
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 1

GVTS: Global Virtual Time Fair Scheduling
to Support Strict Fairness on Many Cores

Changdae Kim, Seungbeom Choi, Jaehyuk Huh, Member, IEEE,

Abstract—Proportional fairness in CPU scheduling has been widely adopted to fairly distribute CPU shares corresponding to their

weights. With the emergence of cloud environments, the proportionally fair scheduling has been extended to groups of threads or

nested groups to support virtual machines or containers. Such proportional fairness has been supported by popular schedulers, such

as Linux Completely Fair Scheduler (CFS) through virtual time scheduling. However, CFS, with a distributed runqueue per CPU,

implements the virtual time scheduling locally. Across different queues, the virtual times of threads are not strictly maintained to avoid

potential scalability bottlenecks. The uneven fluctuation of CPU shares caused by the limitations of CFS not only violates the fairness

support for CPU assignments, but also significantly increases the tail latencies of latency-sensitive applications. To mitigate the

limitations of CFS, this paper proposes a global virtual-time fair scheduler (GVTS), which enforces global virtual time fairness for threads

and thread groups, even if they run across many physical cores. The new scheduler employs the hierarchical enforcement of target

virtual time to enhance the scalability of schedulers, which is aware of the topology of CPU organization. We implemented GVTS in

Linux kernel 4.6.4 with several optimizations to provide global virtual time efficiently. Our experimental results show that GVTS can

almost eliminate the fairness violation of CFS for both non-grouped and grouped executions. Furthermore, GVTS can curtail the tail

latency when latency-sensitive applications are co-running with batch tasks.

Index Terms—Proportional Fairness, CPU Scheduling, Group Fairness, Tail Latency

✦

1 INTRODUCTION

P ROPORTIONAL fairness in CPU scheduling mandates
that the CPU shares of threads must be proportional to

their assigned weights. It has been widely adopted by gen-
eral purpose systems, as the de facto fairness support. With
the popularity of system consolidation for clouds, propor-
tional fairness has been further extended to enable weighted
fairness among groups of threads or nested groups. Such
extension of weighted fairness for thread groups is essential
to support fair CPU assignments for containers or virtual
machines served for different clients.

In such cloud-based computing models, the require-
ments for fairness support have become stricter than con-
ventional native systems. Each user must receive the CPU
share mandated by a service-level agreement (SLA). The
user’s container or virtual machine commonly consists of
multiple threads or virtual CPUs, and thus the CPU share
must be specified collectively at the group-level. However,
in such clouds, heterogeneous workloads from different
users share a physical system, with fluctuating loads. Fur-
thermore, for latency-sensitive server workloads, fairness
violation often causes significant increases of tail latencies,
degrading the quality-of-service.

To implement the proportional fairness, a common
mechanism is to maintain virtual time for each thread or
group. The popular Completely Fair Scheduler (CFS) is de-
signed to provide proportional fairness by scheduling based

• Changdae Kim, Seungbeom Choi and Jaehyuk Huh are with the
Department of Computer Science, Korea Advanced Institute of Science
and Technology, Daejeon, Republic of Korea, 305-701.
E-mail: cdkim@calab.kaist.ac.kr, sbchoi@calab.kaist.ac.kr and
jhhuh@kaist.ac.kr

on such virtual time [1]. For each runqueue, CFS schedules
runnable threads in a manner to equalize their virtual time
progresses. CFS has also been extended to provide group
fairness. A group with its own virtual time is inserted into
the runequeue as a scheduling entity, and the group entity
has a separate runqueue containing its member threads.
In the hierarchical design, a group is selected, and then a
thread from the group is selected based on the virtual time
status.

However, CFS with per-CPU runqueues, implements
the virtual time scheduling locally. Across different queues,
the virtual times of threads are not strictly equalized to
avoid potential scalability bottlenecks for enforcing global
virtual time scheduling. Instead, a simpler load balancing
mechanism distributes threads across multiple CPUs, and
it provides approximate fairness for threads and thread
groups running across multiple CPUs.

This paper investigates the limitation of the local virtual
time scheduling in CFS. When the number of active threads
is not always a multiple of physical cores, the proportional
fairness is not strictly supported by the current CFS imple-
mentation. Such fairness violation gets worse with weighted
fairness supports for groups. Furthermore, the CPU share
of a thread may fluctuate significantly, depending on the
decision of the load balancing mechanism. Such unfair
fluctuation of CPU shares not only violates the SLA for CPU
assignments, but also significantly increases the tail latencies
of latency-sensitive applications.

To mitigate the limitations of CFS, this paper proposes
a Global Virtual Time Fair Scheduler (GVTS), which enforces
global virtual time fairness for threads and thread groups,
even if they run across many physical cores. The new
scheduler employs topology-aware enforcement of target



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 2

virtual time to support the scalability of schedulers. Using
the scalable global virtual time accounting, GVTS provides
consistent CPU shares for threads even if they migrate
across different CPUs.

We implemented GVTS in Linux kernel 4.6.4 with several
optimizations to provide global virtual time efficiently. Our
experimental results show that GVTS can almost eliminate
the fairness violation of CFS for both non-grouped and
grouped configurations. Furthermore, GVTS can effectively
curtail the tail latency when latency-sensitive applications
are co-running with batch tasks.

The followings are the new contributions of this paper:

• This study identifies the limitation of the current
local virtual time scheduling in CFS. It shows that
proportional fairness is violated when the number of
threads is not a multiple of physical CPUs or CPU
utilizations fluctuate.

• It proposes a new global virtual time scheduling. To
efficiently support virtual time globally, it proposes
a topology-aware balancing mechanism, which is
aware of CPU interconnection topology.

• It improves proportional fairness support for thread
groups, so that virtual machines and containers in
clouds are provisioned as the SLA mandates.

• It investigates several optimizations to reduce unnec-
essary thread migrations which may incur by global
enforcement of virtual time.

The rest of the paper is organized as follows. Section 2
discusses the limitations of CFS with its local virtual time
tracking. Section 3 presents the design of global virtual
time scheduling, and Section 4 discusses its implementation
issues. Section 5 presents the experimental results. Section
6 discusses the related work and Section 7 concludes this
paper.

2 MOTIVATION

2.1 Virtual Time Based Proportional Fairness

Proportional fairness is a widely adopted definition of fair-
ness in CPU scheduling. It was first proposed in the context
of network flow control [2], and later adopted for CPU
scheduling [3], [4], [5]. To use a proportional fair scheduler,
all threads are assigned with their corresponding weights.
The weight of a thread is the relative amount of CPU share
it is entitled to receive. A scheduling is fair if all threads receive
their CPU shares in proportion to their weights.

In real systems, multiple threads are assigned to CPUs
in a time-sharing manner, and CPU share is represented
as the received CPU time. Let sharei(t1, t2) be the CPU
time thread i receives between time t1 and t2. If there
are n runnable threads between time t1 and t2, and their
weights are w1, w2, ...wn, the following equation represents
the condition of proportional fairness, where #CPUs is the
number of CPUs in the system.

sharei(t1, t2) =
wi∑

j=1..n

wj

× (t2 − t1)× #CPUs

In addition to per-thread scheduling supports, threads
can be grouped to provide group-level scheduling weights.

A container can contain multiple threads with their own
weights specifying proportional fairness within the con-
tainer. The container itself has its own weight to specify
its weight across different containers. Such thread group-
ing can be nested. A thread group can contain multiple
inner thread groups. With thread groups, schedulers should
support inter-group proportional fairness as well as intra-
group proportional fairness. Let Wk be the weight of group
k and SHAREk(t1, t2) be the sum of the CPU time group
k’s threads receive. For brevity, suppose that groups are not
nested and every thread belongs to a group. The following
equation represents the condition of proportional fairness
for N groups and their threads.

SHAREk(t1, t2) =
Wk∑

l=1..N

Wl

× (t2 − t1)× #CPUs

shareik(t1, t2) =
wi∑

j∈groupk

wj

× SHAREk(t1, t2)

However, schedulers cannot provide perfect propor-
tional fairness due to two reasons. First, in real systems,
CPU time cannot be divided infinitesimally. The minimum
scheduling quantum is restricted to be a multiple of timer
interrupt interval, which is 1ms∼10ms on most systems,
unless threads voluntarily yield their running CPUs. For
this reason, Lag Time is defined as follows to present the
difference between the ideal CPU time (share) and actual
received CPU time of a thread between time t1 and t2 [6].

