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Abstract—In conventional virtualized systems, a
hypervisor can access the memory pages of guest virtual
machines without any restriction, as the hypervisor has
a full control over the address translation mechanism. In
this paper, we propose Secure MMU, a hardware-based
mechanism to isolate the memory of guest virtual machines
from unauthorized accesses even from the hypervisor. The
proposed mechanism extends the current nested paging
support for virtualization with a small hardware cost.
With Secure MMU, the hypervisor can flexibly allocate
physical memory pages to virtual machines for resource
management, but update nested page tables only through
the secure hardware mechanism, which verifies each
mapping change. With the hardware-rooted memory
isolation among virtual machines, the memory of a virtual
machine in cloud computing can be securely protected from
a compromised hypervisor or co-tenant virtual machines.

I. I NTRODUCTION

Cloud computing has emerged as a promising
future computing model, which enables elastic resource
provisioning for unpredictable demands [1], [2]. In
cloud computing, users run their programs on virtualized
systems, and multiple virtual machines from different
users may share the same physical system. However, such
cloud computing based on virtualization poses a difficult
challenge to securely isolate co-tenants sharing a physical
system. The concern for security and privacy protection
is one of the most important reasons that have been
hindering the rapid adoption of cloud computing [3], [4].

In a virtualized system, a hypervisor, a software
layer creating and managing virtual machines (VMs),
is responsible for isolating any illegal accesses across
virtual machine boundaries. There have been concerns
over vulnerabilities in hypervisors [5], [6], and several
recent studies address the problem by improving the
security of hypervisors [7], [8], [9]. However, hypervisors,
which have been increasing their code size for better
performance and more features, have become too complex
to simply verify their secure execution [9]. If hypervisors
cannot be trusted, even a trustworthy cloud provider
cannot guarantee the protection of a virtual machine from
a malicious co-tenant.

Memory protection across virtual machines is a critical
component to support the secure execution of guest
VMs. For such memory isolation, current virtualization

techniques are based on traditional software and hardware
support for virtual memory. A hypervisor maps the
memory of guest VMs to the physical memory with guest-
physical to machine address translation. Although several
different techniques are used to support efficient address
translation to machine addresses, all these techniques
rely on hypervisors to prevent any illegal memory access
across virtual machines [10], [11], [12]. In the current
memory virtualization techniques, hypervisors, at the
highest privilege level, can read or modify the memory
allocated for guest VMs.

The main cause of the privacy concern for guest
VMs is that hypervisors control the memory protection
mechanism without any restriction. In the current support
for virtual memory management, two aspects,the memory
resource management with paging, and the memory
isolation through address translation, are under the
control of hypervisors. A hypervisor determines a set of
memory pages to be allocated for a VM, and maintains a
mapping table from guest-physical to machine address
(nested page table) for each VM. Whenever a VM is
scheduled to a core, the hypervisor sets the register
pointing to the nested page table for the VM, so that
the hardware TLB walker can access the appropriate
mapping table. One crucial disadvantage of the traditional
approach is that a successful attack on the hypervisor can
completely expose the memory of guest virtual machines
to the attacker.

In this paper, we propose the decoupling of memory
isolation from memory resource management, both of
which are currently performed by the hypervisor. With
the decoupled mechanism, calledSecure MMU, the role
of a hypervisor is limited to the resource management
to allocate limited physical memory to guest VMs
to improve system throughput and fairness. Hardware
processors are now responsible for updating the page
mapping and setting the pointer to the nested page
table between VM switches. Guest virtual machines
can directly communicate the hardware controller to
validate if the memory pages are accessible neither by
the hypervisor, nor by the other virtual machines.

There have been several prior studies to propose
mechanisms to protect memory across processes or
virtual machines. AEGIS uses encryption techniques to
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protect any data leaving a processor [13]. Any data
fetched from the memory into on-chip caches must be
decrypted and evicted data from on-chip caches must be
encrypted before leaving the processor. NoHype suggests
partitioning memory pages for each core, and a VM is
running on a fixed core [14]. Those techniques require
complete re-designs of HW architectures and system
software. Unlike prior techniques, this paper takes an
evolutionary path to minimize the changes in hardware
and software systems. In the proposed mechanism,
flexible memory allocation and core scheduling are still
supported with the same mechanism as the conventional
systems.

