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ABSTRACT

Although traditional CPU scheduling efficiently utilizes mul-
tiple cores with equal computing capacity, the advent of
multicores with diverse capabilities pose challenges to CPU
scheduling. For the multi-cores with uneven computing ca-
pability, scheduling is essential to exploit the efficiency of
core asymmetry, by matching each application with the best
core type. However, in addition to the efficiency, an im-
portant aspect of CPU scheduling is fairness in CPU pro-
visioning. Such uneven core capability is inherently un-
fair to threads and causes performance variance, as appli-
cations running on fast cores receive higher capability than
applications on slow cores. Depending on co-running ap-
plications and scheduling decisions, the performance of an
application may vary significantly. This study investigates
the fairness problem in multi-cores with uneven capability,
and explores the design space of OS schedulers supporting
multiple fairness constraints. In this paper, we consider
two fairness-oriented constraints, minimum fairness for the
minimum guaranteed performance and uniformity for per-
formance variation reduction. This study proposes three
scheduling policies which guarantee a minimum performance
bound while improving the overall throughput and reduc-
ing performance variation too. The three proposed fairness-
oriented schedulers are implemented for the Linux kernel
with an online application monitoring technique. Using an
emulated asymmetric multi-core with frequency scaling and
a real asymmetric multi-core with the big.LITTLE architec-
ture, the paper shows that the proposed schedulers can effec-
tively support the specified fairness while improving overall
system throughput.

CCS Concepts

•Software and its engineering→ Scheduling; •Computer
systems organization → Multicore architectures;
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1. INTRODUCTION
Traditional CPU scheduling by the operating system effi-

ciently utilizes multiple cores with the same computing capa-
bility. However, recent architectural changes pose challenges
for the CPU scheduling with the advent of cores with differ-
ent computing capabilities in a system. One example of such
architectural changes is the asymmetric multi-core proces-
sor (AMP) with multiple types of cores, supporting the same
instruction-set architecture (ISA) with different computing
capabilities [9, 2]. Furthermore, process variation incurs dif-
ferent maximum frequencies for cores in a multi-core [20, 5],
and common dynamic voltage and frequency scaling (DVFS)
also allows a CPU to have cores with different settings for
computing capability and energy consumption.

To fully exploit the potential of such multi-cores with un-
even capability, scheduler support is crucial. While sched-
uling for asymmetric multi-cores has been widely studied [9,
18, 14, 15, 17, 8, 11, 22, 21, 20], most of the studies aim at
maximizing overall throughput by exploiting uneven capa-
bility and application behaviors. Such throughput-maximizing
scheduling assigns fast cores to applications with high rel-
ative performance gains with fast cores compared to slow
cores.

However, an important but neglected aspect of CPU sched-
uling in the prior studies is fairness of CPU provisioning.
Unfair scheduling may not meet deadlines of real-time ap-
plications [13]. Furthermore, such fairness has become crit-
ical as recent cloud computing environments are required
to provide consistent performance for their guest machines
in consolidated systems. Although there have been several
studies to improve fairness for asymmetric multi-cores [14,
15, 11, 21], the schedulers do not support minimum per-
formance guarantee, which is essential for such consolidated
systems.

In this paper, we explore two different aspects of fair-
ness. The first one is to guarantee a minimum performance
regardless of uneven core capability. Such minimum fair-
ness guarantee sets the lower bound of performance for each
application. The second aspect is to reduce relative perfor-
mance variance. For each application, fair scheduling must
reduce the variation of performance degradation normalized
to an ideal isolated run. These aspects support two different
goals of fair scheduling, first, setting a certain limit in possi-
ble performance degradation by uneven core capability, and
second, reducing performance variation. Furthermore, while
aiming the two fairness-oriented goals, the overall through-
put must be improved to exploit the performance/energy
efficiency from uneven cores. Prior throughput-maximizing



schedulers often sacrifice fairness of CPU provisioning ex-
cessively to gain only a small amount of extra throughput.
This paper proposes three new fairness-oriented sched-

ulers for multi-cores with uneven computing capability, which
allow a certain level of fairness to be guaranteed while im-
proving throughput. The first scheduler, sim-fair, reduces
performance variation of the prior throughput-maximizing
scheduler by relaxing the strict throughput-oriented alloca-
tion. It attempts to reduce the variance, although no fixed
performance lower bound is guaranteed. The second sched-
uler, min-fair, always supports a fixed level of minimum
fairness constraint, guaranteeing that the performance of
no application is degraded beyond a preset limit compared
to the fair CPU allocation. The third scheduler, sim-min-
fair, combines the benefits of the previous two schedulers.
It supports minimum performance guarantee while reducing
performance variation. The three different fairness-oriented
schedulers provide the system administrator with the mech-
anisms to choose different ways of setting fairness require-
ments. All three schedulers still attempt to improve the
overall throughput as long as fairness constraints are satis-
fied.
To show such fairness-oriented schedulers are feasible, we

modified the CFS scheduler in Linux 3.7.3 to support fine-
grained scheduling for different core capabilities. We im-
plemented the scheduler to work effectively for two differ-
ent core capabilities with dynamic voltage frequency scaling
(DVFS). A challenge in its implementation is the estimation
of fast core speedup. In the prior work, the performance
gain with fast cores, fast core speedup, is estimated online
or offline indirectly. Although only the relative order of fast
core speedup is sufficient for the prior throughput-oriented
scheduling, providing fairness guarantee requires a more ac-
curate fast core speedup estimation. To improve the accu-
rate estimation with low overheads, we have implemented
an exploration-based fast core speedup estimation.
We evaluated our schedulers on two different setups with

uneven core capability. The first setup is an emulated asym-
metric multi-core processor using DVFS to mimic core asym-
metry. The second one uses a real asymmetric multi-core
processor with the ARM big.LITTLE architecture [4]. The
results with various mixes show that our schedulers guaran-
tee the specified fairness and still improve the overall through-
put.
The main contributions of this paper compared to prior

work are as follows.