Lagi(t1, t2) = sharei(t1, t2)− receivedCPUtimei(t1, t2)

Second, if a thread has a very large weight, perfectly fair
scheduling may not be achievable. For example, suppose
that there are two CPUs and the weight of one thread is
larger than the sum of the weights of all the other threads.
By the definition of proportional fairness, the thread with
the largest weight should receive more than a half of the
total CPU share in the two-CPU system. Since a thread
cannot consume more than one CPU at once, the thread
with the largest weight cannot receive the share mandated
by its weight. This phenomenon has been called infeasible
weight problem [5], [7], [8]. If the weight of a thread satisfies
the following condition, no scheduler can maintain perfect
proportional fairness.

wi∑

j=1..n

wj

>
1

#CPUs

To realize proportional fairness in CPU scheduling, sev-
eral methods have been proposed, as we will explain in
section 6.1. Among them, virtual time based proportional fair
scheduling is widely used, and the Linux kernel scheduler
adopts it [1], [3], [4], [5].

Virtual time is defined as the received CPU time divided
by the weight of a thread. With the notations above, virtual
time is represented as follows.

vtime = receivedCPUtimei/wi

Then, virtual time fair scheduling maintains the virtual
times of all threads as similar as possible. If the virtual
times of two threads are equal, their received CPU times



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 3

are exactly proportional to their weights. Thus, proportional
fairness can be maintained by virtual time based scheduling.

2.2 Local Virtual Time Fair Scheduling in CFS

Completely Fair Scheduler (CFS) [1] has been the mainline
Linux scheduler since 2007. It provides thread-level and
group-level proportional fairness based on virtual time fair
scheduling. However, virtual time based scheduling is used
for only local scheduling within a CPU as CFS maintains
a separate runqueue for each CPU. For global scheduling
across cores, a load balancing mechanism is used to improve
the scalability.

At each CPU, CFS maintains a runqueue for the CPU,
and threads are inserted to the queue as scheduling entities.
CFS maintains virtual time of all threads, and always picks
the thread with the lowest virtual time. CFS runs the picked
thread for a while and updates its virtual time with the
CPU time received by the thread. After CFS compares the
updated virtual time to those of the other threads, if the
current one is not the lowest one anymore, CFS picks the
next thread to run. This mechanism forces the virtual times
of all threads to make approximately equal progresses and
proportional fairness is maintained within the runqueue. To
implement the runqueue, CFS uses a red-black tree for its
efficient time complexity. By using virtual time as the key of
the red-black tree, picking the lowest virtual time thread can
be done in O(1) time, and re-inserting the previous thread
to the tree is done in O(logN) time.

To support group-based proportional fairness, CFS im-
plements a hierarchical scheduling mechanism. A group
of threads is considered as a unit for scheduling, being
inserted as a scheduling entity to the CPU’s runqueue. Each
group maintains its own runqueue for the threads in the
group. Since a group also has its weight, the virtual time
of the group is defined similarly to threads. If CFS picks a
scheduling entity from the CPU’s runqueue and the selected
entity is a thread group, CFS picks a scheduling entity from
the group’s runqueue. Since CFS allows nested groups, this
selection process is repeated until a leaf thread is selected.
This scheduling makes the virtual times of groups progress
in equal paces to support inter-group proportional fairness.
In addition, since CFS makes the virtual times of threads
for each group progress similarly, intra-group proportional
fairness is also maintained.

However, virtual time fair scheduling of CFS is restricted
to each CPU, enforcing strict virtual time maintenance only
within the runqueue of a CPU. CFS does not support accu-
rate virtual time accounting globally across multiple CPUs
to avoid a potential scalability problem of tracking accu-
rate global virtual time across multiple runqueues. When
a thread migrates to another CPU for load balancing, its
accurate virtual time is not transferred to the new CPU,
maintaining only approximate relative information regard-
ing the virtual time of the migrated thread.

2.3 Inaccuracy of Virtual Time Tracking with CFS

Without strict virtual time accounting across CPUs, CFS
uses its load balancing mechanism for global scheduling.
The load of a thread is defined as the thread’s weight
multiplied by the thread’s CPU utilization, and the load of

a CPU is defined as the sum of thread loads in the CPU’s
runqueue. Since the CPU utilization of a thread represents
the time portion when the thread is in a runnable state,
load of a CPU represents the expected sum of its own active
threads’ weight. Thus, if the loads of two CPUs are equal,
for a given time, the amounts of total virtual time increase
per CPU are equal. CFS periodically compares CPU loads
and migrates threads to balance the loads. This makes local
fair scheduling at each CPU leads to approximate global fair
scheduling across CPU cores.

To support global proportional fairness for groups, CFS
uses hierarchical load balancing. The load of a group is defined
as the group’s weight multiplied by the group’s CPU utiliza-
tion. The hierarchical load of a thread is the portion of group’s
load contributed by the thread. The sum of hierarchical
loads of all the threads in the group is the group’s load.
The same core mechanism is used as load balancing, but each
thread uses its hierarchical load instead of load.

The load balancing mechanism provides high scalability
as the runqueue for each CPU is managed independently.
However, load balancing does not guarantee accurate pro-
portional fairness, since loads can be balanced only at thread
granularity. For example, if there are two CPUs and three
threads with equal loads, loads cannot be balanced accu-
rately between CPUs. In such situations, local virtual time
fair scheduling with load balancing does not lead to globally
fair scheduling.

Although such approximate fair scheduling of CFS has
been effective enough for private systems, the recent trends
of consolidation in clouds require more strict proportional
fairness support. In such consolidated systems with mul-
tiple heterogeneous applications which have fluctuating
CPU utilizations, the imperfect fairness support can cause
inconsistent CPU shares among threads, incurring severe
variances in latencies for server workloads. Such problems
exacerbate as multiple clients share a physical system either
by containers and virtual machines. The next section quan-
titatively analyzes the limitation of CFS.

2.4 Impact of the Fairness Limitations in CFS

In this section, we show the impact of unfairness in load
balancing on application performance. We use a 16-core
system, and the details of the experimental setup are pre-
sented in Section 5.1. We measure the effect of imperfect
CPU resource accounting of CFS using a synthetic bench-
mark and real applications. The synthetic benchmark is
a multi-threaded application, and each thread consumes
CPU continuously. It measures the received CPU time for
every second. We implemented the measurement part of
the benchmark as simple as possible to avoid disk I/O,
page fault, interactions with kernels or other processes,
and any other side effects that may influence performance.
As the real applications, we use two representative types
of applications: the throughput-oriented batch tasks that
continuously use CPUs, and the latency-sensitive server
programs with fluctuating CPU loads.

First, we use a synthetic benchmark to measure the CPU
share distribution by CFS, when perfect load balancing is
difficult to achieve. Figure 1 shows the results with 20
threads on 16 cores. The left graph shows the received



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 4

1 2 3 4 5 6 7 8 9 10

Time Progress (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
e

c
e

iv
e

d
 C

P
U

 T
im

e
 (

s
)

1 2 3 4 5 6 7 8 9 10

Time Progress (s)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

L
a

g
 T

im
e

 (
s
)

Fig. 1: Synthetic benchmark: 20 threads on 16 cores

1 2 3 4 5 6 7 8 9 10

Time Progress (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
e

c
e

iv
e

d
 C

P
U

 T
im

e
 (

s
)

8 thread group 12 thread group

1 2 3 4 5 6 7 8 9 10

Time Progress (s)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
L

a
g

 T
im

e
 (

s
)

Fig. 2: Synthetic benchmark: 8-thread and 12-thread groups

CPU time measured in each second. Since we set all the
threads to have an equal weight, with the ideal scheduling,
threads should receive 0.8 seconds of CPU time per second.
However, the received CPU time fluctuates significantly
between 0.5∼1.0 seconds. In addition, the cumulative lag
times shown in the right figure increase significantly as
time progresses. After 10 seconds, some threads receive 1.0
second less CPU time compared to that of ideal scheduling,
while some threads receive 1.2 seconds more CPU time than
that with an ideal scheduling.

