclave mode (A), the physical page
address is compared to the protected memory region (PRM
in the figure). If it is not mapped to the protected memory,
the entry is inserted into TLBs, which represent normal non-
enclave accesses. If the physical address is pointing to the
protected memory region, the validation is aborted.

Second, if the current execution is in enclave mode, and
the physical page address is in PRM (B), the corresponding
EPCM entry is checked. Unlike SGX, if the enclave ID (EID)
in the EPCM entry does not match, an additional step is taken.
As shown in the step (3), (4), and (5), if the current enclave is



an inner enclave, the validation checks the EPCM enclave ID
matches its outer enclave ID. Additionally, the virtual address
is validated against the stored virtual address in the EPCM
entry.

Finally, if the current execution is in enclave mode, and the
physical page address is not in PRM (C), the validation step
checks whether the virtual page address is within the range of
the virtual address of the current enclave (ELRANGE). If yes,
it causes a page fault, since the virtual page within the enclave
does not have a matching EPC page. Such exception can occur
for swapped-out EPC pages. If the virtual page address is
not in the virtual address range of the current enclave, extra
steps are necessary for nested enclaves. As shown by the step
(1) and (2) in the figure, it checks whether the virtual page
address is within the ELRANGE of the outer enclave, if any.
If yes, an exception occurs, since the outer enclave virtual
page was currently evicted. If the virtual page address belongs
to neither of the virtual address ranges of the current and
its outer enclave, it is a translation to an unsecure memory
page accessed from an enclave. Its executable permission is
disabled.

For supporting nested enclaves, the information in EPCM
(Enclave Page Cache Map) does not change. Each EPC page
belongs only to a single enclave at a time. For an EPC page of
an outer enclave, its virtual address follows the specification
of the outer enclave, and the virtual address does not change
until the outer enclave is removed.

E. Other Issues

EPC page eviction: SGX provides a safe mechanism to evict
an EPC page to unsecure memory and reload to an EPC page
later. To overcome the limited EPC capacity, such an EPC
eviction mechanism allows the protected memory of an en-
clave to be extended beyond PRM (Processor Reserved Mem-
ory). However, the support for such page eviction requires
careful coordination to prevent potential attacks exploiting
the address translation mechanism. Page eviction changes the
mapping between the virtual and physical addresses for an
EPC page. Since the access validation is done only during
TLB misses, TLB entries must be flushed if any changes in the
virtual-to-physical mapping of EPC pages occur. In the current
SGX, such mapping changes incur inter-processor interrupts
to cause asynchronous enclave exits for all the active threads
of the enclave, if the threads are scheduled and running in
processors. While exiting from enclave mode by interrupts,
TLBs are flushed.

An extra consideration required for nested enclave is for the
eviction of EPC pages in an outer enclave. When an EPC page
of the outer enclave is evicted, the translation entry for the
page can exist not only in the processors running the threads
of the outer enclave, but also the processors running its inner
enclaves. Therefore, the thread tracking mechanism for han-
dling EPC eviction must be extended to cause asynchronous
enclave exits in the inner enclave threads. To support this
extended tracking, the SECS of the outer enclave includes the
list of the SECSes of the inner enclaves. A simplified, but

potentially more costly solution is to send inter-processors to
all the cores in the system. It can potentially cause exceptions
even for unrelated cores, but the tracking becomes simpler.
Remote attestation: The current local and remote attesta-
tion only reports the measurement of an individual enclave.
However, to support nested enclave, the attestation must be
able to report the relationship between enclaves. To provide
such a report attesting the relation attributes, the hardware
support returns the measurements of all associated enclaves to
attest nested enclave. An attestation to an outer enclave must
report the measurements of all inner enclaves sharing the outer
enclave, in addition to the measurement of the outer enclave.
To provides the functionalities, nested enclave supports the
NEREPORT instruction. Once NEREPORT is triggered by a
challenger, it checks the association of enclaves and gets
their measurements. This information will be sent back to the
challenger.

F. Summary of Hardware Changes

The majority of SGX implementation is known to be
based on the microcode implementation [18]. Therefore, the
addition of new instructions, the extra meta-data fields, and
the extra validation step for access control are all added to the
microcode implementation, without any significant change in
the hardware logic of the processor.

The memory data encryption is done by the hardware
memory encryption engine (MEE). However, such memory
encryption is independent of the access validation for enclave
memory, since the memory encryption is to protect the DRAM
resident data from physical attacks. Therefore, MEE uses a
shared key for encrypting the EPC pages for all enclaves. The
support for nested enclaves does not add any new complexity
to the memory encryption engine.

V. METHODOLOGY

The testbed system consists of Intel i7-7700 processor
with 64 GB DRAM. Nested enclave is implemented in the
SGX Linux driver with Linux SDK version 1.9 running on
Ubuntu 16.04 and Linux kernel 4.13.0. The SDK provides
both hardware mode and simulation mode compilation. Nested
enclave is built in the simulation mode since it needs to extend
the hardware features.