• Unlike prior fairness studies for uneven cores focusing
on reducing performance variance, the proposed sched-
uler supports minimum fairness guarantee, to strictly
limit the performance degradation beyond the allowed
level. This study investigates two different aspects of
fairness, minimum performance and performance vari-
ation, while prior studies aim to solve only one of the
two aspects.

• The proposed schedulers are implemented in the Linux
system to prove that the schedulers can support fair-
ness in a real machine. The implementation proves
that measuring accurate fast core speedups directly
by running applications on both types of cores period-
ically is feasible.

• The proposed purely software-based mechanism does

not require any extra modification of existing architec-
tures.

Limitation: The implemented scheduler is fully running
on multi-cores with two different frequencies by DVFS. In
the result section, we also validate our implementation on a
real AMP with two types of cores. However, the real AMP
evaluation does not support the online speedup estimation
technique due to the lack of support for the hardware mon-
itoring counters in the architecture.

The remainder of the paper is organized as follows. Section
2 discusses fairness in multi-cores with uneven computing
capability and analyzes fairness of throughput-maximizing
scheduling. In Section 3, we propose three fairness-oriented
scheduling policies. Section 4 describes the implementation
issues including the fast core speedup estimation mecha-
nism. The experimental results on real machines are shown
in section 5. Section 6 presents the related work, and Section
7 concludes this paper.

2. FAIRNESS FOR UNEVEN CORE CAPA-

BILITY
In traditional homogeneous multi-cores, fairness in CPU

provisioning can be achieved by adjusting shares of CPU
cycles for each application. At the same time, CPU util-
ization can be maximized by preventing cores from being idle
while there are tasks to run. However, on multi-cores with
uneven computing capability, throughput maximization and
fairness support may not be achieved simultaneously. Cores
have different computing capabilities, and the performance
improvement from multiple types of cores varies across dif-
ferent applications.

Most of the prior studies on uneven cores have been fo-
cused on the throughput aspect of scheduling, and proposed
throughput-maximizing schedulers, which we call max-perf
in the remainder of this paper. This section defines the fair-
ness aspects for scheduling uneven cores. To simplify anal-
ysis and discussion in this paper, we use two types of cores,
fast and slow cores in a multi-core architecture.

2.1 Definitions and Metrics
In this section, we define throughput, and two fairness

metrics, which will be used for the rest of paper. In addition,
we also describe two scheduling policies, max-perf which
maximizes only the throughput and max-fair which maxi-
mizes only the fairness as two opposite ends.

We define the fast core speedup of an application as the
relative performance on a fast core compared to that on a
slow core. If the performance of an application is defined as
its execution time, the fast core speedup of an application
is defined as follows. exec timefast or exec timeslow is the
execution time of an application, when the application is
running entirely on a fast core or on a slow core.

speedup =
perffast
perfslow

=
exec timeslow
exec timefast

To support fairness in real systems, it is necessary to set
a performance baseline with a fair scheduling state. Since
the fair state performance must be measurable in running
systems, we use the following definition as the fair state as
proposed by Kwon et al. [11]: a scheduling in a system with
fast and slow cores is fair, if all threads receive equal shares



of fast and slow cores. Since this definition solely depends
on the number of core cycles, neither prior knowledge on ap-
plication behaviors nor any performance model is required.
The proposed system will use the performance of each ap-
plication in their fair state as the normalization baseline for
throughput and fairness.
Alternatively, the fair state can be defined based on the

slowdown compared to an isolated run without any co-runner.
Threads are fairly scheduled if the slowdowns compared to
the isolated runs of all threads are equal, as used by Van
Craeynest et al. [21]. However, to achieve the fair state with
this definition, the scheduler needs prior knowledge about
the performance in the isolated run, and this cannot be mea-
sured dynamically in running systems without new hardware
supports and estimation methods.
With our definition of the fair state, we define Ti, the

throughput of an application i as the performance normalized
to the fair state performance. For the system-wide through-
put metric, T , we use the arithmetic mean as follows.

Ti =
perfi

perfi,fair
=

exec timei,fair
exec timei

T =
1

n

∑
Ti

With this metric, we define max-perf scheduling which
maximizes the system-wide throughput without considering
fairness. Suppose the number of fast cores is N. Then, max-
perf selects the N applications with the highest fast core
speedups, and schedules them on the fast cores. The rest of
applications are scheduled to the slow cores.
For fairness, we use two different metrics, minimum fair-

ness (minF) and uniformity. Minimum fairness mandates
the limit of maximum performance degradation compared
to the fair state performance of each application. Unifor-
mity is how uniform the performances of applications are
relatively to the fair state performances respectively. Mini-
mum fairness, the minimum performance relative to the fair
state, is defined as follows. Note that Ti is the performance
normalized to the fair state performance.

minF = min(T1, T2, ..., Tn) where there are n applications.

Second, the uniformity metric is the fairness metric pro-
posed by Van Craeynest et al. [21]. It is based on a stan-
dard deviation of normalized performance of each applica-
tion. For the normalization point, they use an estimated
isolated performance on fast cores. Uniformity is defined as
follows.

Uniformity = 1− (σTi
/µTi

)

In this equation, σTi
is the standard deviation of appli-

cation throughputs, and µTi
is the average of application

throughputs. Unlike the original study [21], in this paper,
the throughput is the performance normalized to the fair
state, not to the isolated state.
Two schedulers proposed in this paper guarantee the man-

dated minimum fairness level. However, uniformity is im-
proved, but not guaranteed. We decided to choose minimum
fairness as the guaranteed fairness over uniformity unlike the
prior study [21], since being able to set the lower bound of
performance degradation is more critical than reducing the
overall performance variation.
Finally, max-fair scheduling provides the fair state sched-

uling. It achieves the fair state by giving an equal share of
fast and slow core cycles to all active threads. In this case,

the throughputs of every thread are 1 by the definition of
throughput. Thus, the minimum fairness is 1 and the uni-
formity is also 1 with max-fair.