Figure 2 shows the results with thread grouping. There
are 20 threads, but 8 threads and 12 threads are grouped
separately. We set the weights of two groups equally, and
the weights of all the threads within a group are also equal.
With the ideal inter-group proportional fairness, each group
should receive 8 cores. Therefore, the threads in the 8-thread
group should receive 1.0 second for each second, and the
threads in the 12-thread group should receive 0.66 seconds
for the same time period. However, the received CPU times
fluctuate regardless of thread groups, and differences in lag
times are larger than the non-grouped case.

The main reason of such unfair CPU allocation is due to
the failure in load balancing. Since there is no way to equally
distribute 20 threads on 16 cores, load balancing does not
provide inter-runqueue fairness. With thread grouping, the
loads become more complicated to be equalized by the
coarse-grained load balancing approach of CFS.

As the first type of real applications, we use a CPU
intensive workload, namd from SPECCPU2006 benchmark
suite [9], to show the impacts of unfair CPU allocation on the
batch jobs. To evaluate the scheduling, we define fairness as
the normalized performance to the performance with ideal
scheduling as follows.

fairness =
actual perf

ideal perf
=

actual perf

ideal share

share of solo run
× solo run perf

Since we use CPU bound workloads, the ideal performance
can be calculated from the solo run performance and CPU
share with the ideal scheduling. For namd, the performance

0.90

0.95

1.00

1.05

1.10

F
a
ir
n
e
s
s

CFS-1

CFS-2

CFS-3

CFS-4

CFS-5

Fig. 3: 20 copies of namd on 16 cores

0.8

0.9

1.0

1.1

1.2

F
a
ir
n
e
s
s

8-copy group 12-copy group

CFS-1

CFS-2

CFS-3

CFS-4

CFS-5

Fig. 4: 8-copy and 12-copy groups of namd on 16 cores

is defined as the reciprocal of execution time.

The experiment scenarios are similar to the previous
cases for the synthetic benchmark and the experiments are
repeated 5 times. Figure 3 shows the results with 20 copies
of namd, running 20 threads on the 16-core system, and
Figure 4 shows the results with thread grouping. 8 copies
and 12 copies are grouped separately. The results were
similar to the ones with the synthetic benchmark. The actual
performance of namd varies from the ideal performance, up
to 5% in the non-grouped scenario and up to 13% in the
grouped scenario.

Note that the performance variance of namd copies is
not as large as that with the synthetic benchmark. The main
reason is the randomized scheduling effect. Since there are
many kernel threads or service threads which wake up occa-
sionally, the load distribution in the system changes and the
load balancing tries to re-balance loads again. Then, namd
threads that have received less CPU shares can have chances
to receive more CPU shares later. Even with the long-
term randomization of loads, the grouped scenario shows
worse fairness than the non-grouped one since the group
weights are not accurately accounted with the current CFS
implementation. It can lead to potential violation of service-
level agreement for CPU resources, where the weights of
virtual machines or containers are contracted for each user.

Finally, to show the impacts of unfair scheduling on
server programs, we use four server workloads from Tail-
Bench [10]. Since server programs are latency-critical work-
loads, we use two tail latencies, 95%-tile and 99%-tile laten-
cies, as performance metrics.

Figure 5 shows 95%-tile and 99%-tile latencies of the
server workloads when batch jobs share the same system.
We use 16 copies of namd for the batch job, which can fill
all 16 CPUs. With 16 batch jobs, the shares of batch jobs are
varied to measure the response time changes of the latency-
sensitive workloads. In the figure, the x-axis represents the
batch job share varied from 0 to 90%. We group the threads
of server workloads and the threads of batch jobs separately,
and set the group’s weight to adjust the ideal CPU share
ratio. The threads in each group have an equal weight. The



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 5

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

10

20

30

40

50

60

L
a

te
n

c
y
 (

m
s
)

95%-ile 99%-ile

(a) xapian (51%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

5

10

15

20

25

30

35

40
95%-ile 99%-ile

(b) masstree (12%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

10

20

30

40

50

60
95%-ile 99%-ile

(c) img-dnn (49%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

5

10

15

20
95%-ile 99%-ile

(d) specjbb (15%)

Fig. 5: Tail-latency of TailBench with batch jobs. The percentage in the parentheses represents CPU utilization in a solo run.

y-axis shows the tail latencies in ms.

The percentage after the workload name presents CPU
utilization of the workload when no batch jobs are running.
For example, (b) masstree uses only 12% of CPUs when
running alone. Thus, ideally, the tail latencies of latency-
sensitive workloads should not be affected by batch jobs
until the share setting exceeds the required CPU utilization
of latency-sensitive workloads. However, as shown in the
figure, tail latencies increase significantly even when the
batch job share is set to be relatively low. As exemplified
in (b) masstree, even if the latency-sensitive workload
requires only 12% of CPUs, when the share of the batch
group exceeds 10%, the 99%-tile latency jumps to 14ms. The
result shows that even short-term unfairness can lead to a
significant quality-of-service degradation.

In conclusion, we show that CPU resource accounting
of CFS can be unfair if the number of threads is not a
multiple of the number of CPUs. For long-running batch
jobs, the impact of unfair accounting can be amortized
by the randomized scheduling effect. However, for server
workloads, the temporal unfairness in CFS significantly
affects the performance consistency across many responses,
causing significant increases of the tail latencies.

3 GLOBAL VIRTUAL TIME FAIR SCHEDULER

This section describes the design of GVTS (Global Vir-
tual Time Fair Scheduler) in three parts. First, Section 3.1
describes topology-aware global virtual time balancing, which
is a scalable mechanism to provide thread-level propor-
tional fairness with high accuracy. Second, Section 3.2 ex-
plains how GVTS supports inter-group proportional fair-
ness. Third, Section 3.3 proposes optimization techniques
to reduce thread migration overheads.

3.1 Topology-aware Global Virtual Time Balancing

For GVTS, the main difference from CFS is that virtual time
is a global value for all CPUs in a system. GVTS makes
virtual time of all threads globally progress equally. This
enables the progress of all threads to be fair according to
their weights.

At each CPU, GVTS is very similar to CFS. It always
picks up a thread with the lowest virtual time. It runs the
thread until the virtual time of the thread is not the lowest
one anymore. Then, it selects the next thread with the lowest
virtual time, and the procedure is repeated.

To make virtual time progress fair between threads in a
system, GVTS uses global virtual time balancing. The mecha-
nism sets target virtual time for CPUs, and the target value
works as a barrier for virtual time progress. When the virtual
times of all threads in a CPU exceed the target, the CPU
stops picking up a thread in the runqueue. Instead, it scans
the other CPUs to find threads whose virtual time do not
exceed the target. If such threads are found, it pulls and runs
the threads. Otherwise, if there are no such threads, the CPU
increases the target as much as target interval. Then, it runs
its own threads until all the threads pass the new target.

Determining target interval is an important issue for
GVTS. A short interval incurs frequent balancing and it
may result in the performance degradation due to frequent
thread migration. At the same time, short intervals keep
the fairness among threads at fine granularity, as such
fine-grained barriers minimize the difference in virtual time
across all threads. On the other hand, long intervals reduce
the thread migration overhead, but increase temporal un-
fairness among threads.

To balance the trade-off between the migration overhead
and fairness, GVTS employs topology-aware global virtual time
balancing. Based on the CPU topology, GVTS builds multi-
level scheduling domains and sets a different target interval
for each level of domains. For example, suppose that there
is a many core system with multiple NUMA nodes and
each node has several cores with SMT (Simultaneous Multi-
Threading) support in each core. In the system, the logical
SMT CPUs within a physical core constitutes a scheduling
domain (SMT domain), which is the lowest level domain.
In addition, several SMT domains in the same NUMA
node constitute the next level domain. The domain of a
NUMA node has the SMT domains as its children. Finally,
all the NUMA nodes constitute the highest level scheduling
domain.

The thread migration overheads also depend on the CPU
topology. Migrating threads between the logical SMT CPUs
in a core incurs little overheads, while migrating threads
between NUMA nodes incurs large overheads. Therefore,
we set a short interval for the scheduling domain with less
migration overheads, and a long interval for the scheduling
domain with larger migration overheads. This mitigates the
overall thread migration overhead, while reducing temporal
unfairness. Note that the lower level of scheduling domains
have short intervals. The fairness between threads is main-
tained at fine granularity within the domains.