In the emulation framework, we add new attributes (as
shown in Figure 3) to SECS, which use reserved fields in
SECS implemented in the SDK. One limitation of the simula-
tion mode is that it does not emulate the hardware operations
of memory access validation (§ IV-D) and MEE. The nested
enclave design does not affect the operations of MEE, but the
TLB miss handling time can be slightly increased when an
inner enclave attempts to access the EPC region of the outer
enclave. For fair comparison, we measure the performance of
both of the baseline and nested enclave with the emulation-
based evaluation. For the evaluation requiring the overheads of
MEE operations as in (§ VI-C), the hardware mode execution
is used in the testbed system.



TABLE II
AVERAGE LATENCY OF THE ENCLAVE TRANSITION FOR REAL HARDWARE,

EMULATED SGX, AND EMULATED NESTED ENCLAVE.

Mode ecall ocall

HW SGX ecall/ocall 3.45us 3.13us
Emulated SGX ecall/ocall 1.25us 1.14us
Emulated nested ecall/ocall (n ecall/n ocall) 1.11us 1.06us

TABLE III
THE NUMBERS OF MODIFIED LINES OF CODE

Name Modification Modified LOC Original LOC

echo server
C/C++ code 34 883

EDL 10 28
SGX-OpenSSL 0 507k

SQLite server
C/C++ code 19 501

EDL 5 30
SGX-SQlite 0 127k

svm-predict
C/C++ code 27 208

EDL 10 49
SGX-LibSVM 0 152k

svm-train
C/C++ code 24 333

EDL 10 41
SGX-LibSVM 0 152k

Overhead emulation for transitions: For inner and outer
transitions, we add new instructions to SDK: NEENTER (enter
to inner enclave) and NEEXIT (exit from inner enclave).
We extend the ENCLU instruction to perform NEENTER
and NEEXIT. We carefully emulate the transition instructions
to satisfy the security requirements. When a transition is
performed, nested enclave saves the current context including
segment registers, registers for ABIs (i.e., parameter passing),
stack pointer, and instruction pointer to a reserved stack frame
of the entering inner enclave. To emulate the transition over-
head, for every transition, nested enclave performs flushing
TLBs, zeroing registers and flags, and saving and restoring
contexts. To invalidate TLB entries, nested enclave invokes
the SGX Linux driver through ioctl to perform TLB flushes
because the TLB flush operation requires the kernel privilege
in x86.

Table II presents the average execution time of enclave
transition calls (ecall/ocall and n_ecall/n_ocall).
We measured the cost with a microbenchmark performing
transition calls for 1 million times. In the table, the emulated
nested ecalls/ocalls show similar execution times to the emu-
lated SGX ecalls/ocalls. However, the emulated transitions in
SGX and nested enclave tend to underestimate the transition
costs, compared to the real hardware measurement. Since
nested enclave can run only with the emulated framework,
the evaluations in this paper are measured with the emulated
transition calls for both monolithic enclave and nested enclave
for fair comparison.
Porting Applications: Table III shows the number of modi-
fied lines of codes needed for porting applications originally
designed for the conventional enclave to nested enclave.
Modifications for C/C++ are for initialization and substitution

TABLE IV
THE TYPE OF THREE CASE STUDIES AND DATA CLASSIFICATION

ACCORDING TO MLS MODEL. INNER ENCLAVES CAN READ TOP SECRET
AND SECRET. THE OUTER ENCLAVE CAN READ SECRET ONLY.

Type Top secret (inner) Secret (outer)

Confinement (§VI-A) Data for main app. Data for OpenSSL
Data protection (§VI-B) Private data Data allowed for ML
Fast Comm. (§VI-C) Data not to expose Data to communicate

of library calls to ecalls/ocalls. Nested enclave additionally
requires a new EDL to define interfaces among enclaves. We
do not modify the SGX-enabled libraries used in the evaluation
(OpenSSL, SQLite, LibSVM).

VI. CASE STUDIES

Nested enclave provides the hierarchical model which al-
lows applying computations according to the different security
levels of data, inspired by the multi-level security model [12],
[13]. In the hierarchical model, the data that need the highest
level of confidentiality and integrity are performed in inner
enclaves, and other data that still need to be protected from the
untrusted world are processed in the outer enclave. To demon-
strate how nested enclave’s model can overcome the limitation
of the current monolithic design, this section provides three
case studies according to the multi-level security model. Each
study provides different ways to map an application structure
into inner and outer enclaves. Table IV shows the three case
studies and data labeling according to the multi-level security
model.

A. Confinement

It is common in cloud services that servers are composed
of the core software component developed and tested by the
service provider and third-party components such as utility or
communication libraries linked with the core component. As
reported in the HeartBleed bug (CVE-2014-0160), a vulnera-
bility in the untrusted library running in the same address space
could reveal the memory contents of the main application. This
case study demonstrates how to map the server components
to inner and outer enclaves to confine untrusted third-party
libraries.

