
Charge-Aware DRAM Refresh Reduction with Value Transformation

Seikwon Kim
Samsung Research, Samsung Electronics

seikwon.kim@samsung.com

Wonsang Kwak
School of Computing, KAIST

wskwak@kaist.ac.kr

Changdae Kim
ETRI

cdkim@etri.re.kr

Daehyeon Baek
School of Computing, KAIST

bdh0404@kaist.ac.kr

Jaehyuk Huh
School of Computing, KAIST

jhhuh@kaist.ac.kr

Abstract—As the memory capacity in a system has been
growing, refresh operations consume increasing ratios of the
total DRAM power. To reduce the power consumption of such
refresh operations, this paper proposes a novel value-aware
refresh reduction technique called ZERO-REFRESH which ex-
ploits zero values in memory contents. A DRAM cell can
retain the discharged state without refresh operations, and
ZERO-REFRESH skips refresh operations on rows with all
discharged cells. For abundant unallocated memory pages in
typical systems, the operating system fills them with zeros to
clean the contents. For those idle pages, ZERO-REFRESH can
eliminate refresh operations in an OS-transparent way without
any new interface to DRAM. However, for allocated memory
pages, memory contents may not have many consecutive zero
values to match the refresh granularity of DRAM. To increase
the frequency of zero values and to arrange them to match
the refresh granularity, ZERO-REFRESH transforms the value
of memory blocks to the base and delta values, inspired by
the prior BDI (Base-Delta-Immediate) compression technique.
Once values are converted, bits are transposed to be stored
as consecutive discharged bits at the refresh granularity. Such
value transformation and rearrangement can make the memory
contents friendly to refresh reduction based on discharged cells.
The experimental results based on simulation show that the
DRAM refresh operations are reduced by 37% on average
for a set of benchmark applications, if the entire memory is
allocated for the applications. If the memory usage statistics
collected from three data center traces are applied, the DRAM
refresh operations can be reduced by 46%, 57%, and 83%
respectively for the three scenarios.

I. INTRODUCTION

Refresh operations in DRAM account for a significant
portion of DRAM power consumption. As the refresh must
be applied to the entire DRAM capacity during a fixed time
period, commonly 32ms or 64ms, their portion in the total
DRAM energy grows as the capacity of the system memory
increases. The recent popularity of big memory applications
has been accelerating the increase of memory capacity
in systems. Furthermore, system consolidation based on
virtualization and container technologies also requires big-
ger memory to accommodate more virtual machines. Such
increasing memory demands have been exacerbating the
refresh energy consumption significantly.

To mitigate the excessive power consumption, the prior
work proposed to selectively skip refresh operations for
certain rows of DRAM [2], [5], [8], [11], [19], [26], [40].
The prior approaches exploit the variance in DRAM reten-
tion time, the recency of DRAM accesses, or OS mem-
ory utilization information. However, the prior approaches
have their limitations. The retention time-based approaches
exploit the skewed distribution of retention times across
cells. However, the retention time changes dynamically by
various factors, requiring careful checking of the status [12],
[18], [33]. Smart Refresh skips refresh for recently accessed
rows [8]. However, compared to the entire memory capacity,
the portion of accessed rows within a fixed refresh period
tend to decrease as the total memory capacity increases
with much faster rates. Skipping refresh for unallocated
memory pages relies on system memory utilization [2], [11].
However, a new HW interface to DRAM and non-trivial OS
changes are required to support it.

One important aspect not fully investigated by the prior
approaches is to exploit the value property of each cell.
In DRAM, the discharged state does not require a refresh
operation. If an entire row of a DRAM bank contains only
discharged cells, the row can skip the refresh operation
without losing the data. In the logical memory contents, the
memory can potentially contain many zero values stored as
discharged states in DRAM. The abundance of zero values
can be exploited to reduce the refresh operation.

Based on the discharged property of DRAM cells, this
paper proposes a value-based refresh reduction architec-
ture, called ZERO-REFRESH. It consists of two components,
charge-aware refresh reduction on the DRAM side, and
value transformation on the CPU side. The DRAM side
charge-aware refresh reduction component skips refresh op-
erations for rows with all discharged cells. The CPU-side
value transformation components transform the value of a
cacheline to create consecutive discharged bits friendly to
the refresh skip mechanism.

A critical consideration for the proposed design is the
existence of true and anti-cells in DRAM, which store
zero value in discharged and charged states respectively.

Without proper value conversion, abundant zeros are stored
in charged states in anti-cells, and thus refresh cannot
be skipped. Therefore, the value transformation compo-
nent must be aware of the cell types of rows in DRAM.
Figure 1 shows the two components. The cell-type aware
value transformation generates as many discharged rows as
possible, based on the cell type identification from the prior
work [16], [42]. The charge-aware refresh reduction skips
refresh operations for the rows with all discharged cells.

With the two components, ZERO-REFRESH can skip re-
freshes for 1) unallocated memory filled with zeros by the
operating system and 2) allocated memory whose values are
transformed to produce consecutive discharged bits. First, for
the unallocated memory, in typical systems with fluctuating
memory demands, a significant portion of memory is in the
unallocated state. The OS cleanses the page content when
a page is assigned to a process. However, if the cleaning
procedure is done at the deallocation time, the idle pages
contain zeros until they are allocated again.

Second, for the allocated memory, it may contain zero
values abundantly at fine-grained byte granularity. However,
to reduce refresh operations for rows with zeros, many
consecutive zero values must exist, and they must be ar-
ranged friendly to refresh granularity and cell types. The
value transformation technique of ZERO-REFRESH increases
the frequency of discharged bits and transposes them to
place consecutive discharged bits on each row of DRAM
as much as possible. ZERO-REFRESH employs a value
conversion technique originated from the BDI (Base-Delta-
Immediate) compression, and the data contents are converted
to the differences from the base value within a cacheline
unit [30]. To arrange discharged bits in the same row,
ZERO-REFRESH transposes bits, re-mapping bits to place
consecutive discharged bits in each row. In addition, the
mapping of cachelines to multiple chips is adjusted to allow
a set of rows in different chips to have all discharged cells.

To the best of our knowledge, ZERO-REFRESH is one
of the first studies to use charge-aware refresh skipping
augmented by value transformation for refresh reduction.
It can skip refreshes both for unallocated and allocated
pages in an OS and application transparent way. The new
contributions of the paper are as follows.

• The paper proposes an efficient refresh skipping mech-
anism for the rows with all discharged cells. It signifi-
cantly reduces the extra storage to record the discharged
status of rows.

• The paper proposes an OS-transparent refresh reduction
for unallocated pages. As long as the OS cleanses un-
allocated pages for security, those pages do not require
refreshes. Such refresh skipping does not require any
new interface to DRAM, as they are purely value-based.

• The paper shows that the frequency of zero values
can be increased significantly by employing the BDI
representation within a cacheline unit of data. The

Figure 1: Value transformation on the CPU side and refresh
reduction on the DRAM side

value transformation also considers the existence of true
and anti cells in DRAM chips. Furthermore, the paper
proposes bit plane transformation and rearrangement of
cachelines to DRAM chips to allow discharged bits to
constellate within the unit of refresh operations.

The paper evaluates the effectiveness of ZERO-REFRESH
with simulation results. The results indicate that it reduces
refresh operations by 37% on average from the conventional
DRAM refresh, if the entire memory is allocated for ap-
plications. However, if the three memory usage statistics
from real-world traces are applied, refresh operations are
reduced by 46%, 57%, and 83% for the three scenarios,
saving refresh power significantly.