Figure 6 summarizes the overall procedure of topology-
aware global virtual time balancing. When all the threads in a



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 6

Pick a thread 

with the lowest vtime

and run it for a while

vtime target_vtime

for all threads?

YES

target_vtime

Scan CPUs in local domain

for a thread with 

vtime < target_vtime

YES

Found?

Pull the thread

YES

+= 

Is there 

an upper level domain?

YES

NO

target_vtime

domain = 

NO

NO

NO

Fig. 6: Topology-aware global virtual time balancing

CPU pass the target virtual time, the CPU scans the CPUs
in the lowest level domain to find other threads to pull.
If there is no thread to pull, the target of the lowest level
domain increases by the interval of the domain. Then, the
scanning is extended to the higher level domain until any
remote thread can be pulled or any local thread does not
pass the target virtual time of the domain.

3.2 Effective weight for inter-group fairness

Topology-aware global virtual time balancing provides propor-
tional fairness between threads for many cores. To support
proportional fairness between groups, we propose an effec-
tive weight mechanism which also supports nested grouping.

The weight of a thread represents the desirable CPU
share ratio of the thread. However, this is not true if threads
are grouped since CPU share should first be distributed to
groups according to the group’s weight, and then CPU share
for each group can be distributed to threads according to the
thread’s weight.

Thus, we propose effective weight to represent the desir-
able CPU share ratio for both grouped and non-grouped
threads. For non-grouped threads, the effective weight is the
same with its weight. For threads in a group, the effective

weight of the thread, w
eff
thread, is defined as follows.

w
eff
thread =

wthread∑

entity∈group

wentity
×W

eff
group

In the definition, entity is a thread or group which
belongs to the group. Since GVTS supports nested grouping,
a group can belong to another group. The effective weight
of a group is defined in the same way. If a group does not
belong to any other group, its effective weight is the same
with its weight. Otherwise, the effective weight of the group
is defined as follows.

W
eff
group =

Wgroup
∑

entity∈parent

wentity
×W

eff
parent

where parent is the parent group.
Figure 7 shows an example of effective weight values.

Rectangles represent groups, and ellipses represent threads.
Suppose that the weight of all groups and threads are 1024.
The effective weight of each entity is shown inside the
rectangle or ellipse, and the CPU share ratio for a thread
is shown under of the ellipse.

Fig. 7: An example of effective weight values

3.3 Optimizations to Reduce Thread Migrations

One negative effect of GVTS is that the number of thread
migrations is likely to increase. When the effective weight of
threads cannot be distributed equally among CPUs, threads
jump from a CPU to another to receive fair amounts of CPU
time. When a thread is migrated, it loses the data loaded
on caches and other processor states such as TLB, branch
predictor, etc, and its performance can be degraded.

Although topology-aware global virtual time balancing ad-
justs the thread migration frequency considering the thread
migration overhead, we add two more optimizations to
reduce throughput degradation by the thread migrations.
First, when global virtual time balancing occurs, the sched-
uler attempts to make CPUs reach the next target virtual
time as similarly as possible. This reduces the number of
required thread migrations for the next virtual time balanc-
ing. Second, GVTS skips virtual time balancing if progress
among CPUs are similar. This further reduces the thread
migrations when the unfairness is negligible.

In the rest of this section, we first explain a technique, re-
maining time estimation, which is used for the optimizations,
and then describe the optimization techniques in detail.
Remaining Time Estimation: For the optimization tech-
niques, it is necessary to estimate the required CPU time
of a thread to reach the next target. We call it remaining time
or remain time which represents the remaining time to reach
the next target virtual time.

To estimate remaining time, we firstly define re-
main weight of a thread, which represents the required CPU
time to increase 1 virtual time, as follows.

wremain
thread = w

eff
thread × CPUutilthread

Note that when a thread takes 1ms CPU time, its virtual
time increases by 1ms/w

eff
thread. In addition, the CPU utiliza-

tion factor is included to account the virtual time increase
only by receiving actual CPU time. However, when a thread
wakes up from sleeping state, the virtual time of a thread
is increased to a new value approximated to the current



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 7

minimum virtual time in the system, to make the thread
receive a fair amount of CPU share when it finally becomes
active after the sleep state. The detailed mechanism will be
explained in Section 4.

Using remain weight, the remaining time of a thread to
reach the target can be estimated as follows.

remain timethread(target) = (target − vtimethread)× wremain
thread

The first part of the definition represents the remaining
virtual time to the target. The target should be provided as
an argument. The second part represents the estimated time
to increase 1 virtual time. Thus, the multiplication of two
terms represents the required CPU time to reach the target.
Then, remaining time of a CPU can be defined as the sum of
remaining time of threads in the CPU’s runqueue. A CPU’s
remaining time represents the required CPU time to reach the
target provided.

remain timeCPU(target) =
∑

thread∈CPU

remain timethread(target)

Optimizing virtual time balancing: When a CPU pulls
a thread from another CPU for topology-aware virtual
time balancing, this optimization attempts to balance the
remaining times of CPUs to reach the next target. With
the balancing, two CPUs are likely to reach the next target
at a similar time, and less thread migrations are required
later. Similar to load in CFS, remaining time can be changed
only at thread granularity. In addition, since remaining time
increases or decreases depending on the target or received
CPU time, the remaining times of two CPUs are not exactly
equal for most cases. However, unlike the load balancing
of CFS, remaining time does not affect the fairness, as it can
change only migration frequency. This optimization, as well
as thread migration, does not change the virtual times of
threads, and the fairness is maintained by equal progress in
virtual time.
Skipping virtual time balancing: In the second optimiza-
tion, the scheduler skips the balancing step if the progresses
of CPUs are similar. If the remaining times of CPUs are
similar, they will reach the next target at a similar time
frame. Therefore, virtual time balancing is not necessary
in this case. To determine whether the progresses of two
CPUs are similar enough to skip the balancing step, we
add a parameter, tolerance, which represents the allowed
difference of remaining time. If the difference in remaining
times is less than the tolerance value, the scheduler skips
the balancing procedure, avoiding thread migration. While
this optimization may slightly increase the unfairness of a
system, the unfairness cannot increase boundlessly, since
the scheduler skips the balancing only when CPUs progress
similarly. Furthermore, this optimization also does not affect
virtual time of threads, and the unfairness will be fixed soon
by topology-aware global virtual time balancing.

4 IMPLEMENTATION

GVTS is implemented on Linux kernel 4.6.4 by modifying
the CFS scheduler. Most of the codes related to load balanc-
ing are removed and replaced by topology-aware global virtual
time balancing. Since our implementation is done within the
Linux kernel interfaces, the KVM hypervisor or Dockers can
be used with our implementation without modification. In

addition, our implementation has the same level of porta-
bility as the Linux kernel and is able to recognize various
system topologies as the Linux kernel can.

For the target interval parameters, we use the following
values according to the resource sharing level of scheduling
domains. First, for the SMT domain, target interval is set to
30ms. Then, for domains on the same chip, whose CPUs
share a last level cache, target interval is set to 90ms. Finally,
for NUMA nodes, target interval is set differently, depending
on the distance, to the number of hops ∗ 300ms.

For tolerance parameters, which is used for the opti-
mization techniques, the value for each domain is set to
30% of target interval value of the domain. Setting the
tolerance to the relative value to the target interval of
each domain, allows temporal unfairness across higher level
scheduling domains with large target interval values. At
lower level scheduling domains, virtual time management is
more strictly enforced for fine-grained proportional fairness
support.

There are several implementation issues to maintain
virtual time as global values. The rest of this section explains
how to address the implementation issues.
Thread group management: To manage thread groups effi-
ciently, GVTS modifies the hierarchical scheduling of CFS.
In CFS, a group has its virtual time and an associated
runqueue containing member threads with their own virtual
time independent from the group virtual time. In GVTS,
as the virtual times of threads are globally maintained, the
virtual time of a group is just set to the minimum virtual
time of member threads. Since the hierarchical scheduling
selects the lowest virtual time entity in the runqueue, such
setting makes the lowest virtual time thread to be selected
regardless of the group hierarchy.