2.2 Prior Fairness-aware Schedulers
There have been three studies to incorporate fairness into

the scheduling problem of uneven cores. First, scaled load

balancing proposed by Li et al. [14] provides an equal com-
puting capacity to each thread without considering how to
support performance efficiency. It argues that if threads
have the same priority, they should receive the same share
of core processing power. Since cores differ in their process-
ing capacity, the proposed scheduler adjusts CPU shares for
different core types with a fixed scaling ratio. The ratio
for load scaling is empirically obtained by the benchmark
suite performance. However, this study focuses only on how
to support fair shares of CPUs with a real system imple-
mentation. To exploit the efficiency provided by uneven
computing capability, schedulers must also be aware of dif-
ferent fast core speedups of applications and improve overall
throughput while supporting fairness.

Second, Kwon et al. discussed an equal share fairness def-
inition [11]. They defined the fair state as the threads in
the system receive equal shares of both types of cores, as
used for our study. Since each application receives the same
share of fast cores, the applications get the same chance
to improve their performance. In addition, they also pro-
posed an R%-fair scheduler, which runs applications fairly
in R% of time, and uses max-perf scheduling for the rest of
time quantum. Although it cannot guarantee a specific per-
formance target, it attempts to improve fairness while still
increasing the overall throughput. Using a scheduler imple-
mentation added to an open source hypervisor in virtualized
systems, the study showed the feasibility of such schedulers.

Finally, a recent study by Van Craeynest et al. inves-
tigated three fairness aware schedulers for AMP [21]. In
this simulation-based study, they rely on an estimated per-
formance of each application with an isolated fast core as
the baseline performance to aim for the fairness. To ob-
tain the estimated performance, they used a hardware based
performance model requiring some changes in performance
monitoring [22]. However, since such extra hardware sup-
ports are not available in real systems currently, we use
the equal-share fairness as our baseline performance. They
define fairness with the uniformity metric defined in the
previous section. As a fair scheduling policy, they pro-
posed an equal-progress scheduler, which provides an ac-
tual equal instruction throughput progress for each applica-
tion by assigning appropriate shares of fast and slow cores.
Their guaranteed-fairness scheduler aims to improve both
throughput and fairness, by running as a throughput-maximi-
zing scheduler until fairness drops below a given threshold,
and as an equal-progress scheduler for the rest of sched-
uling period. However, this study does not discuss mini-
mum fairness guarantee, and was conducted with architec-
tural simulation with a special hardware change.

Table 1 compares the three prior schedulers to our sched-
ulers proposed later in this paper. Scaled load balanc-

ing provides application independent fair assignment of fast
and slow core shares to support fairness. However, it does
not utilize different speedups of applications to improve the
overall throughput while enhancing fairness. R%-fair adds
the limited application-awareness to the scaled load bal-



scaled load
balancing

[14]

R%-fair
[11]

Guaranteed-
fairness

[21]

sim-min-fair
(proposed)

Aware application
characteristics?

NO YES YES YES

Estimate speedup
at runtime?

NO YES YES YES

Implement on
real machine?

YES YES NO YES

Require extra
hardware support?

NO NO YES NO

Guaranteed
fairness metric

- - uniformity
minimum
fairness

Table 1: Comparison with prior approaches

ancing scheme by combining throughput and fairness goals
with the selected R ratio for different applications, although
it does not provides any guaranteed fairness. How to select
the R factor for different applications was not fully inves-
tigated. The guaranteed fairness scheduler warrants the
uniformity as fairness, but requires new hardware supports
for performance estimation. Their study is based on archi-
tectural simulation. The scheduler proposed in this paper
can guarantee the target minimum fairness while improving
both throughput and uniformity, being implemented for a
real Linux system.

2.3 Fairness of Max-perf Policy
In this section, we discuss how much minimum fairness

and uniformity are supported in the perfect max-perf sched-
uling. For perfect scheduling, we first assume that the fast
core speedup is known for each application. In real sys-
tems, online fast core speedup estimation may incur over-
heads and possible inaccuracy. Second, we assume that suf-
ficiently fine-grained adjustment of CPU share is possible
without any overhead. This assumption implies two things:
CPU usage ratio for fast and slow cores can be adjusted in
any fine-grained way, and there is no overhead from context
switch or thread migration. Third, there is no shared re-
source effect. While these assumptions are applied in the
analysis in this section, our real machine implementation
and evaluation in Section 4 and 5 will remove the assump-
tions.
We model a hexa-core AMP, two fast cores and four slow

cores, using the GEM5 simulator [1]. The fast core is a 4-
way out-of-order processor, and the slow core is a single issue
out-of-order processor. Each core has a 64KB L1 instruc-
tion cache, 64KB L1 data cache, and 2MB L2 unified cache
privately. Thus, there is no interference through cache shar-
ing. To construct benchmark application mixes, we use all
combinations with repetition of 23 SPECCPU 2006 bench-
mark. Since there are 6 cores, the number of total mixes is

23H6 = 376740. For each application mix, the simulation
skips 1 billion instructions with fast-forwarding, and runs
100 million instructions. Performance is normalized to that
with max-fair.
Figure 1 shows the throughput, minimum fairness, and

uniformity results of max-perf. Each workload mix is a com-
bination of 6 applications running on the 6-core AMP. The
workload mixes are presented in their throughput order. In
the bottom two graphs for minimum fairness and uniformity,
workload mixes are also sorted by the same throughput order
as the top throughput figure to investigate the correlation
between throughput and fairness. The minimum fairness re-
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Figure 1: Throughput and fairness of max-perf

sults show only 23 discrete minimum fairness levels, since 23
benchmark applications are used for this analysis, and thus
there are the same number of normalized throughput levels
without any interference by co-running. This perfect sched-
uling analysis does not have any random effect observed in
real systems.

The strict max-perf scheduling often sacrifices minimum
fairness and uniformity significantly to gain a small amount
of throughput improvement, as shown in the left side of the
graphs. Even when the throughput gain is less than 3%,
minimum fairness can be degraded as much as 55% and uni-
formity can drop to less than 0.3. Throughput and mini-
mum fairness do not exhibit any clear correlation. Regard-
less of throughput gains, minimum fairness is affected by the
speedup characteristics of applications in the same mix.