The rest of the paper is organized as follows. Section II
presents the background for DRAM refresh. Section III
discusses the motivation of value-based refresh reduction.
Section IV and Section V present the refresh skip and value
transformation architecture of ZERO-REFRESH. Section VI
evaluates the effectiveness with experimental results, and
Section VII concludes the paper.

II. BACKGROUND

A. DRAM Organization

Dynamic Random Access Memories (DRAM) are orga-
nized in hierarchical order into channels, ranks, banks and
arrays. A DIMM consists of multiple ranks, and each rank is
composed of multiple physical chips. A set of chips in a rank
is operated in unison by the memory controller. Each chip
contains multiple banks, typically from 4 to 16 banks. With
a RAS (row address strobe) signal, the differential sense
amplifier fetches an entire row in a bank. Once a row data
is brought to the sense amplifier, part of the row data is read
or written with a CAS (column address strobe) signal.

With the differential sense amplifier, the rows in an array
are divided into two partitions. For each column, there are a
pair of wires connected to the different side of the amplifier
as shown in the Figure 2. The cells in a partition are
connected to the wires of one side of the amplifier and the
cells in the other partition are connected to the other side of
the amplifier. For a read, depending on the charge state of the

Sense

Amp

C

C

C

OUTPUT

C

C

C
BLA2

BL T2

2

Sense

Amp

C

C

C

OUTPUT

C

C

C
BLA1

BL T1

1

Sense

Amp

C

C

C

C

C

C
BLA0

BL T0

OUTPUT0

SAP

EQ

SAN

Vdd GND

BL

BL
C

Tm

Am

OUTPUT

C

C

C

C

C

m

WL

WL

WL

WL

L0

L1

R0

R1

WLLn

WLRn

True-cells

Anti-cells

Figure 2: True and anti-cells with sense amplifiers

cells, the voltage of the wire on one side becomes slightly
higher or slightly lower than the wire in the opposite side.
The amplifier senses the voltage difference and drives the
predefined high voltage on the wires with a slightly higher
voltage and the ground voltage on the wires with a slightly
lower voltage.

B. True and Anti-cell

It is important to note that the discharged state of a cell
can be read as a logical 0 or 1, depending on which partition
the cell is located. The wires on one side of the amplifier
are used as the output wires. For the partition connected to
the output wires, the charged cells drive the high voltage on
the output wires and the discharged cells drive the ground
voltage on the output wires. Since the high voltage on the
output wire is read as 1, the charged state represents 1 and
the discharged state represents 0 for cells in the partition.
Such cells are called true-cells. For the other partition, the
charged cells drive the ground voltage on the output wire
since they drive the high voltage on the connected wire at
the opposite side. As the charged state represents 0 and the
discharged state represents 1 for such cells, they are called
anti-cells.
Identifying cell types: Although the locations of true and
anti cells are hidden in DRAM chips, the prior study showed
that their row locations are regular and in each row, only
one type of cells are used. [16], [42]. The prior work iden-
tified that true and anti-cell rows are interleaved by every
N rows, and in common DRAMs, N is typically found to
be 512. The cell type can be distinguished in a systematic
way [16], [42]. After writing all zeros to a row, the refresh
operation is disabled for a couple of refresh cycles. After
skipping refresh, if the values are still zeros, the row consists
of true cells. Otherwise, the row consists of anti cells. ZERO-
REFRESH uses the systemic identification of cell types when
it transforms values into as many consecutive discharged
bits as possible. However, the CPU-side value transformation
does not require to have 100% accurate identification of cell

tRET(64ms)

tREFI(7.8 us) tREFI(7.8 us) tREFI(7.8 us)...
tRFC tRFC tRFC...RW RW RW

Figure 3: Refresh timing illustration

types, as the wrong identification incurs only the loss of
refresh reduction chances.

C. DRAM Refresh

DRAM is dynamic since a capacitor in a DRAM cell
storing electrons is not stable. The capacitor of a cell
gradually discharges and eventually the cell loses its value
integrity over time. To maintain the value integrity, all
capacitors in the DRAM must be recharged before they
lose the values. To preserve the integrity of values, DRAMs
periodically re-charge the cells to hold their values through
refresh operations. The retention time (tRET) indicates the
time period of a refresh to guarantee the value integrity of
every cell. tRET is 64ms in general temperature, but refresh
rates change depending on the temperature condition. If the
temperature is beyond 85◦C the retention time halves to
32ms or less.

To refresh within tRET in modern DDRx memories, a
memory controller sends 8,192 times of auto-refresh (AR)
commands to memory within tRET with the all-bank refresh
policy. Therefore, the AR command is sent every 7.8us(64ms

8192)
and DDRx refreshes MemorySize

8192 amount of memory within
7.8us. The interval of refresh commands sent from a memory
controller is tREFI and the amount of time to refresh
MemorySize

8192 in memory is tRFC. The refresh timing is il-
lustrated in Figure 3. During a refresh operation (tRFC), a
whole rank or part of memory cannot be accessed depending
on the refresh policy.

Upon receiving an AR command, each DRAM chip
conducts refreshes for the rows indicated by the refresh
counters, which is incremented after refreshing each row.
Each DRAM chip refreshes multiple rows for an AR com-
mand. For example, a 32Gb DDR4 chip refreshes 1024
rows for each all-bank AR command. The refresh counters
in each DRAM chip maintains the internal row address to
be refreshed. In commercial DRAMs, the refresh counter is
often initialized as a random number per device since the
address rotates after reaching the end of the row address in
a chip and the entire device gets refreshed after receiving 8k
refresh commands regardless of an initial address setting.

The memory controller can issue refresh commands at a
rank level (all-bank) or a bank level (per-bank). The all-bank
refresh policy is supported in commodity DDRx, while the
per-bank refresh policy is supported in mobile LPDDRx and
HBMs.
All-bank refresh: In the all-bank refresh policy, refresh
commands from the memory controller are operated at
a rank level. Once a memory controller sends a refresh

command to a memory, a subset of rows in every bank gets
refreshed. For instance, suppose 32GB memory with 8 banks
and 4KB row-size receives an all-bank refresh command.
For the all-bank refresh command, all 8 banks start the
refresh operation, and 512KB or 128 rows (32GB/8192/8)
of each bank get refreshed by a single command, and thus
a total of 4MB in the memory is refreshed with the auto-
refresh command. While refreshing, the entire rank is not
available for read or write operation since all the banks in
the rank is in the refresh mode.
Per-bank refresh: Unlike the all-bank refresh policy, the
per-bank refresh policy allows the memory controller to
send an auto-refresh command to an individual bank. As
the refresh request is sent for each bank, the other banks
not involved in the refresh are allowed to accept normal ac-
cesses. For a 32GB memory with 8 banks and 4KB row size,
a single per-bank auto-refresh command refreshes 512KB
of memory (128 rows). Although per-bank refresh allows
selective refresh for each bank, the refresh commands are
issued numBank times more often within tRET, compared
to the all-bank refresh commands.

D. Prior Work

There are several prior studies to skip unnecessary re-
freshes, reducing both energy and performance overheads.
Retention Time Aware Skipping: The length of refresh
period is determined by the shortest retention time of cells
in a DRAM. In reality, a small fraction of cells (<1%) have
a short retention time, while the majority of cells have much
longer retention times [19]. VRA [26] and RAIDR [19] are
HW-based techniques to exploit the retention time variance.
RAPID increases the refresh period through the OS memory
management by allocating memory pages by decreasing
order of retention time [40]. Baek et al. proposed OS-based
techniques on the Linux kernel and evaluated them on a real
hardware [2].