For secure communication, the OpenSSL library provides
fully-featured implementation and APIs for the Transport
Layer Security (TLS) and Secure Sockets Layer (SSL) proto-
cols. OpenSSL includes the SSL standard heartbeat option to
verify that the communicating computer is online. Researchers
found that, with cleverly crafted heartbeat messages, it is pos-
sible to expose information of the communicating application.
A crafted heartbeat message can leak up to 4KB from the
server-side heap memory, which is freed but might contain
security-critical contents.

We tested the Heartbleed attack in SGX. To launch an
application in enclave, Intel provides SDK, which includes
SGX-OpenSSL, an OpenSSL library ported for SGX applica-
tions [28]. SGX-OpenSSL contains modified OpenSSL codes
and necessary wrapper functions to be used for SGX enabled



128 256 512 1024 2048 4096 8192 16384
Chunk Size (Byte)

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. T
hr

ou
gh

pu
t

104

106

108

Nu
m

be
r o

f 
Ec

al
ls/

Oc
al

ls

Monolithic Nested

Fig. 7. Throughput of echo server with varying chunk sizes. Throughputs
(bars) are normalized to those with the baseline monolithic model.

applications. For this experiment, we slightly modify the SGX-
OpenSSL sources to make it behave like the vulnerable version
of OpenSSL-1.0.1e. With the current monolithic enclave,
SGX-OpenSSL and server code share the enclave, vulnerable
to the HeartBleed attack. The secret data in a freed buffer of
the server can be exposed as the heartbeat payload. We could
reproduce the HeartBleed attack on the application running
on the real SGX hardware and obtain secret data of the
applications with the HeartBleed bug.

Nested enclave prevents the attack by segregating the un-
trusted libraries from the critical application domain. Specif-
ically, we can set the SGX-OpenSSL library runs on the
outer enclave, while the security-sensitive server code runs
on the inner enclave. By the isolation guaranteed between the
outer enclave and inner enclave, the flawed SGX-OpenSSL
code cannot access data in the inner enclave application. The
HeartBleed attack cannot leak any secrets from the inner
enclave with the same attack code.

By confining the SGX-OpenSSL library to the outer en-
clave, function calls between the main application (inner) and
SGX-OpenSSL turn to calls crossing the protection boundary,
incurring extra TLB flushes and enclave context switches. To
measure the performance overhead, we built a simple echo
server, which communicates via SSL. We assume the key
is distributed to the echo server and client. The encryption
and decryption of messages are done in the inner enclave.
The server can protect data from the outer enclave but still
reuse rich security features of the standard SSL such as the
secure handshake protocol to prevent the version rollback or
the cipher suite rollback attack. For the comparison, we make
the echo server reside in the same enclave with the SGX-
OpenSSL library and use it as the baseline.

Figure 7 shows both the throughput of the echo server
normalized to the baseline and the number of ecalls/ocalls with
nested enclave. The client and server exchange messages with
various chunk sizes from 128B to 16KB. The bars show the
normalized performance, and the lines show the numbers of
ecalls and ocalls for the baseline (Monolithic) and nested
enclave. For nested enclave, the number of ecalls and ocalls
includes n_ocall and n_ecall used between the inner and
outer enclave. In the figure, the performance of nested enclave
is only slightly lower than that of the baseline with about
2%∼6% performance degradation. The degradation is caused
by additional n_ocall and n_ecall by nested enclave. The

Fig. 8. LibSVM in the outer enclave. Each inner enclave has a separate key.

TABLE V
DATASETS USED FOR EVALUATING LIBSVM. ’-’ MEANS THERE IS ONLY

TRAINING DATA FOR THAT DATASET. IN THAT CASE, TRAINING SET IS
REUSED AS TEST SET.

name class training size testing size feature

cod-rna [50] 2 59,535 - 8
colon-cancer [7] 2 62 - 2,000
dna [3] 3 2,000 1,186 180
phishing [37] 2 11,055 - 68
protein [52] 3 17,766 6,621 357

degradation is slightly higher in small chunk sizes because the
number of additional calls increases as chunk size decreases.

B. Fine-grained Data Protection

To show the hierarchical mapping of computation and data,
we built a simple system for machine learning as a service [38]
using LibSVM [16]. In the machine learning as service, as
shown in Figure 8, the service provider opens APIs for trains
and inferences to use their infrastructure. Clients feed data
to the service provider and receive the computation results.
While the clients leverage the service provider’s infrastructure
for machine learning computations, the clients do not want to
expose their private data to the service provider. To protect
data privacy, the service provider assigns inner enclaves to
run a client’s code, and the client can install small functions to
perform the anonymization of data in the enclaves. In Figure 8,
the inner enclaves decrypt data (the highest secret data) and
filter private data not to expose them to the outer enclave. After
that, the inner enclave launches LibSVM with the privacy-
filtered data. The client can decide how to associate users with
the inner enclaves, possibly assigning each inner enclave for
a different user.