Based on this observation, this paper will relax the max-

perf policy which is based on a strict speedup order imposed
even if speedup differences are small. Furthermore, a fair
scheduler must be able to limit the performance degrada-
tion with a lower bound to prevent wide minimum fairness
variations.

3. DESIGN SPACE
In this section, we propose three fairness-oriented sched-

uling policies pursuing throughput improvement under fair-
ness constraints. First, sim-fair scheduling relaxes the
throughput maximization goal to improve uniformity. The
second scheduler, min-fair supports minimum fairness guar-
antee by restricting the maximum performance degradation
from max-fair. The system administrator sets a minimum
fairness level, and the scheduler makes scheduling decisions
satisfying the constraint. The scheduler maximizes the through-
put under the fairness constraint as much as possible. The
third scheduler, sim-min-fair, combines the two approaches
into a scheduler, pursuing both minimum fairness and uni-
formity.



Algorithm 1 sim-fair policy

sched similar(similarity)
/* start from max-perf schedule */
sched max perf()

/* f share: fast core share for a thread */
/* s share: slow core share for a thread */
/* f sharefair: fast core share by max-fair */

for each thr in all threads such as thr.f share ≥ f sharefair
do

group = threads with speedup difference ≤ similarity
for each thr in group do

thr.f share = average f share of threads in group
thr.s share = average s share of threads in group

end for

end for

In this section, we present the results with the same per-
fect scheduling assumptions used in Section 2.3.

3.1 Similar Fair Scheduling
The first scheduler, sim-fair relaxes max-perf by dis-

tributing fast core shares equally to a group of applications
with similar fast core speedups. Assuming there are N fast
cores, in max-perf, the top N applications with the N highest
speedups monopolize the fast cores. On the other hand, in
sim-fair, the scheduler finds groups of applications whose
fast core speedups are similar, with less than a similarity
difference. The administrators can adjust the relaxation
level by setting similarity. Then, it assigns an equal share
of fast cores to every application in each group. However,
across groups, their fast core shares may differ depending
on the average fast core speedups of the groups. The fair-
ness support in sim-fair attempts to reduce the negative
artifact of the strict scheduling of the max-perf policy to
improve uniformity, although it may potentially reduce the
overall throughput.
Algorithm 1 presents the procedure of sim-fair, which

determines fast and slow core shares for each thread (f share
and s share). It starts from the core allocation used by the
max-perf policy. At each scheduling interval, for threads re-
ceiving more fast core shares than the share assigned by the
max-fair policy, threads with similar speedups are grouped
together. Whenever the group formation is updated, the
fast and slow core shares are updated for each application
to the new average of fast and slow core shares in the group.
The leftmost column of Figure 2 shows the results of sim-

fair. Each line is independently sorted in the curves of
all graphs in the figure. Figure 2a presents the through-
put results. The throughput with sim-fair is slightly lower
than that with max-perf for some cases, but the differences
are relatively small. As the similarity setting gets smaller,
the performance differences are reduced. As shown in Fig-
ure 2g, sim-fair frequently improves uniformity with minor
throughput degradations. The performance variance highly
depends on the high fast core speedup applications scheduled
on slow cores by max-perf. To mitigate this, sim-fair gives
such applications chances to receive some fast core shares.
The disadvantage of sim-fair is that it cannot guarantee
any minimum fairness constraint, as shown in figure 2d. The
next min-fair scheduling will allow the system administra-
tor to set the minimum fairness constraint.

Algorithm 2 min-fair policy

extra f share(thr, target)
/* return fast core share unnecessary to meet minF target */
/* estimate performance under max-fair */
perffair ← coreslow,fair + thr.speedup ∗ corefast,fair

/* find the minimum fast core share to meet minF target */
Find f shareminF satisfying the following

(1− f shareminF ) + thr.speedup ∗ f shareminF

perffair
> target

/* return extra fast core share */
return thr.f share− f shareminF

sched min fair(target)
/* start from max-fair schedule */
sched max fair()

donated f share← 0
for each thr in all threads do

amount←extra f share(thr, target)
thr.f share← thr.f share− amount
thr.s share← thr.s share+ amount

end for

for each thr in descending order of fast core speedup do
amount←MIN(1− thr.f share, donated f share)
thr.f share← thr.f share+ amount
thr.s share← thr.s share− amount
donated f share← donated f share− amount
if donated f share ≤ 0 then

break
end if

end for

3.2 Minimum Fair Scheduling
The second scheduler, min-fair supports that a fixed

level of throughput is always maintained. The administrator
can set the maximum performance degradation (minF) com-
pared to that with the max-fair scheduling. For the given
minF setting, the min-fair policy tries to improve through-
put while supporting the strict minimum fairness of each
application. To meet the minimum fairness requirement,
every application is guaranteed to have a sufficient fast core
share. After the minimum fairness is met, applications with
the highest fast core speedups monopolize the remaining fast
core shares. By doing this, min-fair guarantees Ti ≥ target
for all i.

The algorithm 2 sketches the procedure of min-fair pol-
icy. The core part is extra f share(). It calculates the
amount of fast core shares that a donor can give to other
applications without hurting its own minimum fairness tar-
get. To satisfy the minimum fairness limit, the inequality
in the function must be held. The main algorithm begins
from the scheduling of max-fair. Then, it takes the portion
of fast core share from all threads as much as calculated by
extra f share() so that the minimum fairness limit is main-
tained. Then, the taken portion is given to an application
with the highest fast core speedup to improve throughput.
The maximum fast core share of an application is limited
by the number of threads (1 thread per application in this
work), and the process is repeated until the all taken fast
core shares are distributed.