The aforementioned techniques use the static informa-
tion of retention time, however, the retention time actu-
ally changes over time and breaks the data integrity with
increased refresh periods, which is called Variable Reten-
tion Time (VRT) [12], [18], [33]. Qureshi et al. proposed
AVATAR which adaptively changes the refresh period to
reduce the number of refreshes while compensating bit errors
due to VRT [31]. However, AVATAR has a trade-off between
the data reliability and energy/performance overhead as it
periodically scrubs all memory contents to detect potential
VRT.
Access Aware Skipping: Ghosh et al. proposed Smart
Refresh which skips refreshes for recently accessed rows [8].
However, the benefits are limited to the accessed region
between two refreshes. As DRAM capacity increases, the
accessed portion between two refreshes becomes small com-
pared to the total memory capacity.

Validity Aware Skipping: SRA [26], ESKIMO [11], and
PARIS [2] skip refreshes on invalid data and unallocated
memory regions. In these techniques, an OS or compiler
specifies the regions which do not require refresh and HW
cooperates in skipping the refreshes on them. The memory
compression techniques [15], [29], [39] can potentially in-
crease the skipped regions by reducing memory utilization,
but add decompression latencies for cache misses. EAR
proposed a memory compression technique for refresh re-
ductions [10]. If the compressed space is large, it skips
refreshes. Otherwise, it puts extra ECC to increase the
refresh intervals.
Error Tolerable Data Aware Skipping: Flikker exploits
non-critical data, such as the output buffer of video pro-
cessing, to reduce DRAM refreshes [20]. To use Flikker,
application programmers should annotate the non-critical
data. The OS splits critical and non-critical data regions in
memory, and controls HW to lower the refresh rate for non-
critical data.
Value Bias Aware Skipping: Patel et al. utilized frequent
zero bits in memory without any value transformation, and
proposed to skip refreshes if some portion of DRAM cells
consists of all zeros [27]. However, as the mechanism adds
a Zero Indicator Bit for every 8∼32 bits on DRAM, its area
overhead is at least 1/8∼1/32 of DRAM capacity.
Other related work: In addition to skipping refresh
operations, there are other related studies for improving the
refresh mechanism. Bhati et al. revealed that per-row refresh
is not feasible for the current commodity DRAM due to its
overhead, proposing a new refresh batching technique [5].
Cui et al. proposed a DRAM architecture, DTail, which uses
a portion of DRAM to store the refresh information and
controls refreshes based on the information [7].

Another approach is to hide the performance penalty of
refresh by scheduling optimization of memory commands
and parallelization of refresh with accesses. Elastic Refresh
postpones the refresh if the accesses are expected [37]. Coor-
dinated Refresh exploits the low power mode of DRAM [4].
It coordinates the refresh scheduling and transition to the
low power mode to reduce refresh energy. Mukundan et al.
investigated the command queue seizure problem where the
command queue becomes full due to the requests blocked
by the on-going refresh [23]. Besides scheduling, Nair
et al. [25] added a refresh pause command to DRAM
architecture and uses the command to prioritize the read
requests. Other approaches parallelize the refresh with ac-
cesses. Chang et al. [6] and Zhang et al. [44] proposed
DRAM architectures to exploit sub-array-level parallelism
for refreshes and accesses. Kotra et al. exploited bank-level
parallelism for refreshes and accesses [17].

This work extends our prior work for zero-aware refresh
reduction [14]. This paper increase the scope of value-based
refresh reduction to provide refresh skips for unallocated
pages with a simple OS change (early zeroing of the unal-

4GB 8GB 16GB 4GB 8GB 16GB
0

50

100

150

200

Po
we

r c
on

su
m
pt
io
n(
m
W
)

64ms 32ms
Refresh
Non-refresh

Figure 4: Refresh power consumption in normal tempera-
ture(left) and extended temperature(right) [22]

Traces Allocated Memory
Google trace [41] 70%
Alibaba trace [9] 88%
Bitbrains trace [35] 28%

Table I: Average allocated memory of three traces

located pages). In addition, we further explore the detailed
DRAM-side architectural extension for true/anti cells and
efficient tracking of discharged rows.

III. MOTIVATION

A. Overheads of DRAM Refresh

DRAM refresh operations are necessary to retain the value
integrity, but the operations negatively affect both DRAM
energy and performance. As the memory capacity increases,
the portion of power consumption by the refresh operations
increases significantly. Figure 4 illustrates the power con-
sumption in DDR4 obtained with a Micron DDR4 calculator
[22]. To calculate the power consumption, we evaluate with
DDR4-2400MHz DRAM with data bus inversion (DBI) on.
For the analysis, the percentage of clock cycles for reading
from DRAM is set to 8%, while that for writing is set to
2%. The row buffer hit rate is set to 50%.

As the capacity increases, a larger number of cells should
be refreshed in a fixed time period, tRET, and thus the
power consumption by refresh operations increases. For
32ms retention time, required at high temperatures, 16Gb
memory consumes more than half of the total power for
refresh. This tendency will become much worse in the future
as the memory capacity increases [19]. Furthermore, the
refresh operation degrades the application performance since
refresh operations also consume the memory bandwidth.
While refreshing, other memory accesses are stalled, and
after refreshing, the next data access is likely to have a row
buffer miss even though the accesses have spatial locality.

B. Unallocated Pages in Systems

In typical systems, there are always a certain amount of
unallocated memory pages. For security purpose, the operat-
ing system cleanses deallocated pages by filling with zeros,

Machines
0

20

40

60

80

100

M
em

or
y
Ut
iliz

at
io
n(
%
)

Alibaba
Google
Bitbrains

Figure 5: Cumulative distributions of memory utilization
with three traces

before they are re-allocated for another process. Although
when the zero-filling procedure occurs may differ by operat-
ing system implementations, memory pages must be zeroed-
out before they are re-used. If the OS cleanses memory
pages right before re-allocation, as done by common Linux
systems, the operating system can be slightly changed to
execute the cleansing procedure at the deallocation time.
With the zero-filling at the deallocation time, idle pages are
in zero contents for longer periods of time.

Once deallocated memory pages are filled with zeros,
the ZERO-REFRESH HW can automatically detect the zero
content of the pages, and skip refreshes on them without
any extra interaction between the OS and ZERO-REFRESH.
Unlike ESKIMO [11], ZERO-REFRESH does not require any
new HW interface to mark DRAM rows as unused. As
long as the OS fills the content of memory with zeros,
refresh operations can be skipped based on the value. Such
a value-based refresh skip of ZERO-REFRESH simplifies the
OS support significantly.

In data center systems, DRAM memory is often over-
provisioned to satisfy peak demands. To show how much
memory capacity is used, we analyzed three published
data center traces from Google, Alibaba, and Bitbrains [9],
[35], [41]. Figure 5 presents the cumulative distributions of
memory utilization for the three traces, and Table I shows
the average percentage of allocated memory in the system.
For the three traces, the Bitbrains trace contains the virtual
machine data for enterprise services. Since the trace contains
the data even when VMs are idle, we used the memory
utilization only when the CPU utilization is higher than 30%
for conservative assessment of memory utilization for our
study.

As shown by the results in Table I, systems have a
significant portion of memory as unused pages. The Alibaba
trace shows a relatively small 12% unused memory on
average. However, the Google and Bitbrains traces show
30% and 72% of unused memory pages on average.

ast
ar

bw
av
es
bzi
p2
cac
tus
.

cal
cul
ix
de
alII

ga
me
ss
ge
ms
.

go
bm
k

gro
ma
cs

h2
64
ref

hm
me
r
lbm
les
lie3

d

libq
ua
nt.mc

f
mi
lc
na
md

om
ne
tpppe

rl.

po
vra
y
sje
ng
sop

lexton
to
xa
lan

zeu
sm
p
G.M

.
0

20

40

60

80

100

Ze
ro
s (

%
)

1KB
1 Byte

Figure 6: The portion of zeros at 1KB and 1Byte granularity

If the contents of the unused pages are filled with zeros,
refreshes are eliminated by ZERO-REFRESH. However, to
skip refresh operations for zero values, the values must be
properly converted for true and anti-cell row. The proposed
value transformation will encode zero pages to store them
in discharged states for true and anti-cell rows with two
different encoding schemes.