We report nested enclave performance of the LibSVM case
study normalized to the performance of the monolithic design.
Table V shows the dataset, some of which do not have testing
data size. For such datasets, we run the prediction (inference)
experiments with a fraction of their training dataset. Figure 9
shows the execution times for prediction and training, nor-
malized to those of the monolithic enclave case which runs
all operations in an enclave. Across all the datasets, nested
enclave shows a similar performance to the monolithic enclave
because a small number of extra transitions between the inner



cod-rna colon-cancer dna phishing protein0.8

0.9

1.0

1.1
No

rm
. E

xe
cu

tio
n 

Ti
m

e
Prediction Training

Fig. 9. Normalized execution time for training and prediction. Each execution
time is normalized to that with the baseline run.

TABLE VI
SQLITE THROUGHPUT WITH YCSB (UNIFORM RANDOM REQUEST

DISTRIBUTION)

Workload Normalized Throughput

100% INSERT 0.99
50% SELECT & 50% UPDATE 0.99
95% SELECT & 5% UPDATE 0.98
100% SELECT 0.98

and outer enclaves do not add significant overheads in the
LibSVM computations.

In addition, we ported SQLite to nested enclave and the
baseline monolithic enclave. Similar to the libSVM scenario, a
shared SQLite service runs in an outer enclave. A client sends
queries to an inner enclave, the inner enclave parses the queries
and encrypts data, and the inner enclave sends query requests
to the SQLite service via ocall. Table VI shows normalized
throughput for 10000 queries. Considering the entire query
process time, the portion of additional data encryption time
in inner enclaves is small, incurring less than 2% overheads
compared to the monolithic enclave.

C. Library Sharing and Fast Communication

This case study includes two useful scenarios leveraging the
shared outer enclaves: library sharing and fast data communi-
cation.
Library sharing: In nested enclave, by locating shared codes
in an outer enclave, application modules running in inner
enclaves can share the outer enclave’s code, avoiding unnec-
essary duplication of codes in enclaves. Such library sharing
can reduce the memory footprint of applications and enable
faster application launches. The shared library can reduce
the memory footprint of inner enclaves, which are otherwise
inflated by the duplicated static libraries, relieving memory
pressure on the size-restricted SGX memory management. In
addition, the binary footprint is one of the important factors for
enclave launch performance because SGX verifies the entire
binary when loading.

Figure 10 shows the loading times of the original enclave
and nested enclave, and the total size of loaded enclaves in
memory. The system runs a simple server using the OpenSSL
library code (SSL) and application code (App), both of
which are protected by enclaves. The memory footprint of
the OpenSSL code is about 4MB, and that of the application

500 SSL
500 App

500
SSL+App

500 SSL
500 App

250 SSL
500 App

125 SSL
500 App

50 SSL
500 App

10 SSL
500 App

# of Enclave

0
1
2
3
4
5
6
7

Ti
m

e 
(s

ec
)

Original SGX Nested SGX (with 500 Inner Enclaves)

0
500
1000
1500
2000
2500
3000
3500

To
ta

l S
ize

 o
f

 L
oa

de
d 

En
cla

ve
s(

M
B)

Total Size of Loaded Enclaves

Fig. 10. Time to load enclaves running OpenSSL server.

codes is about 1MB. With the baseline SGX, we show two
configurations. The first run launches separate 500 enclaves for
OpenSSL and 500 enclaves for application code. The second
run launches 500 enclaves which contain both of the library
and application codes. The second run represents the current
SGX application which put both of the codes in a single
enclave. The first run shows the potential overheads of creating
separate enclaves for SSL and App. Note that the memory
sizes of the two runs in the baseline are similar, since both of
SSL and App codes are loaded in the two runs.

On the other hand, the nested enclave setup always creates
500 inner enclaves for App, but the number of the outer SSL
enclaves is varied. For example, when 500 App inner enclaves
and 50 SSL outer enclaves are used, 10 inner enclaves share
an outer SSL enclave. For the experiment, after we launch
all the enclaves, we associate them at once. In the figure,
nested enclave significantly reduces the memory footprints and
shortens the loading times by sharing the OpenSSL library.
Compared to the baseline 500 SSL+App run, nested enclave
has shorter latencies except for the 500 SSL and 500 App
configuration, which has a similar latency to the 500 SSL
and 500 App run in the baseline. The results show that as
more sharing is allowed, the benefits of reduced memory
footprints increase. In addition, as the inner and outer are
securely separated in nested enclave, it improves the security
of the system as shown in § VI-A.
Secure and fast communication: Another useful scenario
of using the shared outer enclave is that applications can
leverage the shared memory of the outer enclave as a fast
communication channel. The application running in an inner
enclave assigns an outer enclave and loads trusted code (e.g.,
written by the same developer) for setting shared memory.
Because the outer enclave is protected from the untrusted
world, inner enclaves can build a fast message passing system
among inner enclaves without encrypting/decrypting data.
Still, the data is protected from the untrusted world and
unauthorized enclaves. On the other hand, for enclave-to-
enclave communication in the current SGX, the monolithic
model requires message passing across the untrusted world,
necessitating authenticated encryption mechanisms like AES-
GCM to guarantee the confidentiality and integrity of the
communicating data. In addition to higher throughput, the
outer enclave can improve the security of channels, as will
be discussed in § VII-B.