In this paper, we discuss that the hardware-rooted
memory protection is feasible with a small change in
the current microarchitectures and hypervisors. Only the
hardware controller can change the nested page tables
to allocate or deallocate physical memory for virtual
machines. A hypervisor can decide which memory pages
are allocated for a VM, but they cannot directly update
nested page tables. With this separation, a compromised
hypervisor cannot access the physical memory already
allocated for a guest VM. In this paper, we show that such
hardware mechanism can be implemented with a modest
complexity increase from the current architectural support
for virtualization.

II. BACKGROUND

A. Memory Isolation among VMs

Memory isolation in current virtualization techniques
is based on the support for virtual memory with hardware
address translation and page tables. In processors,
virtual addresses are translated to physical addresses
with translation look-aside buffers (TLBs). If the
corresponding entry does not exist in the TLBs, either
a HW or SW-based page table walker fetches the entry
from the page table of the current address space. In
this paper, we assume a HW-based page table walker
in our architecture, as the proposed architecture aims to
move the responsibility of page table management from
hypervisors to the HW processor. For each context switch
between address spaces, the page table register, which
points the top-level page table entry, must be properly
set, so that the walker can traverse the correct page table.
In popular x86 architectures, theCR3 register stores the
address of the top-level page table.

Virtualization adds an extra translation layer. A virtual
address in guest VMs must be translated into a guest-
physical address (virtual physical address) just like non-
virtualized systems, and, in addition, the guest-physical
address is translated to a machine address in real physical
memory. The guest OS maintains the virtual to guest-
physical address mapping in per-process page tables,
and the hypervisor maintains per-VM guest-physical to
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machine address mapping tables, called nested page
tables. When the processor supports only single page
table walks designed for native operating systems, the
hypervisor maintains a direct translation table, called
shadow page tables, to map virtual addresses to machine
addresses. The recent advancement of architectural
support for virtualization allows a two-level hardware
page table walker to traverse both per-process page tables
and per-VM nested page tables [11]. Figure 1 depicts
the two-level address translation with a per-process guest
page table and a per-VM nested page table. Each core
has two registers pointing each table, one for the guest
page table (gCR3), and the other for the nested page table
(nCR3).

To isolate the memory of each VM, a hypervisor
must protect nested page tables from illegal modification
by guest VMs. Guest VMs cannot read or modify the
nested page tables. Also, for each context switch between
virtual machines on a core, the hypervisor must change
the nested page table pointer. The hypervisor manages
the memory allocation by monitoring memory usages of
virtual machines, and it can allocate and deallocate pages
for a VM. For such mapping changes, the hypervisor can
modify the nested page table of the VM. Note that the
hypervisor also accesses its own memory space through
the same address translation mechanism. Since the
hypervisor has a complete control over the modification of
nested page tables, a compromised hypervisor can read
or modify the physical memory assigned for any guest
VMs.

B. Requirements for Secure MMU

To guarantee the isolation among VMs even with a
compromised hypervisor, hypervisors must not be able to
change nested page tables arbitrarily. To enable memory
isolation even with a compromised hypervisor, Secure
MMU modifies nested page tables with a protected
hardware controller. Such HW-rooted memory protection
must meet the following requirements:

• Secure MMU must still allow the hypervisor
to manage memory pages as flexibly as the
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conventional memory management mechanism.
Although a hypervisor loses the control for updating
nested page tables directly, it must be able to allocate
and deallocate memory pages dynamically for virtual
machines.

• Secure MMU must guarantee that the content of
the deallocated pages are cleared before it can be
accessed by the hypervisor or other guest VMs.
Furthermore, hypervisors may evict some memory
pages of guest VMs to the swap disk. During the
page swap-out, the content of memory pages must
not be readable.

• Physical pages can be shared among VMs or
between a VM and the hypervisor. A VM and the
hypervisor access shared pages to communicate data
for I/O operations. Such page sharing must still be
supported, but participating VMs must agree to the
sharing of certain pages.

• Virtual machines can be suspended, creating the
checkpoint of their states, and later resumed.
Furthermore, VMs may migrate to different
systems. Secure MMU must provide mechanisms
to checkpoint the memory content securely, without
exposing the memory content.