C. Zeros in Allocated Pages

In addition to unused pages, allocated pages can contain
many zero bits, and ZERO-REFRESH reduces refreshes for
such allocated pages by increasing occurrences of zero bits
and by rearranging them for effective refresh skip. Note the
zero bit can be directly represented as discharged state for
true-cells, but an inversion is necessary for anti-cells, which
will be addressed in our work. To exploit the discharged
property of DRAM cells, there are two challenges, frequency
and contiguity of zero values. First, the allocated memory
contents must contain as many zero values as possible.
Second, the zero values must be clustered to the unit of
refresh operation (row), as a refresh operation is applied
only to the entire row unit of 1KB-8KB.

Figure 6 shows the portion of zero blocks at 1KB and
1 byte granularities, in the memory contents of allocated
memory pages. The plotted data are extracted from the mem-
ory dump of SPEC CPU2006 benchmarks. For conservative
analysis, the results show the values only from the memory
pages accessed at least once from the application execution.
As shown in the figure, only an average of 2.3% of 1KB
blocks consists of consecutive zeros. However, if the block
size reduces to 1 byte, 43% of the memory contains zeros.
Although there are significant portions of zero values at byte
granularity, they are not easily exploitable with the current
row-based refresh operations. Furthermore, the frequency of
zero values can be potentially improved. ZERO-REFRESH
will increase the frequency of zero values as well as the
contiguity of them to effectively skip refreshes with the
current DRAM architecture.

IV. CHARGE-AWARE REFRESH REDUCTION

This section presents the charge-aware refresh skip mech-
anism, which is added to the DRAM module to support

ZERO-REFRESH. The mechanism requires additional logics
to the refresh component.

A. Overview

This paper proposes a charge-aware refresh mechanism to
skip refreshes for rows with all discharged cells. Such rows
with all discharged cells are denoted as discharged-rows in
the rest of the paper. The proposed refresh reduction does
not require a new interface to the software stack. It detects
discharged rows and skips refreshes on the discharged-rows
in a software-transparent manner.

ZERO-REFRESH requires to modify the refresh logic in
the DRAM module. While handling an auto-refresh (AR)
command, the discharged status of each row must be looked
up, and the refresh is skipped if the row is marked as
discharged. The design in the rest of the paper is based
on the per-bank AR, as used by REFLEX with per-bank
AR [5]. Although the per-bank AR command is supported
for LPDDR and HBM currently, the prior studies suggested
that supporting the per-bank AR to general DDR devices
requires only a minimal change [5], [6]. Alternatively sup-
porting ZERO-REFRESH in all-bank AR is also possible, at
the expense of the increased refresh logic complexity, as
the discharged status of each row of multiple banks must
be checked simultaneously and refreshes should be skipped
selectively across different banks.

Note that due to the existence of true- and anti-cells,
zero values must be properly encoded to be stored as
discharged states. We will call the value of discharged state
as discharged bit. The cell type-aware value transformation
in Section V will properly encode zero values to discharged
bits based on the locations of true and anti-cell rows.

A key component of the charge-aware refresh skip mech-
anism is to mark and track discharged-rows efficiently. The
next section presents how to record the discharged status of
each row without a large SRAM storage.

B. Tracking Discharged Rows

Discharged row detection: The first necessary component
for charge-aware refresh reduction is to identify whether
a row is a discharged-row or not based on the contents.
The discharged status of each row is determined during a
refresh operation, based on the charge status of all cells in
the row. In the DRAM organization shown in Figure 2, the
sense amplifier can detect the charge status for both true
and anti-cell rows, when rows are read for refresh. The
charge status of each bit is wire-ORed to determine the
charged or discharged status of a row, which incurs minor
area overheads. For spared rows used by row sparing for
fault tolerance, skipping refresh is disabled.
Discharged status tracking: To skip refreshes on
discharged-rows, the refresh logic must identify whether
a row to be refreshed is a discharged-row or not. The
discharged-status of all rows is stored in discharged-status

Processor

Last Level Cache

Mem. Ctrl.

Core Core Core

VT

Charge-Aware Value Trans.

EBDI Bit Plane Rotation

Chip

DRAM Logic

Chip Chip

Refresh Logic

Access Bit
Table

Charge State
Table Buffer

Part of DRAM is used

to store Charge State Table

Refresh

Counter

Sense Amplifier

Column Decoder

Row

Decoder

DRAM Chip

Discharged?

Figure 7: ZERO-REFRESH architecture

table. A naive design of the discharged-status table is to
use an SRAM array in a DIMM module. In the naive
design, the entry for a row is updated by checking the
content, when the row is written. However, with a 4KB row
size, the 32GB memory consists of more than 8.3 million
rows which require a 1MB SRAM structure in the refresh
logic to track the discharged status of each row. Adding
such a large SRAM array on the DRAM module not only
requires significant costs, but also consume non-negligible
static energy.

To assess the power cost of the naive design, we evaluated
the leakage power of a 1MB SRAM array with CACTI [24].
According to CACTI 6.5, the 1MB SRAM array requires
337.14mW of leakage power on 32 nm technology. The
leakage power of the 1MB large SRAM-based table poten-
tially consumes a significant energy. Therefore, reducing the
extra storage overhead is critical to make ZERO-REFRESH
practical.

To reduce the leakage power of the SRAM array, ZERO-
REFRESH stores the discharged-status table in part of the
DRAM space, instead of storing it entirely in an extra
SRAM array. However, storing the table in DRAM causes
a costly extra step during memory writes. For each write,
the discharged-status table entry for the row may need to be
updated as the row content can change, requiring an extra
DRAM write. To avoid such extra writes to DRAM, our
optimization employs a coarse-grained access bit table in
an SRAM array. Each entry with a one-bit state records
whether any write has been conducted for a range of rows
since the last refresh cycle. For each memory write request,
the corresponding bit in the access bit table is set to true.
Note that one bit in the access bit table covers many rows,

Chip 0 Chip 1 Chip 2 Chip 3

F T FT

Row 0 Row 1 Row 2 Row 3

Charge State

Table

Refresh
Counters

Figure 8: Refresh counter modification

and thus the SRAM array for the table is small. The range
of rows corresponding to each entry is sized to match the
number of rows refreshed by an auto-refresh command.

While processing an auto-refresh command, if the access
bit is set in the table, the refresh operations are done nor-
mally without any skipping for the range of rows. However,
during the refresh of each row, the actual discharged status
of the row is checked. Since each row is already fetched
for refresh, the discharged checking does not require any
extra DRAM read. The renewed discharged-status bits for
the range of rows is collected in a register, and they are
written to the DRAM-resident discharged-status table only
once for each AR command.

For an auto-refresh command, if the access bit is not set,
it indicates that no data update occurred for the range of
rows covered by the AR command. Therefore, the refresh
operation reads the discharged-status bits for the rows from
the DRAM-resident table, and uses the information to skip
refresh operations depending on the discharged status. This
coarse-grained access bit eliminates the need for updating
the DRAM-resident table for every write request. Note that
the discharged status bits of the refreshed rows for each AR
command are read from the DRAM only once to process the
AR command, and temporarily stored in a 128-bit register
for 32Gb memory device.