To show the potential performance advantage for com-



64B 256B 1KB 4KB 16KB 64KB
Chunk Size

0

2

4

6

8

Th
ro

ug
hp

ut
 (G

B/
s) MEE GCM8MB 32MB 64MB

Fig. 11. Performance comparison for the intra-enclave communication pro-
tected by MEE (MEE) vs the enclave-to-enclave one with Rijndael AES-GCM
encryption operation (GCM) supported by Intel(R) SGX SDK cryptography
library. Both are measured in hardware mode with the testbed system. The
legend on top indicates the total footprint of the communication.

TABLE VII
POSSIBLE ATTACKS FROM THE CASE STUDIES AND SECURITY ANALYSIS

Attack Type Protection

OpenSSL vulnerability leaks
main application’s memory (§VI-A) Isolation between enclaves

LibSVM and SQLite can read
privacy-sensitive data (§VI-B) Isolation between enclaves

OS eavesdrops and controls
inter-enclave communication (§VI-C)

Secure inter-enclave
communication

municating via the outer enclave over the software-based
encrypted channel through untrusted memory in the current
SGX, we compare the performance of intra-enclave com-
munication to communication through the untrusted memory.
Since the emulation-based run does not include the overheads
of the hardware memory protection by MEE, we use this
real hardware evaluation to show the potential benefit of the
channel via the outer enclave. In the experiments, two threads
in an enclave communicate directly by writing and reading
the memory within the enclave to mimic the channel through
the outer enclave. For the software-based encryption used by
the baseline enclave-to-enclave communication, we use AES-
GCM for the protected communication between monolithic
enclaves.

Figure 11 shows that the throughput of the intra-enclave
channel (MEE) is much higher than the conventional enclave-
to-enclave channel via AES-GCM (GCM) especially when the
footprint size is 8 MB, since memory encryption does not
occur when the data fit inside the on-chip caches. Leverag-
ing cache-sized messaging is a common technique for fast
IPC [10]. On the other hand, AES-GCM needs to perform
encryption even if the footprint size fits in the cache. For
small chunk sizes, nested enclave performs up to 29.9 times
better than the monolithic enclave. As chunk sizes increase,
the software-based encryption is also improved as the costs
are amortized by processing large chunks.

VII. SECURITY ANALYSIS

This section first discusses the invariants for the security of
nested enclave. Based on the security guarantees, it discusses
security analysis for nested enclave by describing possible
attack scenarios and how nested enclave can prevent the
attacks with the proposed hardware and programming model.

Table VII shows attack scenarios from the case studies and
corresponding security analysis discussions.

A. Protection of Enclaves with Security Invariants

For the secure protection of the enclave memory access,
several invariants must be satisfied as discussed in [18]. The
security invariants for nested enclave memory accesses are as
follows.

1) If a processor is not in enclave mode, its TLB must not
contain any entry with physical pages assigned to the
reserved protected memory region.

2) When a processor is in enclave mode, if the requested
virtual address is beyond the virtual address range (EL-
RANGE) of the enclave, it must not be translated to the
pages in the reserved protected memory region.

3) When a processor is in enclave mode, if the requested
virtual address is within the virtual address range (EL-
RANGE) of the enclave, the EPCM entry for the trans-
lated physical page contains the same enclave ID. In
addition, the virtual page address must match the virtual
address specified in the EPCM entry.

4) When a processor is in enclave mode, if the requested
virtual address is within the virtual address range (EL-
RANGE) of its outer enclave, the EPCM entry for the
translated physical page contains the outer enclave ID. In
addition, the virtual page address must match the virtual
address specified in the EPCM entry.

Invariant 1-3 are discussed by Costan and Devadas [18] for
the current SGX, but Invariant 4 is added for nested enclave.
Since nested enclave does not change the access validation
steps for the cases related to Invariant 1-3, they are satisfied.
As shown in § IV-D, Invariant 4 is satisfied, as the validation
checks whether the EPCM entry belongs to the outer enclave.

B. Isolation and Secure Channel

Isolation between enclaves (case study VI-A and VI-B):
Memory isolation between inner and outer enclaves are fun-
damental to enforce multi-level security model. In nested
enclave, inner and outer enclaves run in the same virtual
address space. However, even if the code running in an outer
enclave is compromised, it cannot read or modify the contexts
of inner enclaves. In addition, even if an inner enclave runs
a compromised code, the memory access control prevents
any direct accesses to other inner enclaves. OS may create
a fake EDL file describing interfaces between inner enclaves,
but nested enclave never allow any direct calls among inner
enclaves. With these security properties, a confined library in
outer enclave cannot access data in any inner enclave (§ VI-A)
and each inner enclave can keep its private data from being
used by the other inner enclaves or the outer enclave (§ VI-B).
Secure inter-enclave communication (case study VI-C):
Panoply [44] presents concrete attacks on inter-enclave com-
munication. The attacks leverage the fact that current inter-
enclave communications rely on the OS-controlled channel
such as IPC primitives. OS, as an active attacker, can drop
an IPC request selectively or create a fake or old message.