Figure 2b shows the throughput results of min-fair(80%),
min-fair(90%) and max-perf, and Figure 2e shows the min-
imum fairness results of the same three configurations. As
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Figure 2: Throughput, minimum fairness, and uniformity distributions with all possible 6 core combinations of 23 applications

shown in the figures, min-fair(80%) and (90%) can effec-
tively support the minimum fairness limit. Furthermore,
with min-fair(80%), even if the system guarantees 80% per-
formance from the max-fair state, it can gain throughput
similar to max-perf. The max-perf policy may degrade min-
imum fairness by up to 60%, even with little throughput im-
provement (refer to figure 1). Such a modest target setting
of 80% can prevent significant minimum fairness violations
by max-perf. This result reinforces our initial observation
that max-perf frequently sacrifices fairness severely, even if
throughput gain is none or minor. Minimum fairness setting
also results in uniformity improvement, as figure 2h.

3.3 Similar Minimum Fair Scheduling
The former two schedulers have different objectives. The

sim-fair policy mitigates the large performance variance
when there are many applications with similar character-
istics, and the min-fair policy guarantees the minimum
throughput for all applications. In this section, we combine
the two policies into sim-min-fair.
sim-min-fair has only one modification from sim-fair.

This starts from min-fair instead of max-perf. Similarly
to sim-fair, the policy re-assigns the portion of fast core
shares which exceed the completely fair shares. Since the
fast core shares for supporting minimum fairness are always
lower than or equal to the completely fair shares, the redis-
tribution of fast core shares never degrades the fairness level
already supported by min-fair. Thus, no application will
hurt their minimum fairness, and applications with similar
fast core speedups receive the same fast core share.
Figures 2c, 2f, and 2i show the analysis results. The

minimum fairness target is set to 80% and similarity is
varied with 0.2 and 0.5. Figure 2c shows that sim-min-fair
has a minor performance degradation compared to max-

perf. With little performance degradation, the minimum
fairness is always guaranteed to the specified level as shown

in Figure 2f. Sometimes minimum fairness is higher than
the constraint since the integrated similarity setting dis-
tributes fast core shares evenly for high fast core speedup ap-
plications. Combining two fairness-oriented schedulers also
shows the further improvement on uniformity as shown in
Figure 2i.

4. IMPLEMENTATION
We modified the CFS (Completely Fair Scheduler) sched-

uler of the Linux 3.7.3 kernel. The implementation requires
three components to support similar and minimum fairness
constraints. First, the schedulers must be able to estimate
the fast core speedup for each application online with as
little overhead as possible. Second, the scheduler should pe-
riodically adjust fast and slow core shares of applications
to guarantee fairness requirements and maximize through-
put under the fairness constraints. Third, the scheduler re-
quires a mechanism to assign different shares of fast and
slow cores dynamically to each thread. To avoid any per-
formance overhead by scheduling two types of cores, it must
be work-conserving, supporting that no core becomes idle
when there are any pending ready threads. Furthermore, no
fast core must become idle, when some tasks are running on
slow cores, except for a very short transition period.

4.1 Online Fast-core Speedup Estimation
One of the critical issues for scheduling threads on uneven

cores is to estimate the fast core speedup of each thread.
There have been several previous studies to estimate fast
core speedups [18, 17, 8, 11]. A common approach is
to approximate the fast core speedup based on instruction
throughput or last-level cache (LLC) misses while an appli-
cation is running on either a fast or slow core. The prior
approaches assume that measuring fast core speedups by
trying each thread on both types of core is costly, as it re-
quires to change core types periodically for each application.



Such an approximation-based method may be able to pro-
vide approximate relative orders of speedups among appli-
cations. For the max-perf scheduling the prior estimation
method is designed for, such rough ordering is good enough
to determine which applications run on fast cores. However,
to support the fine-grained fairness control as proposed in
this paper, a more accurate estimation of fast core speedup
is necessary.
To support accurate estimation of fast core speedups, we

use a direct method of measuring fast core speedups with an
exploration-based approach. Instead of estimating fast core
speedups with indirect metrics such as LLC misses, the pro-
posed method measures the actual performance in terms of
instruction throughput in both fast and slow cores by run-
ning threads on both cores periodically. A similar method
with HW-based scheduling was proposed by Kumar et al. [9],
and evaluated with simulation. The study assumes that an
architectural mechanism schedules and measures speedups
with low overheads. We have implemented it on a Linux sys-
tem, validating its cost is sufficiently low for real SW-based
schedulers. Our fast core speedup metric is as follows.

speedup =
IPSfast

IPSslow

IPS (instruction per second) is the primary metric of the
performance, measured with common performance monitor-
ing counters in commercial processors. For each scheduling
interval, 2 seconds in our experiments, IPS on fast and slow
cores are individually measured and averaged. Another ben-
efit of this direct method is that it will work independently
from the architectural characteristics of fast and slow cores.
It measures the actual performance with fast and slow cores,
instead of using approximation.
However, there are three potential sources of overheads for

the fast core speedup estimation. First, to estimate fast core
speedups, all threads should be scheduled on both types of
cores for each scheduling interval. This forced scheduling can
potentially make applications run on less optimal core types
occasionally. However, since the forced scheduling period
for the fast core speedup estimation is short, the overhead is
negligible. Second, this method adds more context switches
even if an application should be scheduled to only one type
of core continuously. Third, using performance counters
may have overheads, as it incurs interrupts frequently. To
optimize this, we virtualized the performance monitoring
unit, and directly read the machine specific registers (MSR)
instead of counting the number of interrupts [3]. As will be
discussed in Section 5.4, the proposed method can provide
a highly accurate estimation with negligible overheads on a
real machine.

4.2 Periodic Core Share Adjustment
Based on the estimated fast core speedups, our scheduler

determines fast/slow core shares determined by three fair-
ness policies. This occurs periodically, in our implementa-
tion, on every 2 seconds, and each share is written in the
thread context. This process is implemented as a user level
program and it communicates with the kernel by syscalls.
If this is implemented in the kernel, the overhead can be
further reduced. However, Section 5.4 will show the share
calculation overhead is negligible even with the user level
implementation.
To support adjustable fast and slow core shares, we have

added fast round and slow round for each thread, which
represent how many rounds the thread has run on each type
of cores. In addition, each thread has fast core share and
slow core share. The fast or slow round is incremented
whenever a thread completes to run on a fast or slow core
for fast or slow core share∗30ms time period, respectively.