Given 8K refresh operations within cell retention time
(tRET) as described in Section II-C, ZERO-REFRESH parti-
tions the memory to (8,192 * numBank) sets for per-bank
refreshes. Therefore, ZERO-REFRESH manages an access
bit per MemorySize

SetSize . With a 32GB and 8-bank memory, the
memory is partitioned to 512KB (32GB

8192∗8) with per-bank AR.
In the case, the size of the SRAM for access bits is 8KB
(=8192 * 8bits). The CACTI-estimated area overhead of
8KB SRAM is as small as 0.076mm2. The static power
reduces from 337.14mW with the naive full SRAM design
to 2.71mW for the 8KB SRAM. This optimized design
drastically reduces the SRAM capacity and power required.

C. Refresh Counter Modification

In DRAM, a refresh counter exists per chip, which in-
dicates the next row to be refreshed. In ZERO-REFRESH,
the refresh counters are initialized in a staggered manner to
refresh the rotated cachelines. This staggered refresh across
chips is necessary to match the discharged value mapping
used by value transformation presented in Section V. The

1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0

Delta Delta

lsb of deltas

Base

Base msb of deltas

EBDI Stage

Bit Plane Stage

(a) Processing cacheline data (b) Cachelines across multiple chips after data rotation

1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0

1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0

Row 0

Row 1

Row 2

Row 3

1

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

4
Rows with the same

number are refreshed

together

Chip 1 Chip 4

~

Figure 9: Value transformation overview

initial values of the refresh counters are chip numbers and
they are increased by the following formula.

Re f reshRow = ((initRow+n) mod numChip)+ n
numChip)

initRow is the initial value of the refresh counter set to
the chip number. n is the row number to be refreshed at
chip 0, and numChip is the number of chips in memory.
Figure 8 illustrates a four-chip example, with each column
corresponding to a chip. In the figure, the rows in the same
color across four chips are refreshed simultaneously, by
setting the refresh counters in four chips in a staggered way.
With such a refresh order across chips, the discharged-rows
formed after the data rotation stage in Section V match the
rows refreshed together in different chips.

D. Changes in DRAM modules

Figure 7 describes the modifications in the processor and
DRAM modules ZERO-REFRESH requires. The cell type-
aware value transformation components in the processor side
is explained in the next section. The colored components in
the figure show additional components for ZERO-REFRESH.
The memory modification is to change the refresh mech-
anism to use the in-DRAM discharged-status table, and to
add the coarse-grained access bit table. To support the access
bit table, ZERO-REFRESH requires an 8KB SRAM buffer as
described in the Section IV. In addition, as the discharged-
status table is stored in DRAM, ZERO-REFRESH also adds
a 16B register as a discharged-status buffer for 128 rows,
which is per-bank refresh granularity for each AR command.
The access bit table and discharge status buffers are located
in a separate chip in a DRAM module, which can be added
to the register clock driver (RCD) chip used in RDIMM or
LRDIMM.

In addition to the refresh mechanism changes, the dis-
charged checking logics must be added to DRAM. During a
refresh operation, the discharged status checking is done for
each refresh row. The checked state is collected in the 128-
bit charge state register, and later written to the discharged-
status table stored in DRAM at the end of AR.

V. VALUE TRANSFORMATION

This section presents the value transformation architecture
of ZERO-REFRESH to produce consecutive zero values. As
shown in Figure 7, the value transformation is done at the
CPU-side between the LLC miss handling and memory
controllers. The cell types of all rows are detected by the
method used in the prior work [16], [42], and data are
encoded differently for true and anti-cell rows.

A. Overview

The charge-aware refresh reduction mechanism can skip
refreshes for a row if the entire row contains discharged
values. For unallocated memory, the contents are filled with
zeros by the OS, but the zero values are converted properly
considering the true and anti-cell types. In this section,
we propose a value transformation to produce consecutive
discharged bits both for the unallocated memory and allo-
cated pages exploiting the low variance in values in typical
memory contents.

Figure 9 illustrates the overall architecture of the value
transformation in ZERO-REFRESH. The value transformation
consists of two steps; a cacheline data transformation step
that applies to all cachelines evicted from LLC as shown
in Figure 9 (a) and a data rotation step that maps cacheline
data to memory chips according to row addresses as shown
in Figure 9 (b). During the two steps, three logical stages
are used: 1 In the EBDI stage, using base-delta-immediate
representation, values are converted to generate zero bits
from the original cacheline. 2 In the bit transform stage,
zero bits are transposed toward more significant bit positions.
3 In the data rotation stage, values are rotated to aggregate
zero-words in the same refresh row. Note that the first EBDI
stage is the only stage that incurs non-negligible overheads.
The second stage and the third stage are the stages with wire
routing without logic overheads.

B. EBDI stage

EBDI (Encoded BDI) is originated from the BDI (Base-
Delta-Immediate) compression technique [30]. Unlike the
compression technique, which compresses data by taking
advantage of the value locality within a cacheline, the EBDI

0xFACEBED0 0xFACEBED1 0xFACEBED2 0xFACEBED3 0xFACEBED4 0xFACEBED5 0xFACEBED6 0xFACEBED7

4 Byte

0xFACEBED0

- - - - - - -
0xFACEBED0 0x00000001 0x00000002 0x00000003 0x00000004 0x00000005 0x00000006 0x00000007

4 Byte

Figure 10: EBDI stage in ZERO-REFRESH

stage transforms the original cacheline into a converted
cacheline containing more zero bits with the same size.

In the BDI compression, a cacheline is compressed to a
base value and a sequence of delta values. The delta values
are the differences between the base value and original
value. Figure 10 illustrates the EBDI stage with a 32-byte
cacheline divided into 8 words of 4B word size. The first
word is selected as the base value, the rest of the words are
represented by the delta values from the base. As the value
differences tend to be small within a cacheline, the delta in
each word has a small absolute value either with a negative
or positive sign. Using the first 4B as the base, the rest of
the 7 words are represented with the differences commonly
expressed with a smaller number of bytes. Note that in the
experimental configuration in the paper, the word size is
fixed to 8 bytes, although the illustration in this section uses
the word size of 4 bytes for simplicity.

From the original BDI compression, ZERO-REFRESH
makes several modifications in EBDI. First, EBDI does not
compress the data size, and the delta values are stored in
the original word size. In addition, the delta value of the
first word is not stored as the first word is always used as
the base. As a result, the EBDI stage does not change the
total cacheline data size. Second, EBDI does not require
extra bits to store the sign bits of deltas. Although the BDI
technique uses extra space to store sign bits for the positive
and negative delta values [28], a new value encoding is
devised for EBDI to represent negative deltas efficiently.

In addition, the encoding also considers the true- and anti-
cells to maximize the occurrence of discharged bits in the
delta representation. To generate discharged bits, EBDI pro-
vides two different encoding types for true-cells and anti-
cells. Unlike two’s complement representation where most
of the high-order bits are 1 in negative numbers, EBDI gen-
erates zeros in the high-order bits for true-cell encoding. For
anti-cells, the value 1 needs to be placed in high-order bits
to maximize the occurrence of discharged bits. Thus, anti-
cell encoding employs the bits reversed from the true-cell
encoding.