In the attack scenario, a target application, running in an
enclave, asks the verification of an SSL certificate to a trusted
certificate manager in another enclave. Using the OpenSSL
standard interfaces, the target application registers a callback
from the trusted certificate manager with an initialization call,
and the callback function does the certificate check within an
enclave. The communications are made via an IPC channel
provided by the untrusted OS.

To bypass the certificate check in the callback function, OS
drops the initialization call, and the target application never
executes the callback function. The target application only
handles the case where the validation check explicitly fails.
The silent drop does not return any error values, making the
target application proceed without ensuring that the certificate
check is done.

This type of attack is not possible in nested enclave.
In nested enclave, the target application and the certificate
manager are in the same trusted boundary. Therefore, they
run in inner enclaves respectively and share an outer enclave.
The outer enclave provides a shared channel among autho-
rized inner enclaves. Applications using the shared channel is
completely isolated from the kernel by hardware. OS cannot
watch and modify any communication messages transferred in
the channel.
Secure binding of inner and outer enclaves: Nested enclave
allows unrestricted accesses to an outer enclave from the inner
enclaves that bind the outer enclave. By default, the inner
enclaves can see the memory contents of the bound outer
enclave as plaintext; it is at the applications’ discretion to
encrypt messages for its specific inner-to-inner communication
channel. The nested enclave attestation mechanism prevents
the unauthorized join of an inner enclave (§ IV-C). It computes
the digest of the malicious inner enclave and verifies it with
the authorized ones in SECS. If no matching one found, the
nested enclave will reject the join; the hardware will not add
the ID of the outer enclave to the SECS of the malicious
inner enclave, and the memory protection logic will disallow
the malicious inner enclave to access memory of the outer
enclave.

VIII. EXTENDING NESTED ENCLAVES

This study limited the nested enclave model to two-level
nesting with a single outer per inner enclave. However, with
relatively minor changes, further extensions are possible to
represent more general relationship among enclaves in a
process.
Multi-level nesting: Nested enclave can support multiple
levels of nesting to represent more than two levels of security
layers used in the general multi-level security model. The
meta-data change is in the SECS of the outer enclave, which
can include the pointer to the next level of outer enclave.
In addition to the meta-data change, there are two required
updates. In the access validation step in Figure 6, if the
current enclave is an inner enclave, it needs to traverse to its
outer enclave (step 1© and 3©). To support multi-level nesting,

the traversal must be extended to follow the chain of inner-
outer links. The second change is in the TLB flush tracking
as discussed in § IV-E. For any virtual-to-physical mapping
change in EPC pages of an outer enclave, TLB flush must be
enforced for all inner enclaves by traversing multiple levels of
inner-outer links. Alternatively, all the cores can be flushed to
eliminate the tracking overheads.
Multiple outer enclaves: Nested enclave can be extended
to allow multiple outer enclaves for an inner enclave. Such
multiple outer enclaves allow a more general lattice model
where an inner enclave can access the contexts of more than
one outer enclave [20]. An example of usage is to support
multiple private secure channels from an enclave to different
peer enclaves. With multiple outer enclaves per inner enclave,
an enclave can set up a separate secure communication channel
for each individual enclave in a set of enclaves. Supporting
multiple outer enclaves requires to add a list of outer enclaves
(instead of a single outer enclave) in the SECS of an inner
enclave. In addition, the access validation step in Figure 6
must be extended for step 2© and 4© to consider more than
one outer enclave.

IX. RELATED WORK

Trusted execution with Intel SGX: With the advent of
Intel SGX, there have been many studies to build a secure
execution environment with enclaves, supporting various se-
curity models and applications [8], [11], [24], [31], [40], [44],
[49]. Haven [11], Graphene [49] and PANOPLY [44] allow
running unmodified applications on isolated execution using a
library OS. SCONE proposed a secure container running in an
enclave, using an asynchronous system call of the container
to interface with untrusted software [8].
Secure partitioning for SGX: PANOPLY [44] and
Ryoan [24] divide an application into multiple enclaves to
protect security-critical code and data from untrusted 3rd party
libraries. However, nested enclave provides the hierarchical
privilege separation withing an enclave. There are several prior
works to efficiently partition an application into the untrusted
domain and trusted domain [21], [32], [48], which can be used
for decomposing codes in nested enclave.
Secure memory protection and control transition: There
are several studies to alleviate the limitations of the current
SGX. First, to overcome the memory limitation, several studies
proposed to store data in untrusted memory with software
encryption and integrity protection [9], [14], [29], [36]. Sec-
ond, to reduce the performance overhead of crossing boundary,
prior studies proposed techniques using additional threads in
the untrusted context [8], [36], [54]. A recent version of Intel
SGX SDK provides similar switchless calls to reduce the
overhead of crossing boundary [47]. Lastly, to protect I/O
path, recent studies proposed to establish trusted paths to I/O
devices using a verified hypervisor or new hardware-software
protection mechanisms [25], [51], [53].
Privilege separation within TEE: Prior work have studied
to support multiple protection levels in a TEE environment.
AEGIS provides several security types on the code and data,