C. Threat Model

The goal of the proposed decoupling of memory
allocation and isolation is to protect the memory of virtual
machines from a malicious co-tenant sharing the same
physical system. The trusted computing base (TCB) to
protect the memory of guest VMs in the proposed system
includes only the hardware system, not the hypervisor.
As the hardware system must be included in the TCB,
we do not consider any hardware attack, such as probing
of external buses [15] or reading DRAM after power-
off [16]. We assume the cloud provider is trustworthy
and it does not intentionally attempt to compromise
the hardware system. The trustworthy cloud provider
protects its servers with physical security measures, as the
provider not only has legal obligation not to access the
costumer’s data without explicit permission, but also has
a strong business interest in protecting their reputation.

However, a hypervisor is not included in the TCB.
We assume that hypervisors are vulnerable from attacks
by malicious guest virtual machines. The threat model
assumes that an attacker with the root permission of the
hypervisor may attempt to access the memory of guest
VMs. The proposed system can protect the memory of
guest VMs as long as the person cannot compromise the
physical servers directly. With proper security measures
on server rooms, getting accesses to the server room, and
physically compromising the systems is much harder than
getting the root permission by remote attacks.

The memory protection mechanism in this paper
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address the isolation among virtual machines or from
the hypervisor. It does not improve the security of guest
operating systems and applications by themselves.

III. A RCHITECTURE

A. Overview

Secure MMU requires only a small change in
the existing architecture. In the proposed architecture,
hypervisors cannot directly change per-VM nested page
tables. Only the dedicated hardware controller (Secure
MMU), which extends a conventional HW page walk
controller, can update the nested page tables. Figure 2
presents the overall architecture of Secure MMU. Nested
page tables of all VMs are stored in protected memory
pages, which are accessible only by Secure MMU. The
protected memory region is just part of the physical
memory. The hardware controller does not allow any
accesses even by the hypervisor to the protected memory
region.

Secure MMU provides two important interfaces to
the hypervisor and guest VMs. Firstly, the hypervisor,
in the privileged mode, can request to map or unmap a
physical memory page to a virtual-physical page of a VM.
Since the hypervisor does not have access permission
on the nested page table, Secure MMU must update the
nested page table to add or delete the entry. Secondly,
a guest VM can request to validate whether a page is
accessible only by itself. A page can be declared as
a VM-private or shared page. Before using a memory
page for the first time, the operating system of the
guest VM can make validation requests to Secure MMU,
without the intervention of the hypervisor by executing
an untrappable instruction.

Secure MMU protects the nested page table area by
allowing access permission only to itself. Guest VMs
uses memory pages after validating their sharing mode
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and write permission. After the validation, Secure MMU
does not allow a physical page to be shared, even if the
privileged hypervisor requests such change. To change a
VM-private page to a shared page, the owner VM must
explicitly request the status change to Secure MMU. To
check the sharing status of physical pages, Secure MMU
tracks the ownership status for each physical page. For
fast checking, Secure MMU maintains the current owning
VM for each physical memory page inPage Ownership
Table shown in Figure 2. The page ownership information
is stored in the protected memory region.

In Secure MMU, the hypervisor conducts normal
memory management functions for all VMs. It determines
the allocation and deallocation of memory pages for VMs
by checking usage patterns. For memory management,
the hypervisor can maintain its own copy of nested page
tables just to keep track of page usages. An alternative
way is to allow the hypervisor to read the original
nested page tables managed by Secure MMU, although
updating the tables are not permitted to the hypervisor.
The hypervisor can read the nested page tables only with
a read-only permission. The rest of the protected memory
area must not be accessible by the hypervisor.

For the switch between VMs, Secure MMU is
responsible for setting the address of the nested page
table (nCR3). The hypervisor makes a request to Secure
MMU by executing a privileged instruction to place
a VM to a physical core. Furthermore, to protect the
content of registers of a VM, Secure MMU may save
registers and clear them for exceptions and interrupts,
before transferring the control to the hypervisor.

B. Basic Functions

In this section, we describe five basic functions, which
must be included in Secure MMU. Current HW page
table walkers with virtualization support can traverse
guest and nested page tables. In addition, Secure MMU
must maintain nested page tables for VMs, and the page
ownership table to trace the owner of each physical
memory pages. Such data must be stored in the protected
region of DRAM. Secure MMU must block any attempt
to access the protected region by declining page mapping
requests to the protected pages. To maintain nested page
tables and check illegal attempts to access guest memory,
Secure MMU must support the following basic functions:

VM creation : When a hypervisor creates a VM, it
requests Secure MMU to create a new nested page table
for the VM. Secure MMU must know the identity of each
VM running on the system, and maintain the nested page
table. Also, Secure MMU creates a per-VM encryption
key, which will be used for page swapping.