Figure 11 shows the comparison between two’s comple-
ment, true-cell and anti-cell encodings. The signed numbers
inside the circles are the original delta value, and the binary
numbers outside the circles are the encoded outputs. EBDI
must select the encoding scheme differently for true- and
anti-cells. Using the cell type identification method from
the prior work [16], [42], ZERO-REFRESH applies different

(a) Two’s complement (b) Encoding for BL

(c) Encoding for BL

Figure 11: Encoding schemes for EBDI. Italic represents
sign bit

0xFACEBED0

0
x
0
0
0
0
0
0
0
1

0
x
0
0
0
0
0
0
0
2

0
x
0
0
0
0
0
0
0
3

0
x
0
0
0
0
0
0
0
4

0
x
0
0
0
0
0
0
0
5

0
x
0
0
0
0
0
0
0
6

0
x
0
0
0
0
0
0
0
7

4 Byte

0xFACEBED0

0x00000001

0x00000002

0x00000003

0x00000004

0x00000005

0x00000006

0x00000007

7 Bits

Figure 12: Bit plane transformation

encoding based on DRAM row addresses. Note that the cell
type identification does not need to be 100% accurate. Even
if the cell type of a row is mis-predicted, the original values
are returned by the reverse value transformation for DRAM
reads. Miss-prediction affects only the effectiveness of re-
fresh reduction.

C. Bit Plane Stage

Transforming the bit-plane is motivated by BPC com-
pression technique [13]. After the prior EBDI stage, each
word within a cacheline contains a small delta value with
consecutive zero bits in high order bits, but zero bits are not
consecutive across words, as the least significant byte tends
to be a non-zero in its original delta value. The bit plane
transformation re-orders bits within a 64B unit to place zero
bits consecutively.

The bit-plane transformation is demonstrated in Figure 12.
In the figure, values in the shaded area show the delta values
in the low-order bits of each word. Transposing the bit
plane results in non-zero values concentrated in the lowest-
order word in the cacheline, placing zero bytes consecutively
except for the first base word and the lowest-order word.

!"#$%&$#' !"#$%&$#' (")*+%&$#'

,$#'- ,$#'. ,$#'/

01234 0123- 0123. 0123/

5+6"%&$#'

7$*+*2$8%9$# 5:#6*

(7;<%5:#6*%<$'"

!"#$%&$#' !"#$%&$#' (")*+ &$#'

,$#'/,$#'.,$#'-,$#'4

0123/0123.0123-01234

!"#"$%&#"#'&($)#"*+

,+-&./$0&(#.&11+.

!%2,$03'45

Figure 13: Writing a cacheline to multiple DRAM chips

Figure 9 (a) shows the changes of a cacheline through the
EBDI and bit plane stages. The figure uses an example of a
32-bit (4B) cacheline. The word size is 8 bits. Through the
two stages, non-zero bytes are concentrated in the base word
and the least significant word (delta word) of the cacheline.

D. Data Rotation Stage

The final step of transformation is the data rotation stage
to map a cacheline across multiple DRAM chips of a DIMM
in the way matching the refresh unit. The actual mapping
depends on the byte-to-chip mapping scheme used by the
target DIMM architecture, and it should be configured to
match the DRAM setup. In this section, we discuss this
stage with a common DDRx mapping architecture. Figure 9
(b) presents the outcome of the data rotation stage which
maps transformed cachelines into four memory chips. Each
column corresponds to a chip. To simplify the figure, a row
in a chip contains only one word, and four horizontal rows
of four chips contains a cacheline. After the data rotation
stage, the base words of consecutive cachelines are stored
in different columns, mapping multiple cachelines into four
chips in a rotated manner. The circled numbers represent
groups of rows refreshed at the same time across multiple
chips.

First, this stage must consider the byte mapping scheme
for multiple DRAM chips. For example, when a 64-byte
cacheline is written on a typical DDRx memory with the
burst mode, the memory controller transfers a sequence of
8-byte words to 8 chips, a byte per chip in each step. The
mapping of an 8-byte word across 8 chips will distribute the
non-zero bits in the base and delta words in all the chips.
To avoid such dispersed placement, the byte locations are
rearranged to concentrate the base and delta words in their
assigned chips. Figure 13 outlines the byte mapping change.
It places the adjacent bytes to different words, to make the
DRAM burst mode re-gather the non-zero base word to the
first chip.

The second mapping consideration is to rotate the chip
location of the words of a cacheline. As shown in Figure 9
(b), this rotation step allows the base words are grouped in
the rows refreshed together, and the delta words are grouped
together too. Therefore, discharged words are concentrated
in the row groups refreshed together, without any base and
delta words in the rows.

CPU Processor 4 cores, out-of-order x86 ISA, 4GHz

CPU L1-D cache I cache 32KB, D cache 32KB,
64B cache-line, 8-way

CPU L2 cache 2 MB per core, 64B cache-line, 32-way

Memory
Configuration

32GB capacity,
8 chips, 8 banks, 4KB row buffer,
1 logic component for refresh management

Timing
Parameters (ns)

tRAS=28, tRCD=11, tRRD=5, tFAW=24,
tRFC=28

Chip Energy
Parameters (mA)

IDD0=23, IDD1=30, IDD2P=7 IDD2N=12,
IDD3=8, IDD4W=58 IDD4R=60, IDD5=120,
IDD6=8 IDD7=105

Table II: Simulated system configuration

With the two mapping factors, the data rotation stage
remaps the byte location of a cacheline to match the refresh
unit. In Figure 9 (b), the diagonally located words in four
chips contain the base values. Next four words located
diagonally contain non-zero delta values. The other two
sets of wrapped diagonal words contain all discharged bits.
The refresh mechanism will exploit the regular location of
discharged words to effectively skip refresh operations.

VI. EXPERIMENTAL RESULTS

A. Evaluation Methodology

Our evaluation uses a timing simulator that combines
McSimA+ [1], GEMS [21], and DRAMSim2 [34]. The cores
are modeled with McSimA+ with the PIN-based driver [32]
and the cache hierarchy is modeled with GEMS (Ruby). The
core simulator models 4-way out-of-order execution cores.
The processor contains four cores, and the last-level cache
capacity is 8MB, 2MB LLC size per core. For the main
memory simulation, we integrate DRAMSim2 to GEMS,
and configure the DRAM model to the DDR4 parameters.
Table II presents the detailed configuration for the simu-
lated system. To model an accurate value conversion, the
execution-driven simulation uses the actual memory contents
during the application execution.

We assume the temperature is in the extended temperature
range, using 32ms as the base refresh rate. We use the
timing and power parameters from the ones described in
[5]. Table II lists the relevant memory timing parameters
(ns) and current values (mA).

We conduct our evaluations with 17 benchmarks from
SPECCPU 2006 [36], 2 benchmarks from NPB [3], and
4 benchmarks from TPC-H [38] suites as our benchmark
applications. For each evaluation, the identical benchmark
runs in each core. After fast-forwarding each application
to the representative phase, the results are collected by
executing more than 256 ms to achieve 8 refresh operations.

To reflect the memory utilization of real-world systems,
we use four different memory allocation scenarios. The first
scenario (100% alloc) does not have any unused memory
page. The entire DRAM is filled with the memory page of
an application. In addition, we employ three memory usage

Figure 14: Normalized refresh operations for 100%, 88%, 70%, and 28% memory usage scenarios

Figure 15: Normalized refresh energy consumption compared to conventional refresh (The energy overheads of ZERO-
REFRESH are included.)

Figure 16: Normalized refresh in normal temperature and
extended temperature (100% allocated)

scenarios from the three traces presented in Table I. The
three scenarios (88% Alloc, 70% Alloc, and 28% Alloc)
correspond to Alibaba, Google, and Bitbrains traces.

B. Results

Refresh Reduction: This section evaluates the reduction
of refresh operations with ZERO-REFRESH compared to the
conventional DDR under four different memory utilization
scenarios. Figure 14 shows the refresh reduction normalized
to the conventional DRAM refresh. As shown in the fig-
ure, ZERO-REFRESH reduces on average 37.1% of refresh
operations from the baseline. Even though the row buffer
size is 4KB, ZERO-REFRESH effectively gathers zero values
in 37% of rows on average, even if the entire memory is
used for applications without any unused pages. Since the

value-based nature of ZERO-REFRESH, the effectiveness of
value transformation can vary by the memory contents of
diverse applications. Although gems. and sphinx have
high reduction ratios, omnetpp, perl., and sp.C have
only small reduction ratios.