and supports multiple secure execution modes on an appli-
cation [45]. vTZ supports multiple secure VMs using the
secure world primitive of ARM TrustZone [23]. Keystone
provides multiple privilege levels for the data with custom
enclaves [30]. EnclaveDom [34] and Multi-domain SFI [42]
support the privilege separation within an enclave by integrat-
ing Memory Protection Keys (MPK) and Memory Protection
Extensions (MPX). Unlike these studies, nested enclave is
implemented in a new hardware mechanism with a small
modification, and provides hierarchical security domains. For
partitioning at virtual machine granularity, hardware-based
techniques isolate each virtual machine under the vulnerability
of hypervisors [26], [27], [55].

X. CONCLUSION

This paper proposed a new extension to the trusted execu-
tion environments for supporting multi-level security within
TEE. Based on Intel SGX enclave, nested enclave can sup-
port the strong hierarchical isolation within an enclave, and
efficient data sharing across enclaves by sharing the same
outer enclaves. The paper showed that the proposed semantic
extension can be added without significant HW changes in
the current SGX support. With the new nested enclave model,
the paper investigated three scenarios with an emulated nested
enclave execution framework. The evaluation showed that the
proposed model can prevent potential information leak, with
negligible performance degradation, by separation between the
inner and outer enclaves in addition to isolation among peer
inner enclaves.

ACKNOWLEDGMENT

This work was supported by National Research Foundation
of Korea (NRF-2019R1A2B5B01069816) and the Institute for
Information & communications Technology Promotion (IITP-
2017-0-00466). Both grants are funded by the Ministry of
Science and ICT, Korea.

REFERENCES

[1] “Ghost: glibc vulnerability,” https://nvd.nist.gov/vuln/detail/CVE-2015-
0235, jan, 2015.

[2] “Heap-based buffer overflow in libavformat/http.c in ffmpeg,” https://
nvd.nist.gov/vuln/detail/CVE-2016-10190/, sep, 2017.

[3] “Statlog data set,” https://archive.ics.uci.edu/ml/support/Statlog+Project.
[4] “Windows dhcp client remote code execution vulnerability,”

https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/dhcp-
client-remote-code-execution-vulnerability-demystified, jan, 2019.

[5] “Security technology building a secure system using trustzone technol-
ogy (white paper),” ARM Limited, 2009.

[6] “Intel(R) Software Guard Extensions for Linux* OS, linux-sgx,” https:
//github.com/intel/linux-sgx, Intel Corp, 2016.

[7] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and
A. J. Levine, “Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide
arrays,” National Academy of Sciences, 1999.

[8] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “SCONE: Secure
Linux Containers with Intel SGX,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2016.

[9] M. Bailleu, J. Thalehim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani, “SPEICHER: Securing LSM-based Key-Value Stores using
Shielded Execution,” in USENIX Conference on File and Storage
Technologies (FAST), 2019.

[10] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: a new
OS architecture for scalable multicore systems,” in ACM SIGOPS 22nd
Symposium on Operating systems principles (SOSP), 2009.

[11] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from
an untrusted cloud with Haven,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[12] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathematical
Foundations,” in Report ESD-TR-73-275, MITRE Corp, 1973.

[13] K. J. Biba, “Integrity considerations for secure computer systems,”
MITRE CORP BEDFORD MA, Tech. Rep., 1977.

[14] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz, C. Fetzer,
P. Pietzuch, and R. Kapitza, “SecureKeeper: Confidential ZooKeeper Us-
ing Intel SGX,” in International Middleware Conference (Middleware),
2016.

[15] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in USENIX Security Symposium (USENIX Security),
2018.

[16] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
2011.

[17] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privileged
Side-Channel Attacks in Shielded Execution with DéJà Vu,” in ACM
on Asia Conference on Computer and Communications Security (Asia
CCS), 2017.

[18] V. Costan and S. Devadas, “Intel SGX Explained.” in IACR Cryptology
ePrint Archive, 2016.

[19] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey et al., “The matter of
heartbleed,” in Internet Measurement Conference (IMC), 2014.

[20] A. Ferraiuolo, Y. Wang, D. Zhang, A. Myers, and G. Suh, “Lat-
tice priority scheduling: Low-overhead timing-channel protection for a
shared memory controller,” in IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2016.

[21] A. Ghosn, J. R. Larus, and E. Bugnion, “Secured Routines: Language-
Based Construction of Trusted Execution Environments,” in USENIX
Annual Technical Conference (ATC), 2019.

[22] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose
Processors,” Cryptology ePrint Archive, 2016.

[23] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “VTZ:
Virtualizing ARM Trustzone,” in USENIX Security Symposium (USENIX
Security), 2017.

[24] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2016.

[25] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heterogeneous
isolated execution for commodity gpus,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2019.