Page map: To assign a physical memory page to a
VM, the hypervisor should request apage map operation
to Secure MMU. A page map operation maps a machine

memory page to a guest-physical page by updating a
nested page table entry. When a nested page table entry
is updated for a VM by the request of the hypervisor,
the page is set to be VM-private. Before updating
the nested page table entry, Secure MMU must check,
by looking up the page ownership table, whether the
physical page is owned by another VM. If another
VM already owns the requested physical page, the map
operation is aborted. This checking mechanism prevents
a compromised hypervisor from creating any illegal
mapping to VM-private pages.

Page unmap: To deallocate a physical memory page
from a VM, the hypervisor makes apage unmap
request to Secure MMU. Secure MMU modifies the
corresponding nested page table entry, and clears the
content of the memory page before completing the
operation. Secure MMU also resets the owner of the
page in the page ownership table. The hypervisor may
make a page map request for the unmapped page later,
but its content has already been cleared. With clearing,
the memory content of free pages cannot contain any
information from guest VMs.

VM switch : When a hypervisor needs to schedule
a VM to a core, the hypervisor makes aVM switch
request to Secure MMU. The hypervisor cannot directly
update the page table pointer to the nested page table
(nCR3). The hypervisor makes a VM switch request
with a VM identifier, and Secure MMU sets up nCR3
with the corresponding address of the top-level page
table. The reason for disabling direct changes of nCR3
by the hypervisor is that the hypervisor can create a
compromised copy of a nested page table for a VM,
and make a VM use the compromised nested page table.
As only Secure MMU can update the nested page table
pointer, the hypervisor cannot make a running VM to use
a compromised nested page table.

This support for Secure VM switch can be extended to
protect register contents. Although protecting the register
content is beyond the scope of this paper, Secure MMU
can include the mechanism to save and restore the VM
state in processor registers for interrupts and exceptions.
Before transferring the control to the hypervisor after an
interrupt occurs, the register contents unrelated to the
interrupt are saved and cleared. With the support, the
hypervisor cannot directly read the register contents of
guest VMs.

Validation : When a VM is created, the guest OS
can request Secure MMU to validate the state of its
nested page table for each page. Such request is made by
executing an untrappable instruction, so the hypervisor
cannot intervene. Upon the request, Secure MMU checks
whether the requested page is VM-private or shared.
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C. Advanced Functions

More complex operations on the memory allocated
for virtual machines may be necessary for flexible
management of VMs. These advanced functions are
necessary to support page swapping, VM checkpointing
and migrations.

Page swap: In virtualized systems, two-level paging
techniques are used to allocate the physical memory
efficiently. Firstly, when a system is running out of the
physical memory, the hypervisor enforces each VM to
swap out some unused memory pages to the swap disk
of the VM. As the guest OS on each VM can make
much better decisions on selecting victim pages than the
hypervisor, suchballooning allows the guest OS to pick
victim pages, and to reduce its memory usage [17]. If a
guest OS decides to evict a memory page to its swap disk,
the guest OS is responsible for encrypting the content. As
the memory of the guest VM is protected, the encryption
key is securely protected.

In addition to ballooning, the hypervisor also needs
to evict memory pages to its disk swap space directly.
However, the direct page swaps by hypervisors are less
commonly used than the ballooning technique [17]. As
the hypervisor writes the memory pages to the swap
disk, the content of evicted memory pages must be
encrypted by Secure MMU before being accessible by the
hypervisor. As the hypervisor must not be able to read
the pages of guest VMs, Secure MMU must include a
encryption component for swapped memory pages. When
a VM is created, Secure MMU creates a encryption key
for the VM. When the hypervisor picks a victim page,
Secure MMU encrypts the page with a per-VM key, and
allows the hypervisor to read the page. Per-VM keys are
stored in the protected memory region.

Page sharing: Some physical pages can be shared
between a guest VM and the hypervisor, or among guest
VMs. Such page sharing is used for communication for
I/O requests, or content-based memory sharing [18], [19].
By default, Secure MMU allows a physical memory page
to be mapped only to a single VM. However, to makes the
page sharable, Secure MMU needs an explicit permission
from the guest VM. By requiring the permission from the
guest OS, the guest OS can be prepared not to store any
sensitive data on such shared pages.