In addition, GVTS adds a shared variable within a group,
the sum of weights of active threads and active child groups.
This is used to calculate effective weight, as described in
Section 3.2. Since the weights of threads rarely change, the
weight variable needs to be updated only when a thread
forks, exits, sleeps, or wakes up. It does not need to be
updated when a thread migrates to another CPU. Due to
such infrequent change, the shared variable per group does
not incur any performance impact.
Virtual time of waking up task: A thread waking up from
the idle state must be assigned with a new virtual time.
In CFS, when a thread wakes up, the minimum value of
virtual time in the local runqueue is used for the virtual
time of the thread. The minimum virtual time setting gives
the highest priority to the activated thread, and improves
I/O latency if the thread had been in sleep state to wait for
an I/O response.

To support such a mechanism in GVTS, it is necessary to
maintain the globally minimum virtual time of all threads in
the system, since virtual time is globally enforced in GVTS.
Finding an accurate minimum virtual time may require
global synchronization with high overheads. Instead, GVTS
uses an estimated value for the globally minimum virtual
time. It is estimated by the minimum target virtual time
of the lowest level scheduling domains subtracted by a
half of the target interval of the lowest level scheduling
domains. This approximate virtual time assignment for a
newly woken-up thread allows it to be selected as the next



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 8

thread to run, and guarantees a certain amount of share, as
its virtual times is smaller than the local minimum minus a
half interval.

To efficiently maintain the minimum target virtual time
of the lowest level scheduling domains, each scheduling
domain maintains the minimum target virtual time of the
child domains. When a scheduling domain updates its tar-
get virtual time, it also updates the minimum target virtual
time of the parent domain if necessary. Then, the scheduler
can find the minimum target virtual time with O(logP ) time
complexity where P is the number of CPUs. In addition, the
scheduler can skip the estimation if the thread already has
a virtual time larger than the local minimum virtual time,
further reducing the overhead.
Infeasible weight: Unlike CFS, infeasible weight incurs a
negative side effect in GVTS. In CFS, threads with infeasible
weights have an extraordinarily high load, and load balanc-
ing of CFS gives a whole CPU to each of the threads. Even
though the definition of proportional fairness mandates the
thread to receive more than a CPU, the CFS decision for the
thread is proper, since a thread cannot receive more than a
CPU. In addition, since CFS manages a runqueue in each
CPU independently, there is no side effect.

Similar to CFS, a thread with an infeasible weight in
GVTS receives a whole CPU, as the virtual time of the
thread increases very slowly compared to the other threads
and its remaining time becomes much larger than those of
the other threads. However, the slow increase of virtual time
becomes a significant problem in GVTS, since it prevents the
global minimum virtual time from increasing. This leads to
a problematic situation where a thread waking up has an
abnormally low virtual time. The newly woken-up thread
receives a large amount of CPU shares until it catches up
the virtual times of the other long running threads, leading
to unfair scheduling.

To address this problem, we implement an infeasible
weight detection mechanism and exclude the CPU with
the infeasible weight threads from maintaining the global
minimum target virtual time. By this exclusion, threads
waking up can have proper virtual time values, even when
a thread with an infeasible weight exits in the system. The
conditions for the detection is as follows. 1) A CPU is
lagging behind the other CPUs for more than 3 intervals. 2)
The CPU has only one thread. 3) The CPU’s remain weight
is larger than those of the other CPUs. If all conditions
are satisfied, the scheduler decides that the thread has an
infeasible weight, and it excludes the CPU executing the
thread from maintaining the minimum target virtual time.

5 EVALUATION

5.1 Methodology

For evaluation, we use two systems with 16 cores and 80
cores respectively. The first system has an AMD Opteron
6282 SE processor with 32GB RAM. The processor has 16
cores (16-core system). Among 16 cores, each pair of cores
shares an FPU, L1 instruction cache, and 2MB unified L2
cache. Each pair constitutes a level-1 scheduling domain. In
addition, a group of 8 cores share an 8MB L3 cache, and they
constitute a level-2 scheduling domain. Finally, two 8-core

groups constitute the final level 3 domain. This system was
also used in Section 2.4.

The second system has 4 Intel Xeon E5-4620 processors
with 256GB RAM. Each processor has 20 cores and the total
number of cores in the system is 80 (80-core system). In
this system, a pair of logical CPUs is coupled by Hyper-
Threading technology. For topology-aware global virtual time
balancing, each pair of logical CPUs constitute a level-1
scheduling domain, the 20 cores in a chip constitute a level-2
scheduling domain, and four processor chips in the system
constitute the highest level scheduling domain.

In this section, our GVTS implementation on Linux ker-
nel 4.6.4 is compared with CFS and DWRR [8]. First, CFS is
the virtual time based proportional fair scheduler for Linux
kernel, as described in Section 2.2. For CFS evaluation, we
use the same 4.6.4 kernel. Second, DWRR is a weighted
round-robin based fair scheduler. For each round, a CPU
schedules each local thread for wi × round interval. After
finishing a round for the local threads, it scans CPUs at the
lower round to pull their threads. This makes the progress of
CPUs fair at round granularity, and the lag time of threads
is kept within wi × round interval. For round interval, we
use 30ms as in the DWRR paper. Note that DWRR has a
trade-off between thread migration overhead and fairness
granularity. If round interval is short, the maximum lag time
is reduced but threads can be frequently migrated across
CPUs. We ported DWRR to Linux kernel 4.6.4 based on the
original DWRR implementation on Linux kernel 2.6.24 [8].
However, as DWRR does not support thread grouping, we
do not evaluate DWRR for the inter-group fairness.

We use several workloads to compare fairness and
throughput of the schedulers. First, we use a synthetic
benchmark which was described in Section 2.4. This is used
to show the CPU share allocation in details. Second, to show
the real impact of global fair scheduling on batch jobs, we
use two single thread benchmarks and a multi-threaded
benchmark. For the single thread workloads, we select namd
and milc from SPECCPU2006 [9]. The former one is a CPU
intensive benchmark and CPU allocation has a major impact
on performance, while the latter one is a memory intensive
benchmark and the migration overhead also has a signif-
icant impact on the performance. For the multi-threaded
batch workload, we use swaptions of PARSEC [11], which
exhibits high CPU utilization.

Last, we use two kinds of server workloads. TailBench
suite [10] is used to test the schedulers with various server
programs. It includes 8 real-world server workloads such as
web search engine, in-memory and disk-based databases,
face recognition, speech recognition, etc. In addition, we
use memcached 1.4.25 which is a representative key-value
store application. For the client driver, we use treadmill [12]
to mimic a real usage scenario. We run the client driver
on a remote server connected to our experimental systems
through TCP/IP.

5.2 Results of Synthetic Benchmark

As described in Section 2.4, the synthetic benchmark creates
the specified number of threads which continuously run for
10 seconds. Figure 8 shows the results when the benchmark
creates 20 threads on 16-core system. The results show



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 9

1 2 3 4 5 6 7 8 9 10

Time Progress (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
e

c
e

iv
e

d
 C

P
U

 T
im

e
 (

s
)

1 2 3 4 5 6 7 8 9 10

Time Progress (s)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

L
a

g
 T

im
e

 (
s
)

Fig. 8: Synthetic benchmark: 20 threads on 16 cores

1 2 3 4 5 6 7 8 9 10

Time Progress (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
e

c
e

iv
e

d
 C

P
U

 T
im

e
 (

s
)

8 thread group 12 thread group

1 2 3 4 5 6 7 8 9 10

Time Progress (s)

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
L

a
g

 T
im

e
 (

s
)

Fig. 9: Synthetic benchmark: 8-thread and 12-thread groups
on 16 cores

Threads
-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

L
a
g
 T

im
e
 (

s
)

CFS DWRR GVTS

(a) 120 threads

Threads
-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

L
a
g
 T

im
e
 (

s
)

(b) 40-thread and 80-thread groups

Fig. 10: Synthetic benchmark results on 80 cores

that, unlike the CFS results shown in Figure 1, GVTS can
maintain inter-thread proportional fairness. As shown in the
left graph, threads receive from 0.76 to 0.87 seconds of CPU
share for each second. Since the ideal scheduling should
distribute 0.8 seconds of CPU share to all threads for each
second, this results is much closer to the ideal scheduling
than the results of CFS. Moreover, temporal unfairness is
being resolved over time as shown in the right graph.
Lag times do not diverge and are maintained between -
0.05∼0.04 seconds.