[26] S. Jin, J. Ahn, J. Seol, S. Cha, J. Huh, and S. Maeng, “H-svm: Hardware-
assisted secure virtual machines under a vulnerable hypervisor,” IEEE
Transactions on Computers, vol. 64, no. 10, pp. 2833–2846, 2015.

[27] S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural support for secure vir-
tualization under a vulnerable hypervisor,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2011.

[28] S. Kim, J. Han, J. Ha, T. Kim, and D. Han, “Enhancing Security and Pri-
vacy of Tor’s Ecosystem by Using Trusted Execution Environments,” in
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2017.

[29] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “ShieldStore: Shielded
In-memory Key-value Storage with SGX,” in European Conference on
Computer Systems (EuroSys), 2019.

[30] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Key-
stone: An open framework for architecting tees,” 2019.

[31] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry,
“Minibox: A two-way sandbox for x86 native code,” in USENIX Annual
Technical Conference (ATC), 2014.

[32] J. Lind, C. Priebe, D. Muthukumaran, D. OKeeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, and et al.,
“Glamdring: Automatic Application Partitioning for Intel SGX,” in
USENIX Annual Technical Conference (ATC), 2017.



[33] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel® software guard extensions (intel® sgx)
support for dynamic memory management inside an enclave,” in Hard-
ware and Architectural Support for Security and Privacy (HASP), 2016.

[34] M. S. Melara, M. J. Freedman, and M. Bowman, “EnclaveDom:
Privilege Separation for Large-TCB Applications in Trusted Execution
Environments,” ArXiv, 2019.

[35] B. Möller, T. Duong, and K. Kotowicz, “This POODLE bites: exploiting
the SSL 3.0 fallback,” Security Advisory, 2014.

[36] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
ExitLess OS Services for SGX Enclaves,” in European Conference on
Computer Systems (EuroSys), 2017.

[37] F. T. Rami Mustafa A Mohammad, Lee McCluskey, “Phishing websites
data set,” https://archive.ics.uci.edu/ml/datasets/phishing+websites.

[38] M. Ribeiro, K. Grolinger, and M. A. Capretz, “Mlaas: Machine learning
as a service,” in International Conference on Machine Learning and
Applications (ICMLA), 2015.

[39] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao,
and M. K. Qureshi, “Morphable Counters: Enabling Compact Integrity
Trees for Low-overhead Secure Memories,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

[40] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “VC3: Trustworthy Data Analytics in the
Cloud Using SGX,” in IEEE Symposium on Security and Privacy (S&P),
2015.

[41] J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim, “FLEXDROID: Enforcing
In-App Privilege Separation in Android.” in Network and Distributed
System Security Symposium (NDSS), 2016.

[42] Y. Shen, Y. Chen, K. Chen, H. Tian, and S. Yan, “To Isolate, or to
Share? That is a Question for Intel SGX,” in Asia-Pacific Workshop on
Systems (APSys), 2018.

[43] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in Network and
Distributed System Security Symposium (NDSS), 2017.

[44] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “PANOPLY: Low-TCB
Linux Applications with SGX Enclaves,” in Network and Distributed

[56] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A Sandbox for

System Security Symposium (NDSS), 2017.
[45] E. Suh, “AEGIS: A single-chip secure processor,” Ph.D. dissertation,

MIT, 2005.
[46] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reduc-

ing Paging Overheads in SGX with Efficient Integrity Verification
Structures,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2018.

[47] H. Tian, Q. Zhang, S. Yan, A. Rudnitsky, L. Shacham, R. Yariv,
and N. Milshten, “Switchless Calls Made Practical in Intel SGX,” in
Workshop on System Software for Trusted Execution (SysTEX), 2018.

[48] C.-C. Tsai, R. A. Popa, and E. Porter, “Civet: An Efficient Java
Partitioning Framework for Hardware Enclaves,” in USENIX Security
Symposium (USENIX Security), 2020.

[49] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX,” in USENIX Annual
Technical Conference (ATC), 2017.

[50] A. V. Uzilov, J. M. Keegan, and D. H. Mathews, “Detection of non-
coding RNAs on the basis of predicted secondary structure formation
free energy change,” BMC bioinformatics, 2006.

[51] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted Execution
Environments on GPUs,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[52] J.-Y. Wang, “Application of support vector machines in bioinformatics,”
in Master’s thesis, Department of Computer Science and Information
Engineering, National Taiwan University, 2002.

[53] S. Weiser and M. Werner, “SGXIO: Generic Trusted I/O Path for
Intel SGX,” in ACM Conference on Data and Application Security and
Privacy (CODASPY), 2017.

[54] O. Weisse, V. Bertacco, and T. M. Austin, “Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves,” in International
Symposium on Computer Architecture (ISCA), 2017.

[55] Y. Xia, Y. Liu, and H. Chen, “Architecture support for guest-transparent
vm protection from untrusted hypervisor and physical attacks,” in 2013
IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), 2013, pp. 246–257.
Portable, Untrusted x86 Native Code,” in IEEE Symposium on Security
and Privacy (S&P), 2009.