VM checkpointing: Virtual machines can be
suspended and resumed by using checkpoints. However,
to create a checkpoint, the hypervisor must read the
memory contents of a VM. For checkpointing, Secure
MMU can use the same encryption mechanism as the one
used to support memory page swap by the hypervisor. To
create a checkpoint, the hypervisor requests encrypted
memory pages from Secure MMU. Secure MMU uses
a per-VM encryption key to encrypt or decrypt the
memory pages.

VM migration : VM migration is more complicated
than VM checkpointing, as it involves encryption key
management between two physical systems. To migrate
a VM to a different system, encrypted memory contents
must be transferred through the hypervisor and networks.
We assume that each system has a private-public key pair
integrated in each processor chip. The private key never
leaves the hardware processor. A similar technique is used
for TPM (trusted platform module) [20]. The public key
is registered in the managing system. To migrate the
memory content of a VM, Secure MMU encrypts the
pages with a symmetric key, and the symmetric key is
encrypted with the public key of the managing system.
The managing system can forward the key to another
system, where the VM migrates to, after decrypting
the key and encrypting the key with the public key of
the target system. The managing system, which runs in
a separate physical system from guest VMs, must be
protected and included in TCB.

Identifying Secure MMU : Guest OSes must be able
to verify whether the physical system is using Secure
MMU, as the hypervisor may emulate compromised
Secure MMU functions. Such identification uses the
private key integrated in each processor chip, as discussed
in the VM migration mechanism. The managing system,
which is in TCB, has the public keys of the physical
processors maintained by the managing system. Guest
OSes can validate the existence of secure MMU by
getting the public key of the processor from the managing
system, and by checking the signature signed with the
processor private key. The managing system is a separate
entity dedicated to cloud system management, and thus
it is less vulnerable to outside attacks.

IV. I MPLEMENTATION COSTS

Secure MMU extends the current architectural support
for nested address translation for virtualization, incurring
a modest increase of design complexity.

Hardware costs: Hardware costs for Secure MMU
comes from the increased complexity of hardware
controller compared to the conventional MMU. Unlike
the conventional MMU, Secure MMU must update nested
page table entries as requested by the hypervisor for
mapping and unmapping. For basic functions, we expect
the additional complexity in the controller is small. The
page map operation requires an extra step to check
whether the newly mapped page is used by other VMs.
The unmap operation must clear the page contents. Those
operations require a modest increase of the controller
complexity. As Secure MMU uses a part of physical
memory to store nested page tables, the page ownership
table, and per-VM information such as the encryption key,
Secure MMU does not require any extra on-chip storage.

Supporting advanced functions require more complex
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operations in the controller. However, much of the
increased complexity is for performing page encryption.
An alternative implementation for the advanced functions
for Secure MMU is to use secure execution modes in
processors, such as ARM TrustZone [21]. A complex
operation of supporting advanced functions may be
executed in the normal computing core, but in the secure
execution mode.

Modification to hypervisors and guest OSes: We
believe the modification to hypervisors is small, as the
nested page modification routines are just moved to
Secure MMU from hypervisors. Instead of modifying
nested page tables directly, the hypervisor needs to make
requests to Secure MMU. By defaults, guest OSes do
not need to be modified, if a VM always uses VM-
private pages with guest-level page swapping disabled.
To support page sharing, guest OSes must be slightly
modified to add features to accept page sharing requests.
To enable guest-level swapping, guest OSes must encrypt
pages before sending them to guest swap spaces.

Performance: The performance overheads of Secure
MMU occur during page map and unmap operations.
During a page map operation, Secure MMU looks
up the page ownership table, which may need several
memory lookups. However, a page allocation operation
is an uncommon event, and even a few thousand extra
processor cycles for checking should have a negligible
impact on the overall performance. For page unmap
operations, the page content must be cleared. However,
page deallocation is often done in background. For page
swapping, encryption is necessary, but compared to long
disk access latencies, extra computation latencies for
encryption will be minor.

V. CONCLUSIONS

In this paper, we proposed a hardware-based
mechanism called Secure MMU to isolate VM memory
securely even under a compromised hypervisor. We
believe the costs of extra hardware are modest with a
small increase of MMU complexity. As future work, we
will implement Secure MMU on a hardware simulator
and also open source processor designs with FPGA.
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