Figure 9 uses the same microbenchmark, but 8 threads
and 12 threads are grouped separately. Comparing the CFS
results in Figure 2, the results also show that GVTS provides
much more accurate fairness than CFS. Lag times are near
zero for all threads with GVTS.

Finally, Figure 10 shows the results on the 80-core sys-
tem. Since there are many threads, we show the lag time
distribution of threads after 10 seconds in the graph. In
the figure, the x-axis represents the threads, and the y-
axis represents the lag time in seconds. The three lines
show the lag times of threads with CFS, DWRR, and GVTS
respectively. When 120 threads run, the lag times with CFS
increase up to 2.2 seconds. When the threads are grouped,
the results of CFS become worse as shown in the right
graph. Meanwhile, the curves for GVTS in the left and
right graphs are close to zero, as its global virtual time fair
scheduling distributes CPU share proportional to threads’
weight. DWRR also shows the near-zero lag times thanks

0.85

0.90

0.95

1.00

1.05

1.10

1.15

F
a
ir
n
e
s
s

Min 25%-ile 75%-ile Max Weighted Throughput

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

D
W

R
R

-1
D

W
R

R
-2

D
W

R
R

-3
D

W
R

R
-4

D
W

R
R

-5
G

V
T

S
-1

G
V

T
S

-2
G

V
T

S
-3

G
V

T
S

-4
G

V
T

S
-5

(a) 20 copies

0.85

0.90

0.95

1.00

1.05

1.10

1.15

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

G
V

T
S

-1
G

V
T

S
-2

G
V

T
S

-3
G

V
T

S
-4

G
V

T
S

-5

(b) 8-copy and 12-copy groups

Fig. 11: Results of namd on 16-core system

0.85

0.90

0.95

1.00

1.05

1.10

1.15

F
a
ir
n
e
s
s

Min 25%-ile 75%-ile Max Weighted Throughput

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

D
W

R
R

-1
D

W
R

R
-2

D
W

R
R

-3
D

W
R

R
-4

D
W

R
R

-5
G

V
T

S
-1

G
V

T
S

-2
G

V
T

S
-3

G
V

T
S

-4
G

V
T

S
-5

(a) 100 copies

0.85

0.90

0.95

1.00

1.05

1.10

1.15

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

G
V

T
S

-1
G

V
T

S
-2

G
V

T
S

-3
G

V
T

S
-4

G
V

T
S

-5

(b) 40-copy and 60-copy groups

Fig. 12: Results of namd on 80-core system

to the round based fair scheduling. However, it does not
support thread grouping, and the result is omitted from the
right graph.

5.3 Results of Batch Jobs

In this section, we evaluate long time scheduler behaviors
and their effect on performance. We use namd and milc from
SPECCPU2006 [9] and swaptions from PARSEC [11]. For
benchmarks from SPECCPU2006, reference input is used for
all scenarios. Note that namd is a CPU intensive benchmark
while milc is a memory intensive benchmark. For swaptions,
native input, 128 point dimensions with 1,000,000 input
points, is used on 16-core system. We increase input size
to 160 points dimensions with 10,000,000 input points for
80-core system to make sure that the benchmark sufficiently
utilizes 80 cores.

We use two metrics to evaluate fairness and throughput
of CPU scheduling. First, the fairness metric represents the
normalized performance compared to the performance of
ideal scheduling, as used in Section 2.4. The second metric
is weighted throughput which represents the overall system
throughput. The metric is the weighted average of fairness
of threads, where the weights of threads are used as the
weight for averaging.

weighted throughput =

∑
fairness × wthread∑

wthread

Single thread benchmark: Figure 11 shows the results
of namd on the 16-core system. The same setup was used
in Section 2.4. In the figures, the x-axis represents each
experimental run repeated 5 times for both schedulers, and
the y-axis represents the fairness metric. For each column,
the triangles indicate the minimum and the maximum value
of fairness and the lower and upper boxes show the 25%-ile



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 10

0.85

0.90

0.95

1.00

1.05

1.10

1.15

F
a
ir
n
e
s
s

Min 25%-ile 75%-ile Max Weighted Throughput

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

D
W

R
R

-1
D

W
R

R
-2

D
W

R
R

-3
D

W
R

R
-4

D
W

R
R

-5
G

V
T

S
-1

G
V

T
S

-2
G

V
T

S
-3

G
V

T
S

-4
G

V
T

S
-5

(a) 20 copies

0.85

0.90

0.95

1.00

1.05

1.10

1.15

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

G
V

T
S

-1
G

V
T

S
-2

G
V

T
S

-3
G

V
T

S
-4

G
V

T
S

-5

(b) 8-copy and 12-copy groups

Fig. 13: Results of milc on 16-core system

0.85

0.90

0.95

1.00

1.05

1.10

1.15

F
a
ir
n
e
s
s

Min 25%-ile 75%-ile Max Weighted Throughput

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

D
W

R
R

-1
D

W
R

R
-2

D
W

R
R

-3
D

W
R

R
-4

D
W

R
R

-5
G

V
T

S
-1

G
V

T
S

-2
G

V
T

S
-3

G
V

T
S

-4
G

V
T

S
-5

(a) 100 copies

0.85

0.90

0.95

1.00

1.05

1.10

1.15

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

G
V

T
S

-1
G

V
T

S
-2

G
V

T
S

-3
G

V
T

S
-4

G
V

T
S

-5

(b) 40-copy and 60-copy groups

Fig. 14: Results of milc on 80-core system

0.90

0.92

0.94

0.96

0.98

1.00

W
e
ig

h
te

d
 T

h
ro

u
g
h
p
u
t

G
VTS

D
W

R
R
(3

0m
s)

D
W

R
R
(1

00
m

s)

D
W

R
R
(3

00
m

s)

D
W

R
R
(1

s)

(a) Weighted throughput of 

20 copies of milc

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

L
a
g
 T

im
e
 (

s
)

Min 25%-ile 75%-ile Max

G
VTS

D
W

R
R
(3

0m
s)

D
W

R
R
(1

00
m

s)

D
W

R
R
(3

00
m

s)

D
W

R
R
(1

s)

(b) Lag time distribution of

synthetic benchmark

Fig. 15: DWRR results with varying round slice

and 75%-ile value of fairness. The diamonds represent the
weighted throughput for each experiment.

The results show that GVTS successfully maintains pro-
portional fairness even when CFS fails to balance loads and
fails to provide fairness, as expected in the synthetic bench-
mark results. Moreover, the difference in weighted throughput
between two schedulers is less than 0.5%. The results show
that GVTS can almost eliminate fairness violation without
any severe throughput degradation. The results with DWRR
are also similar to GVTS as it distributes CPU resource
evenly to threads at round interval granularity. Note that
namd is a CPU intensive workload and CPU allocation alone
has a major impact on performance.

Figure 12 shows the results on the 80-core system. The
scenarios are similar to the ones on the 16-core system, but
the number of namd copies is increased 5 times. The trends
are similar to the results on 16-core. This shows that our
scheduler has enough scalability to work on large systems.

Figure 13 and 14 show the results with milc. Since milc
is a memory intensive benchmark, the frequent migrations
may lead to notable performance degradation. As similar
to namd results, CFS shows a high performance variance

0.8

0.9

1.0

1.1

1.2

F
a

ir
n

e
s
s

G1(W:3) G2(W:2) G3(W:1) G4(W:1)

Weighted Throughput

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

G
V

T
S

-1

G
V

T
S

-2

G
V

T
S

-3

G
V

T
S

-4

G
V

T
S

-5

Fig. 16: 4 copies of swaptions with 40 threads. Weight=3:2:1:1

0.8

0.9

1.0

1.1

1.2

1.3

F
a

ir
n

e
s
s

G1(W:10) G2(W:3) G3(W:1)

Weighted Throughput

C
F

S
-1

C
F

S
-2

C
F

S
-3

C
F

S
-4

C
F

S
-5

G
V

T
S

-1

G
V

T
S

-2

G
V

T
S

-3

G
V

T
S

-4

G
V

T
S

-5

Fig. 17: 3 copies of swaptions with 80 threads. Weight=10:3:1

between threads. In addition, the intensity of performance
variance also differs between runs.