The scheduler forces each thread to use fast and slow cores
as specified by fast and slow core shares, by maintaining that
fast and slow core rounds proceeds together. When a thread
gets a timer tick on a fast core, the scheduler compares its
fast round with slow round. If fast round is greater than
slow round, the scheduler searches another thread on a slow
core whose fast round is less than slow round. If such a
thread is found, two threads swap their next core types to
run.

5. EVALUATION

5.1 Methodology
To evaluate the proposed fairness-oriented schedulers, we

use two systems. The first one is an emulated AMP system.
This system has a 6-core AMD Phenom II X6 1055T Pro-
cessor. Asymmetric multi-cores are emulated by the DVFS
mechanism. Among 6 cores, 2 cores are configured to fast
cores with their frequency set to 2.8GHz. The remaining 4
cores are set to slow cores with the frequency of 0.8GHz.
Each core has a private 64KB instruction and data cache
with a 512KB unified L2 cache. All six cores share a 6MB L3
cache. Although the emulated asymmetric cores differ only
in their frequencies, this configuration exercises effectively
both the scheduler and online fast core speedup monitoring
components in this study.

The second one is a real AMP system with the ARM
big.LITTLE architecture. Our test platform is Odroid-XU3
Lite, which has the Exynos5422 SoC with four Cortex-A15
(big) cores and four Cortex-A7 (little) cores on a chip. Big
cores are 3-way out-of-order cores running at 1.8GHz, and
little cores are 2-way in-order cores running at 1.3GHz. Four
big cores share a 2MB L2 cache, and four little cores share
another 512KB L2 cache. The device has two limitations.
First, it does not fully support hardware performance mon-
itoring units. Thus, we cannot use our online fast core
speedup estimation mechanism. Instead, offline values are
used with this system. Second, it has only 2GB DRAM,
which is not sufficient to run 8 benchmarks on all the 8
cores. Thus, we use only two big cores and two little cores,
and turn off the remaining cores. We ported our scheduler
to Linux 3.10.96 to run it on this device.

The workloads consist of mixes from SPECCPU2006, as
shown in Table 4. The mixes for an emulated AMP sys-
tem consist of 6 benchmarks as the system has 6 cores. We
use the reference input sets on this system. The fast core
speedups in Figure 3 are the average of estimated fast core
speedups for each interval. On the other hand, the mixes
for the big.LITTLE system have 4 applications and train

input sets are used due to the limited DRAM capacity.
Figure 3 presents the fast core speedups of applications in

each mix we used for two systems. In the naming, H, M, and
L stand for high, medium, and low speedups respectively.
Approximately, H applications have a fast core speedup larger
than 3, and L applications have one smaller than 2.4. There
are two same benchmark application for each letter. For
example, MLL has two M-type applications which are gcc
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Figure 3: Speedup distributions of workloads

Emulated AMP system Big.LITTLE system

Name Benchmarks Name Benchmarks

HHH povray×2, namd×2, bzip2×2 HH gamess×2, bwaves×2

MMM zeusmp×2, gcc×2, leslie3d×2 MM h264ref×2, gromacs×2

LLL soplex×2, mcf×2, milc×2 LL gobmk×2, omnetpp×2

SAME gcc×6 ML.a bzip2×2, astar×2

MLL gcc×2, omnetpp×2, mcf×2 ML.b gromacs×2, sjeng×2

MML gcc×2, leslie3d×2, milc×2 HM.a GemsFDTD×2, h264ref×2

HMM povray×2, gcc×2, leslie3d×2 HM.b hmmer×2, gromacs×2

HHM namd×2, hmmer×2, gcc×2 HL.a GemsFDTD×2, omnetpp×2

HML.a namd×2, gcc×2, soplex×2 HL.b bwaves×2, gobmk×2

HML.b h264ref×2, astar×2, omnetpp×2

HHL.a namd×2, hmmer×2, soplex×2

HHL.b gamess×2, gromacs×2, milc×2

HLL.a hmmer×2, mcf×2, milc×2

HLL.b gobmk×2, GemsFDTD×2, mcf×2

Figure 4: Workloads
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Figure 5: Comparison of the max-fair scheduler to the de-
fault Linux scheduler

for both, and four L-type applications where two of them
are omnetpp and two of them are mcf. One exception is the
SAME mix, which includes six instances of gcc.
Even for the same benchmark application across mixes,

the fast core speedups are different due to shared resource
effects. For example, the speedup of milc in LLL is 1.82,
while the same application in HHL.b is 2.03. As the co-
running applications can affect the actual fast core speedup
of an application, the online speedup estimation is necessary
as implemented in our schedulers.
We repeatedly run applications in a mix until all appli-

cations are finished at least once, to reduce variability of
experimental results. We use the execution time of the first
run for the performance of each application. For the evalu-
ation, we use the throughput and fairness metrics explained
in Section 2.
In the rest of this section, we first present the results from

the emulated AMP system since the system can fully sup-
port the proposed mechanisms. Section 5.5 shows the results
from the big.LITTLE system with the offline speedup val-
ues.

5.2 Max-fair and Max-perf Behaviors
Before the proposed fairness-oriented schedulers are eval-

uated, this section presents the behaviors of the two base-
line schedulers, max-fair and max-perf, comparing them
against the Linux default scheduler (unaware), which is not
aware of the uneven core capability. In addition, we also
show a static scheduler (static), which binds each applica-
tion to a core. For the static scheduling, we run three differ-
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Figure 6: Results of max-perf

ent mapping settings between applications and core types.
The experiments use the emulated AMP system.

Figure 5 presents the unaware, static, and max-fair re-
sults of HML.b and HLL.b workloads. The remaining mixes
show similar trends. In the figure, each bar represents the
average throughput of a workload mix, and circles repre-
sent the throughputs of individual applications in the mix.
The figure shows the results from three independent runs
for each scheduler, and for static, each run uses a different
affinity mapping. As shown in the figure, the unaware sched-
uler shows high variances in application throughputs, as the
scheduler assumes symmetric multi-cores, resulting in ran-
dom scheduling effects. The static scheduler also exhibits
high variances in application performance for each different
affinity setting, depending on what applications are pinned
to fast cores. As the throughput of each application is nor-
malized to that with the max-fair scheduler, the max-fair

scheduler shows the throughput of 1 for all the applications,
without any significant random scheduling effect even in real
runs.