As the portion of unallocated pages increases, the refresh
reduction ratios increase significantly. For the three scenar-
ios, the refresh operations are reduced by 46%, 57%, and
83% respectively. For the most optimistic Bitbrains scenario,
more than 80% of DRAM refreshes can be reduced by
ZERO-REFRESH.

A comparison between normal temperature mode, which
refreshes all cells within 64ms, and extended temperature
mode, which refreshes all cells within 32ms, is illustrated
in Figure 16. As shown in the graph, the number of write
accesses within 64ms is limited compared to 32ms. The av-
erage difference is only about 4.4% less reduction for normal
temperature mode compared to the extended temperature
mode.

Energy Analysis: This section evaluates the energy saving
by ZERO-REFRESH. To analyze energy consumption prop-
erly, we also evaluate the extra power consumption over-
heads by both of the EBDI module and access bit table. The
EBDI module is utilized for both memory reads and writes
while the access bit is utilized for write requests only. The
energy of the EBDI component is modeled with the Vivado
Design Suite 2017.4 over a Zynq device (xc7z020clg484-1)

Figure 17: Normalized IPCs compared to conventional re-
fresh

with a 1ns clock which corresponds to 1GHz [43]. Accord-
ing to the design suite, the EBDI component consumes 15pJ
per operation.

The power consumption of the access bit table is modeled
with CACTI 6.5 [24]. For the simulated system configu-
ration, the 8KB SRAM access bit table is required, which
consumes 2.71mW of standby leakage power based on 32nm
technology. Both of the aforementioned extra power con-
sumption for the ZERO-REFRESH components are included
in our overall energy evaluation. We also add the amount
of energy to read the zero status table from the DRAM for
each refresh cycle.

Figure 15 compares the energy consumption of ZERO-
REFRESH to the baseline DDR auto-refresh. ZERO-REFRESH
reduces the overall energy consumption by 36.5% from the
baseline. With the three idle memory scenarios, the energy
consumptions are reduced by 44%, 55%, and 82%. Despite
the extra components added in the proposed technique, the
energy reduction by refresh reduction far outweighs the
energy overheads of the extra components.
IPC Results: As a memory bank cannot serve normal
requests during its refresh process, reducing refresh op-
erations can potentially improve the performance as well
energy consumption, by increasing the effective bandwidth.
Figure 17 shows the normalized IPCs compared to the
baseline. In terms of instructions per cycle (IPC), the average
performance with the benchmark applications improves by
5.7%. The maximum performance improvement is achieved
from gemsFDTD by 10.8%, while minimum performance
improvement is with goBMK by 0.3%.
Row Size Sensitivity: The size of row buffer can affect
the effectiveness of ZERO-REFRESH, as it must gather zero
values entirely in a row to skip future refresh operations
on the row. However, if the row size increases, the chance
to gather zero values entirely in a row will decrease. In
commodity DRAMs, row sizes of 2KB-8KB are often
available. In this evaluation, we examine how different row
buffer sizes affect the effectiveness of refresh reduction. We
evaluate a row size from 2KB to 8KB with ZERO-REFRESH.
Figure 18 presents the sensitivity of the refresh reduction

2K 4K 8K
0.0

0.2

0.4

0.6

0.8

1.0

Re
fre

sh
 R
at
io

Figure 18: Normalized refresh operations with 2K, 4K, and
8K row buffer sizes (100% allocated)

Figure 19: Scalability comparison between smart refresh and
ZERO-REFRESH

on average for the identical set of benchmarks. For the
figure, 100% memory is allocated without any idle pages. As
shown in the figure, the 2KB row buffer reduces refreshes
by 8.6% more than 4KB row buffer size, resulting 46.3%
of refresh reduction from the baseline. The 8KB row buffer,
on the other hand, reduces 33.9% from the baseline which
is 3.8% less refresh reduction than that with the 4KB row
buffer size. Although our base configuration uses the 4KB
row buffer size for conservative evaluation, a smaller low
buffer size will improve the effectiveness of ZERO-REFRESH
significantly.

C. Comparison to Access-Aware Refresh

This section compares the refresh reduction between the
prior access-based Smart refresh and ZERO-REFRESH. The
access-based approach skips refreshes for recently accessed
rows, and thus its effectiveness relies on how much portion
of memory capacity is accessed during a refresh cycle. As a
larger portion of memory is accessed, more refresh reduction
is possible. The capacity of memory has been increasing
precipitously to run large memory applications. However,
the portion of memory accessed during a refresh cycle is
more dependent on the working set of applications.

Figure 19 presents the normalized refresh operations
for Smart and ZERO-REFRESH when the memory capacity
increases from 4GB to 32GB. For the experiments of ZERO-
REFRESH, the unused memory space is filled with the data
from the benchmark application. Without the assumption,
the unused memory space can be filled with zero values,
which will unfairly favor the ZERO-REFRESH mechanism.
Note that Smart refresh was originally proposed for a 3D
stacked DRAM with a modest 64MB capacity.

The refresh increases from 52.6% in 4GB of memory to
94.1% for mcf with Smart refresh, while ZERO-REFRESH
exhibits almost constant refresh reduction across different
memory sizes. As the working sets of applications do not in-
crease with the memory capacity increase, the effectiveness
of Smart refresh is significantly reduced with large memory
capacities. When 30% idle pages are added, as in the Google
data center scenario, ZERO-REFRESH becomes much more
effective than Smart Refresh.

VII. CONCLUSION

This paper proposed a novel value-based refresh reduction
technique inspired by compression techniques. The proposed
technique can skip refreshes for unused pages in an OS-
transparent way. In addition, the paper showed that the
memory data content can be transformed to contain more
consecutive discharged bits by base-delta representation and
transposition of bit location. The proposed technique effec-
tively reduces 37% of refreshes on average compared to the
conventional DDR memory, even if the entire memory is
utilized. As the memory utilization decreases, the refresh
reduction increases significantly, since it can effectively skip
refreshes on unused pages.

ACKNOWLEDGEMENT

This work was supported by National Research Foun-
dation of Korea (NRF-2019R1A2B5B01069816) and the
Institute for Information & communications Technology
Promotion (IITP-2017-0-00466). Both grants are funded by
the Ministry of Science and ICT, Korea. Changdae Kim was
supported by Electronics and Telecommunications Research
Institute(ETRI) grant funded by the Korean government
(20ZS1300).

REFERENCES

[1] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi, “McSimA+:
A manycore simulator with application-level+ simulation and
detailed microarchitecture modeling,” in Proc. International
Symposium on Performance Analysis of Systems and Software
(ISPASS), 2013.

[2] S. Baek, S. Cho, and R. Melhem, “Refresh now and then,”
IEEE Transactions on Computers, vol. 63, no. 12, pp. 3114–
3126, Dec 2014.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber et al., “The NAS parallel bench-
marks,” https://www.nas.nasa.gov/-publications/npb.html.

[4] I. Bhati, Z. Chishti, and B. Jacob, “Coordinated refresh:
Energy efficient techniques for DRAM refresh scheduling,”
in Proc. International Symposium on Low Power Electronics
and Design (ISLPED), 2013.

[5] I. Bhati, Z. Chishti, S.-L. Lu, and B. Jacob, “Flexible auto-
refresh: Enabling scalable and energy-efficient DRAM refresh
reductions,” in Proc. International Symposium on Computer
Architecture (ISCA), 2015.