DWRR reduces the performance variance significantly,
but it also reduces the overall throughput due to the thread
migration overhead. The throughput degradation is 4∼6%
on 16-core system and 1.4% on 80-core system. There is a no-
table difference in throughput degradation across machines,
since CPUs of two machines are from different CPU vendors
and the thread migration overhead is significantly affected
by the CPU architectures.

Finally, GVTS shows the minimum performance vari-
ance with acceptable throughput degradation, due to op-
timization techniques to reduce thread migrations. The
throughput degradation is around 2∼3% for 16-core system
and less than 0.3% for 80-core system. However, although
GVTS shows a less performance variance compared to CFS,
there is a still minor performance variance, especially for
Figure 13 (b) case. The main reason is that the number of
thread migration events for fair scheduling can be biased
between threads. This problem results in imbalanced migra-
tion overheads of threads and causes uneven performance
of threads. Balancing the number of migrations between
threads will be our future work.

To further analyze the trade-off of DWRR between fair-
ness accuracy and migration overhead, we run the syn-
thetic benchmark and milc with varying round interval for
DWRR which ranges from 30ms (default) to 1s. Figure 15
(b) shows the weighted throughput of 20 milc copies on
16-core system. We repeat the experiment 5 times for each
parameter, and the average is shown in the figure. Note that
the weighted throughput with CFS scheduler is close to 1
as shown in Figure 13 (a). The default round interval (30ms)
shows 5% additional throughput degradation compared to
CFS. The overhead decreases as round interval increases, and
1 second round interval shows weighted throughput compa-
rable to GVTS. However, 1 second round interval degrades
fairness accuracy of the scheduler. Figure 15 (a) shows the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 11

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

10

20

30

40

50

60

L
a

te
n

c
y
 (

m
s
)

DWRR 99%-ile DWRR 95%-ileCFS 95%-ile CFS 99%-ile GVTS 95%-ile GVTS 99%-ile

(a) xapian (51%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

5

10

15

20

25

30

35

40

(b) masstree (12%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

10

20

30

40

50

60

(c) img-dnn (49%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

5

10

15

20

(d) specjbb (15%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

20

40

60

80

100

120

L
a

te
n

c
y
 (

m
s
)

(e) moses (40%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

10000

20000

30000

40000

50000

(f) sphinx (100%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

5

10

15

20

25

(g) silo (15%)

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

0

50000

100000

150000

200000

250000

(h) shore (27%)

Fig. 18: Tail-latency of TailBench on 16 cores

lag time distributions of our synthetic benchmark, when it
runs 20 threads on the 16-core system. DWRR with 1 second
round interval incurs lag time longer than 1 second, while
GVTS shows a much shorter lag time. Consequently, GVTS
achieves both accurate fairness and low migration overhead
due to the topology-aware virtual time balancing and other
optimizations.

Multi-threaded benchmark: To evaluate inter-group
proportional fairness with a multi-threaded benchmark,
we use 4 scenarios with swaptions. For all scenarios, each
instance of swaptions belongs to different thread groups.
Then, we adjust the weights of groups respectively for each
scenario. The fairness between thread groups is measured
in terms of the performance of each instance. Although we
experiment 4 scenarios on both experimental platforms, we
show 2 scenarios on 80-core system due to the space limit.
The rest of the results show similar trends.

Figure 16 shows the results of the first scenario. We run
4 instances of swaptions with 40 threads per instance. Each
instance belongs to different groups and the weight ratio
between the groups is 3:2:1:1. In the graph, each column
presents a run repeated 5 times for both of the schedulers,
and the bars in each column show the fairness value of the
instances of swaptions. Since swaptions is a CPU intensive
workload and highly scalable, the performance of the copies
must be proportional to its CPU share. As shown in the
figure, CFS shows large performance variances up to 8%,
while GMFS successfully provides inter-group proportional
fairness, close to the ideally fair scheduler.

Figure 17 shows the results of the second scenario. The
scenario runs 3 instances of swaptions with 80 threads per
instance. As before, threads of each instance constitute a
thread group, and the weight ratio between the three groups
is 10:3:1. With CFS, the heavy weighted group tends to
receive less CPU share and exhibit low fairness, and the light
weighted groups tend to receive more CPU share than the
ideal scheduling. On the other hand, GVTS does not show

such problems and provides near-perfect fairness.
Note that all fairness with GVTS in Figure 16 and 17

slightly exceed 1. This is the effect of the fine-grained intra-
group fair scheduling. Since swaptions has a barrier at the
end of the procedure, it can finish when all of its threads
finish. Fine-grained intra-group fair scheduling can fully
utilize as much core as possible, and help all threads finish
simultaneously. Without such scheduling, some threads lag
behind other threads, and the program should wait until all
lagged threads to finish.

5.4 Results of Server Workloads

As shown in Section 2.4, tail latency critical workloads, such
as web servers, may suffer from the temporal fairness vio-
lations, degrading their quality-of-service due to tail latency
increases. Since server workloads may be consolidated with
batch jobs in clouds to improve resource utilization, fine-
grained fair scheduling is important.

To evaluate server workloads, we use two benchmarks,
TailBench [10] and memcached, and use namd for consolidated
batch jobs. First, TailBench consists of 8 real-world server
applications from various domains, including search engine,
key-value store, translation, speech/image recognition, java
middleware and OLTP. We use integrated configuration which
a single process combines clients and application threads.
It does not include network latency and network stack
overheads, but focuses on the CPU usage of the server
applications. Second, memcached represents the realistic us-
age scenario including the network overhead. We use tread-
mill [12] for the client driver on a separate machine. The
client machine has two Intel Xeon E5-2630 CPUs and totally
40 cores. Third, for batch jobs, namd, we set the number of
batch jobs to be equal to the number of CPUs in the system,
so the batch jobs can fully utilize the whole system, if they
have enough share. All scenarios are repeated 5 times and
we use the average value of tail latencies to compensate for
the performance variances across runs [12].



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 12

0 10 20 30 40 50 60 70 80 90

Batch Job Share Setting (%)

1

10

100

1000

L
a
te

n
c
y
 (

m
s
, 
lo

g
-s

c
a
le

)

DWRR 99%ile

DWRR 95%ile

CFS 95%-ile

CFS 99%-ile

GVTS 95%-ile

GVTS 99%-ile

Fig. 19: Memcached Results on 16 cores

Figure 18 shows the results of TailBench [10] with batch
jobs. The x-axis represents the desired CPU share for batch
jobs. We adjust the relative weight of batch jobs and server
applications to set the desired CPU share. When the desired
CPU share for batch jobs is 10%, the server applications can
use up to 90% of CPU share with the ideal scheduling. The
y-axis represents the tail latency of server applications. The
circles show the 95%-ile latencies and the triangles show the
99%-ile latencies. In addition, the empty marks with dotted
lines represent the results of CFS and the filled marks with
solid lines represent those with GVTS. For DWRR, which
does not support thread grouping, we only show the results
of two cases: one is when there are no batch jobs, and the
other is when the weight of the batch jobs are equal to
the weight of server workloads. The percentage after the
application name shows the CPU utilization of the applica-
tion without batch jobs. This represents the maximum CPU
utilization for each application.

Similar to Figure 5 in Section 2.4, CFS has a harmful
effect on tail latency in most of the applications. For ex-
ample, silo’s maximum CPU utilization is just 15%, but its
99%-ile latency is drastically increased, when it can use
90% of CPU share. On the other hand, the fine-grained fair
scheduling with GVTS removes such effect, and shows the
stable tail latency until the batch job share setting is less
than the maximum CPU utilization of server applications.
On average, when the desired batch job’s CPU share is 70%,
GVTS reduces 95%-ile latency by 2.0X and 99%-ile latency
by 3.0X compared to CFS.

Figure 19 shows the results of memcached with batch
jobs. The notations are identical with the previous figure,
but the y-axis is plotted on a logarithmic scale. Without
batch jobs, the average CPU utilization of memcached is about
78%. When the desired batch job’s CPU share is 10%∼40%,
which shows a reasonable tail latency with batch jobs, GVTS
reduces 95%-ile latency by 2.1X∼4.1X and 99%-ile latency by
2.0X∼3.7X compared to CFS.

For both of the server workloads, DWRR shows the
longer tail latency compared to GVTS. In addition, as DWRR
does not support the thread grouping, the fine-grained
adjustment of weights of groups is not supported.