Figure 6 presents normalized throughput results with max-

perf. For each mix, each column corresponds to a different
mix. For each column, empty circles on the line represent
the normalized throughputs for all applications in the mix.
The lowest throughput among the applications in the mix is
minimum fairness of the mix. The bar in each column shows
the average throughput of the mix. On top of the through-
put results, uniformity is also shown as a filled circle in the
figure. Note that the throughput metric is the performance
normalized to the max-fair policy.

Although max-perf aims to maximize the throughput,
it can achieve high throughput improvement when there
are high speedup differences among applications. Due to
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Figure 9: Results of sim-min-fair on emulated AMP

the behavior of max-perf, HHH, MMM, and LLL mixes do
not exhibit noticeable throughput improvements from max-

fair, since their applications have almost the same fast core
speedups. For HHH, some applications exhibit 1.89X im-
provement, but they are offset by the performance degrada-
tion in other applications. For other workload mixes, max-
perf improves 3∼14% system-wide throughput, and up to
1.92X for povray in HMM. Although max-perf can improve
throughput when applications in a mix have high differences
in speedups, they frequently suffer from low uniformity and
high minimum fairness degradation.

5.3 Fairness-oriented Scheduling Results
In this section, we present the effectiveness of the proposed

three schedulers in the emulated AMP system. Figures 7,
8 and 9 show the results for sim-fair, min-fair and sim-

min-fair policies. For each mix, each column corresponds
to a different policy. The figures show normalized through-
puts of all applications and the average of them, along with
minimum fairness and uniformity results.
Figure 7 shows the results of sim-fair with similarity of

0.2 and 0.5. The results of max-perf policy are also shown
for comparison. First, workload mixes with similar fast core
speedups, such as HHH, MMM, LLL and SAME, benefit
from sim-fair with 0.5 similarity. In these cases, the policy
mostly improves the uniformity with little change in perfor-
mance, sim-fair treats applications with similar speedups
as a group to avoid unnecessary sacrifice of uniformity for
little throughput gain. Similarly, in HHM, and HHL.b, 4
high applications have very similar fast core speedups, and
thus sim-fair can improve uniformity effectively with little
throughput degradation. In the mixes, the average through-
put is not significantly affected since the performance loss
in the top applications is offset by the performance gain in

the second top applications. Finally, MLL, HMM, HML.a,
HLL.a, and HLL.b show neither throughput nor uniformity
changes with sim-fair. Since the fast core speedup differ-
ences in the mixes are large, sim-fair does not form any
similar groups, and cannot improve uniformity. In sum-
mary, sim-fair does not significantly degrade the overall
throughput except for HML.b and HHL.a, but uniformity
can be improved significantly for the mixes where max-perf
is not effective for improving throughput.

Figure 8 shows the results of min-fair policy with the
target minimum fairness level of 85%, 90%, and 95%. For
comparison, it also shows the results of max-perf. First, the
results show our implementation guarantees the specified
minimum fairness level very effectively. Even for the case
that max-perf degrades minimum fairness up to 60%, min-
fair(85%) maintains minimum fairness higher than 85%.
Similarly, min-fair(90%) and min-fair(95%) also effectively
limit the performance degradation with the specified lower
bound.

However, for the system-wide throughput, the figure shows
the trade-offs in the throughput and minimum fairness. To
support the higher level of minimum fairness, the system
may exhibit the lower throughput for some mixes. We can
divide the results of min-fair(85%) in two groups. The
first six mixes, HHH to HHM, show little throughput degra-
dation, mostly smaller than 3%, with large minimum fair-
ness and uniformity improvements. However, the last six
mixes, HML.a to HLL.b, show mostly 4%∼7% throughput
degradations to meet the target minimum fairness level.
The main reason is the co-existence of H and L applica-
tions. The low fast core speedup applications need some
amount of fast core shares to guarantee the minimum fair-
ness level, but the fast core shares given to such applications
do not contribute effectively to the throughput improve-
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Figure 10: Comparison of estimated speedup and real speedup from pinned runs

ment. Moreover, stealing fast core shares from H largely
hurts the throughput significantly. One positive effective of
supporting minimum fairness is the improvement of unifor-
mity. Throughout the mixes, uniformity is improved signif-
icantly compared to max-perf.
Figure 9 shows the results with varying similarity with

sim-min-fair. The target minimum fairness level is fixed
at 85%. Between min-fair and sim-min-fair, there are
no significant throughput changes, except for HHM. How-
ever, adding the similarity factor improves the uniformity
effectively without any significant performance degradation.
min-fair is based on the fast core donation, and the donee
application is picked from the ones with the highest fast core
speedups. Even if two applications have similar speedups,
only one of them (one with the slightly higher speedup) is
picked as donee, receiving more fast core shares. It can
degrade uniformity significantly for such mixes. However,
sim-min-fair solves the problem by equalizing the fast core
share among applications with similar fast core speedups.
In summary, sim-fair improves uniformity effectively with-

out any significant effect on the overall throughput, except
for two cases. min-fair can provide a fixed performance
lower bound, although setting the lower bound very high
can degrade throughput significantly for some mixes. Even
with a relatively modest minimum fairness restriction of
85%, min-fair can avoid critical performance degradations
from max-perf which are as large as 60% in some cases.
Finally, sim-min-fair can have both of the benefit of sim-
ilarity grouping to improve uniformity, and the benefit of
minimum fairness support to limit performance degradation.