[6] K. K. W. Chang, D. Lee, Z. Chishti, A. R. Alameldeen,
C. Wilkerson, Y. Kim, and O. Mutlu, “Improving DRAM per-
formance by parallelizing refreshes with accesses,” in Proc.
International Symposium on High Performance Computer
Architecture (HPCA), 2014.

[7] Z. Cui, S. A. McKee, Z. Zha, Y. Bao, and M. Chen, “DTail:
A flexible approach to DRAM refresh management,” in Proc.
International Conference on Supercomputing (ICS), 2014.

[8] M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced
memory controller design for reducing energy in conventional
and 3D die-stacked DRAMs,” in Proc. International Sympo-
sium on Microarchitecture (MICRO), 2007.

[9] J. Guo, Z. Chang, K. Wang, and G. Xu, “cluster-trace-v2018,”
https://github.com/alibaba/clusterdata/tree/master/cluster-
trace-v2018.

[10] J. Hong, H. Kim, and S. Kim, “EAR: ECC-aided refresh
reduction through 2-D zero compression,” in Proc. Interna-
tional Conference on Parallel Architectures and Compilation
Techniques (PACT), 2018.

[11] C. Isen and L. John, “ESKIMO - energy savings using
semantic knowledge of inconsequential memory occupancy
for DRAM subsystem,” in Proc. International Symposium on
Microarchitecture (MICRO), 2009.

[12] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson,
and O. Mutlu, “The efficacy of error mitigation techniques
for DRAM retention failures: A comparative experimental
study,” in Proc. International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), 2014.

[13] J. Kim, M. Sullivan, E. Choukse, and M. Erez, “Bit-plane
compression: Transforming data for better compression in
many-core architectures,” in Proc. International Symposium
on Computer Architecture (ISCA), 2016.

[14] S. Kim, W. Kwak, C. Kim, and J. Huh, “Zebra refresh: Value
transformation for zero-aware DRAM refresh reduction,”
IEEE Computer Architecture Letters (CAL), vol. 17, no. 2,
2018.

[15] S. Kim, S. Lee, T. Kim, and J. Huh, “Transparent dual
memory compression architecture,” in Proc. International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT), 2017.

[16] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu, “Flipping bits in memory
without accessing them: An experimental study of DRAM

https://www.nas.nasa.gov/-publications/npb.html
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018

disturbance errors,” in Proc. International Symposium on
Computer Architecture (ISCA), 2014.

[17] J. B. Kotra, N. Shahidi, Z. A. Chishti, and M. T. Kandemir,
“Hardware-software co-design to mitigate DRAM refresh
overheads: A case for refresh-aware process scheduling,” in
Proc. International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2017.

[18] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu,
“An experimental study of data retention behavior in modern
DRAM devices: Implications for retention time profiling
mechanisms,” in Proc. International Symposium on Computer
Architecturei (ISCA), 2013.

[19] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-
aware intelligent DRAM refresh,” in Proc. International Sym-
posium on Computer Architecture (ISCA), 2012.

[20] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn,
“Flikker: Saving DRAM refresh-power through critical data
partitioning,” in Proc. International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), 2011.

[21] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood, “Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset,” ACM SIGARCH Computer Archi-
tecture News, vol. 33, no. 4, 2005.

[22] Micron Technology Inc, “DDR4 SDRAM system-power cal-
culator,” https://www.micron.com/support/tools-and-utilities/
power-calc/.

[23] J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and J. F.
Martı́nez, “Understanding and mitigating refresh overheads in
high-density DDR4 DRAM systems,” in Proc. International
Symposium on Computer Architecture (ISCA), 2013.

[24] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches,” HP laboratories,
2009.

[25] P. Nair, C. C. Chou, and M. K. Qureshi, “A case for refresh
pausing in DRAM memory systems,” in Proc. International
Symposium on High Performance Computer Architecture
(HPCA), 2013.

[26] T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the
DRAM refresh count for merged DRAM/logic LSIs,” in
Proc. International Symposium on Low Power Electronics and
Design (ISLPED), 1998.

[27] K. Patel, L. Benini, E. Macii, and M. Poncino, “Energy-
efficient value-based selective refresh for embedded
DRAMs,” in Proc. International Workshop on Power and
Timing Modeling, Optimization and Simulation (PATMOS),
2005.

[28] G. Pekhimenko, “Talk in Microsoft Research: Base-Delta-
Immediate compression: Practical data compression for on-
chip caches,” https://youtu.be/t7PwCRiVcn4?t=20m20s.

[29] G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B.
Gibbons, M. A. Kozuch, and T. C. Mowry, “Linearly com-
pressed pages: a low-complexity, low-latency main memory

compression framework,” in Proc. International symposium
on Microarchitecture (MICRO), 2013.

[30] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Base-Delta-Immediate
compression: Practical data compression for on-chip caches,”
in Proc. International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2012.

[31] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu,
“AVATAR: A variable-retention-time (VRT) aware refresh
for DRAM systems,” in Proc. International Conference on
Dependable Systems and Networks (DSN), 2015.

[32] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “PIN: A
binary instrumentation tool for computer architecture research
and education,” in Proc. Workshop on Computer Architecture
Education (WCAE), 2004.

[33] P. J. Restle, J. W. Park, and B. F. Lloyd, “DRAM variable
retention time,” in International Technical Digest on Electron
Devices Meeting, Dec 1992, pp. 807–810.

[34] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2:
A cycle accurate memory system simulator,” IEEE Computer
Architecture Letters (CAL), vol. 10, no. 1, 2011.

[35] S. Shen, V. van Beek, and A. Iosup, “Statistical characteriza-
tion of business-critical workloads hosted in cloud datacen-
ters,” in The 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), 2015.

[36] Standard Performance Evaluation Corporation, “SPEC CPU
2006,” https://www.spec.org/cpu-2006/.

[37] J. Stuecheli, D. Kaseridis, H. C. Hunter, and L. K. John,
“Elastic refresh: Techniques to mitigate refresh penalties in
high density memory,” in Proc. International Symposium on
Microarchitecture (MICRO), 2010.

[38] TPC, “Transaction processing performance council,” http://
www.-tpc.org/tpch/.

[39] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O.
Schulz, T. B. Smith, M. E. Wazlowski, and P. M. Bland,
“IBM memory expansion technology (MXT),” IBM Journal
of Research and Development, 2001.

[40] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-
aware placement in DRAM (RAPID): software methods for
quasi-non-volatile DRAM,” in Proc. International Symposium
on High-Performance Computer Architecture (HPCA), 2006.

[41] J. Wilkes, “More google cluster data,” http://googleresearch.
blogspot.com/2011/11/more-google-cluster-data.html.

[42] X.-C. Wu, T. Sherwood, F. T. Chong, and Y. Li, “Protecting
page tables from RowHammer attacks using monotonic point-
ers in DRAM true-cells,” in Proc. the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[43] Xilinx Inc, “Vivado Design Suite 2017.4,” https://www.xilinx.
com/support/download.html.

[44] T. Zhang, M. Poremba, C. Xu, G. Sun, and Y. Xie, “CREAM:
A concurrent-refresh-aware DRAM memory architecture,” in
Proc. International Symposium on High Performance Com-
puter Architecture (HPCA), 2014.

https://www.micron.com/support/tools-and-utilities/power-calc/
https://www.micron.com/support/tools-and-utilities/power-calc/
https://youtu.be/t7PwCRiVcn4?t=20m20s
https://www.spec.org/cpu-2006/
http://www.-tpc.org/tpch/
http://www.-tpc.org/tpch/
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com/support/download.html