5.4 Accuracy and Scheduling Overhead
To evaluate the accuracy of speedup estimation, we com-

pare the estimated speedup from max-fair scheduler and
the real speedup, which is measured by pinning an applica-
tion on a fast or slow core for each mix. Figure 10 shows
the results. The x-axis represents applications in mixes, and
the lines represent the estimated and real fast core speedups.
The bars indicate the percentage of errors between the real
and estimated speedups. Note that the speedup of an ap-
plication changes depending on co-running applications due
to the effect of cache and memory bandwidth sharing, and
thus the same application appears multiple times in the x-
axis with different mixes. The average error between the
estimated speedups and measured ones is only 2.73% and
the maximum error 10.04%. Our exploration-based speedup
estimation accuracy is high enough for supporting minimum
fairness.
To assess scheduling overheads, we first compare the na-

tive Linux and max-fair schedulers with the speedup esti-
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Figure 11: Results of similar fair on Big.LITTLE
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Figure 12: Results of minimum fair on Big.LITTLE
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Figure 13: Results of sim-min-fair on Big.LITTLE

mation on symmetric cores with the same 2.8GHz clock
speed. This comparison represents the pure overhead of freq-
uent context switches and speedup estimation procedures.
Compared to the native Linux, the maximum throughput
difference is 2% in the worst case. Second, we measure the
CPU time our scheduler uses. This includes the CPU time
used for our scheduler itself, such as the time for estimating
fast core speedups, processing algorithms for our policies,
and handling syscalls. In the worst case, the CPU usage
time is less than 0.17ms. Since there are 6 cores and the
scheduling interval is 2 seconds, the overhead on CPUs is
less than 0.002%.

5.5 Big.LITTLE System Results
This section presents the effectiveness of fairness sched-

uling in a real AMP system. Figures 11, 12, and 13 present
the results for three scheduling policies on the big.LITTLE
system. The figures use the same notations as those in
Section 5.3. The results on the big.LITTLE system also
show the effectiveness of the proposed schedulers, as in the
previous subsections. However, there are minor differences.



First, the throughput improvements of max-perf are up-to
7%, which is smaller than the improvement on the emulated
AMP system. The main reason is the smaller differences in
the speedups of applications in each mix. The mixes for the
big.LITTLE system have two pairs of applications. Thus,
the diversity of applications is lower than the mixes for the
emulated AMP system with three pairs of applications.
Second, while our scheduler guarantees the target mini-

mum fairness very effectively for most of the mixes, there is
a minor exception. For example, a GemsFDTD instance in
HL.a mix with the target minimum fairness of 90% shows
the throughput of 83.5%. The missed fairness target is due
to the clustered cache design in the big.LITTLE system and
static speedup parameters used for this big.LITTLE config-
uration. Due to the same fixed speedups for twoGemsFDTD
instances used in this experiment, one instance ofGemsFDTD
gets a higher share of big core than the other instance of the
same application by their IDs. Due to the contention in
the big core shared cache caused by the first GemsFDTD
instance, the performance of the second instance is slowed
down significantly, violating the minimum fairness constraint.
With sim-min-fair, such problems do not occur, as the two
instances receive similar fast core shares due to the similarity
of their fast core speedups.
Except for the aforementioned minor differences, this lim-

ited evaluation on the big.LITTLE system also validates
that our proposed fairness-oriented scheduling works prop-
erly. One future work from this study is to investigate the
effect of separate shared caches.

6. RELATEDWORK
Apart from the fairness-aware scheduling studies discussed

in Section 2.2, there have been studies on asymmetric multi-
core processor architectures and their schedulers. Kumar et
al. proposed an asymmetric multi-core processor (AMP)
and showed its potential to improve area and energy effi-
ciency [9, 10]. Recently, AMPs have been realized in academic
and commercial designs. FabScalar project proposed RTL
designs to compose asymmetric cores [2], and ARM released
the big.LITTLE architecture [4].
In addition to the architectural exploration of AMP de-

signs, there have been several studies to investigate sched-
uling mechanisms for AMPs. Most of the prior studies pro-
posed schedulers to maximize system throughput [9, 18, 17,
8, 11, 22] with policies similar to max-perf in this paper.
To pick the highest fast core speedup applications, they use
an exploration technique [9], architecture-independent sig-
natures [18], and indirect estimation techniques using per-
formance counters [17, 8, 11]. However, to support fairness,
it is necessary to estimate an accurate speedup for each ap-
plication, examining whether the fairness is violated or not.
Craeynest et al. proposed a hardware-based approach to get
an accurate fast core speedup, but, it requires a special hard-
ware and is highly dependent on the microarchitecture [22].
Another aspect of scheduling threads on uneven cores is to

support multi-threaded applications, and several prior stud-
ies attempted to improve the parallel scalability by running
a bottleneck thread on a fast core. The identified bottle-
necks are sequential phases [16, 17], delayed threads [12],
and critical sections [19, 6]. Recently, Joao et al. proposed
a utility-based acceleration mechanism, which considers all
types of bottlenecks [7]. Utility is the amount of application
level performance improvement when the thread is acceler-

ated by a fast core. Although our schedulers do not directly
evaluate multi-threaded applications, using utility as a fast
core speedup metric for multi-threaded applications is our
future work.

For commercial processors targeting mobile systems such
as the ARM big.LITTLE architecture, CPU utilization-based
schedulers have been developed, as the mobile workloads ex-
hibit severe fluctuations of CPU utilization. HMP scheduler

uses the runnable time ratio of each thread to distinguish
whether a thread has a sufficient potential to exhibit high
CPU utilization. It runs threads with high runnable time
ratios (high CPU utilization) on big cores, while migrating
threads with low runnable time ratios to slow cores.

7. CONCLUSIONS
This paper investigated fairness of CPU provisioning in

uneven cores with two different aspects, minimum fairness
and uniformity. The analysis concludes that the prior through-
put-maximizing scheduler often sacrifices minimum fairness
and uniformity excessively to gain only a small amount of
throughput. To mitigate the problem, this paper proposed
sim-fair, min-fair, and sim-min-fair schedulers, to im-
prove uniformity and/or guarantee minimum fairness. We
modified a Linux scheduler to support the three fair sched-
uling policies, and experimentally showed that the sched-
ulers can support fairness with negligible performance over-
heads.
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