5.5 Scheduling Overhead

In this section, we analyze the scheduling overhead of
GVTS. There are two types of overheads from schedulers.
First, the scheduling decision may negatively impact ap-
plication performance by thread migrations. For example,
if a scheduler frequently incurs thread migrations, the

0.00

0.02

0.04

0.06

0.08

0.10

0.12
CFS GVTS

n
a
m

d
*1

6

n
a
m

d
*3

2

n
a
m

d
*6

4

n
a
m

d
*1

2
8

n
a
m

d
*2

0

n
a
m

d
*4

0

n
a
m

d
*6

0

n
a
m

d
*8

0

n
a
m

d
*1

0
0in

 k
e
rn

e
l 
s
p
a
c
e
 (

%
)

C
P

U
 t
im

e

Fig. 20: Scheduling overhead: CPU time in kernel space

threads cannot efficiently exploit caches and thus their
performance can be degraded. The previous experimental
results show that this type of the overheads are negligible,
as the weighted throughput of GVTS is similar to CFS, Even
when all threads in a system are running memory intensive
workloads, such as milc in our experiments, the overhead is
less than 0.3%∼3% depending on the CPU architecture.

Second, the scheduler itself consumes CPU share to
run its algorithms. This directly degrades the application
performance, since the applications cannot run while the
scheduler is running. However, it is very difficult to measure
the CPU time consumed by scheduler, since schedulers run
for a very short time. Instead, we compare the statistics
of CPU time in the kernel space between CFS and GVTS.
Since we use the same version of kernel for CFS and GVTS,
the comparison shows the additional CPU consumption of
GVTS algorithm compared to CFS. Figure 20 shows the
results. The numbers in the x-axis show the number of
copies for the column, and the y-axis shows the percentage
of CPU utilization in kernel space. As shown in the figure,
GVTS consumes negligible 0.04∼0.07% more CPU share. In
addition, even though the number of threads increases, the
CPU share in kernel space does not increases. This shows
the scalability of GVTS in terms of the number of threads.

6 RELATED WORK

6.1 Fair CPU Scheduling

There are several ways to support proportional fairness
in CPU scheduling. First, as explained in Section 2.1, vir-
tual time based schedulers define the virtual time as the
weighted time given to each thread, and always select the
thread with the lowest virtual time to run. Surplus Fair
Scheduling [5], Borrowed-Virtual-Time [3], and Start-time
Fair Queueing [4] are based on virtual time fair scheduling,
and Completely Fair Scheduler (CFS) [1] in Linux kernel
adopted this method to support proportional fairness since
version 2.6.23. As this method restricts the difference in
virtual time within a small constant, the maximum lag time
is also bounded by a constant. However, as it needs to sort
threads in virtual time order, the algorithmic complexity
with N threads is O(logN) ∼ O(NlogN) depending on the
implementation.

Second, Weighted Round-Robin (WRR) [14] based sched-
ulers select a thread from a runqueue in a round-robin
manner, and runs the selected thread for wi × interval. After
a round, all threads receive CPU time exactly proportional
to their weight. As the thread selection is done in round-
robin, its algorithmic complexity is O(1). However, the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 13

CFS [1] DWRR [8] Xen Credit [13] GVTS(proposed)
Accurate fairness

on multi-core
NO

Trade-off with
migration overhead

YES YES

Scalability YES YES limited YES
Thread group support Multi-level NO 1-level only Multi-level

TABLE 1: Comparison of GVTS with prior approaches

maximum lag time is wi × interval for each round, which is
usually larger than virtual time fair scheduling. Virtual-Time
Round-Robin scheduler (VTRR) [15] reduces the maximum
lag time to interval by reducing the execution time for each
selection to interval but increasing the number of selections
for threads with high weights. Group Ratio Round-Robin
scheduler [16] extends VTRR for multiprocessor systems,
and Grouped Distributed Queues scheduler [17] and Dis-
tributed Weighted Round-Robin scheduler [8] proposed
scalable algorithms for large scale system which are based
on weighted round-robin.

Last, Lottery scheduling [18], [19] supports proportional
fairness probabilistically. Selecting a thread is randomized
but with a probability of selection being proportional to its
Lottery tickets, which are encapsulated resource rights. The
algorithmic time complexity with N threads is O(logN),
and the lag time is not bounded in a constant time.

Another aspect of fair CPU scheduling is to support fair-
ness when cores have different computing capabilities [20],
[21], [22], [23]. In such asymmetric multicore processors
(AMP), an equal CPU share does not provide an equal
performance. Kwon et al. defined the fairness on AMP as
the state that all threads receive the same CPU share for each
type of CPUs, and proposed a scheduler for virtual machines
on AMP [20]. Craeynest et al. studied the fairness support
for AMPs with HW supports [21]. Kim et al. proposed
a SW scheduler supporting the proportional fairness for
AMP [22], [23].

6.2 Scheduler Implementations

In this section, we describe the design choices of three open
source scheduler implementations and compare them to the
proposed scheduler.
CFS: Completely Fair Scheduler (CFS) [1] is the most widely
used open source scheduler. As explained in Section 2, CFS
use the virtual time fair scheduling for per-CPU scheduling,
but use load balancing mechanism for global scheduling.
CFS provides nested thread group support and its load
balancing mechanism is scalable to the number of CPUs.
However, there are many corner cases that load balancing
fails to provide accurate fairness on multi-core systems. Lozi
et. al. fixed some corner case problems of load balancing [24]
and Huh et. al proposed a mechanism which periodically
places threads based on the current virtual time [25]. Com-
pared to them, our work fundamentally solves the problems
of load balancing by extending virtual time fair scheduling
on multi-core systems.
DWRR: Distributed Weighted Round-Robin (DWRR) [8]
scheduler implements a round-robin based fair scheduling
for multi-core systems. Although DWRR uses the Linux
kernel implementation, O(1) scheduler or CFS, for per-
CPU scheduling, it uses a weighted round-robin for global
scheduling. DWRR maintains round for each thread, and

round is incremented when the thread receives CPU time
as wi× round interval. Although its round balancing mecha-
nism is somewhat similar to the balancing in GVTS, it works
as a whole system is flat, and there is a single round interval
value. Depending on the length of interval, the thread mi-
gration overhead or the lag time bound becomes large. Note
that large lag time indicates low fairness accuracy. Moreover,
DWRR does not support thread grouping, which is required
for virtualization or containerization.
Xen Credit: Xen Credit Scheduler is the current mainline
scheduler of Xen hypervisor [13]. It is designed to schedule
virtual CPUs of virtual machines, so it supports only flat
thread groups for inter-group fairness. In Xen Credit Sched-
uler, each virtual CPU has a credit value, which indicates
the right of CPU time usage, and the scheduler periodically
distributes credits for all the virtual CPUs according to
their weights. With per-CPU runqueues in the scheduler. a
physical CPU selects any virtual CPU which has a remaining
credit and runs it until all of its credit is consumed. If all
virtual CPUs in the runqueue are running out of credits, the
physical CPU scans other physical CPUs first to find virtual
CPUs with remaining credits. In this way, the scheduler pro-
vides proportional fairness between virtual CPUs. However,
as the credit distribution requires a whole scheduler lock,
the scalability is limited. The recently released Xen Credit
Scheduler 2 removes the scalability bottleneck. However, its
global scheduler mechanism is similar to the load balancing
mechanism of CFS.
Comparison: Table 1 compares the aforementioned sched-
uler implementations with the proposed one. First, CFS
has a scalable algorithm but cannot guarantee exact pro-
portional fairness on multi-core systems. Second, DWRR
provides accurate fairness on multi-core systems, but the
accuracy is traded off with the thread migration overhead.
In addition, it does not support any thread grouping. Third,
Xen Credit Scheduler also provides accurate fairness on
multi-core systems, but it has a scalability bottleneck on
distributing credit to all virtual CPUs in the system. Finally,
the proposed GVTS scheduler provides accurate fairness on
multi-core systems with little thread migration overhead. It
also supports nested thread grouping.

7 CONCLUSION

This paper investigated the impact of the state-of-the-art
proportional fair scheduling on multi-core systems. The
local virtual time fair scheduling in Linux can negatively
affect the performance consistency on batch jobs and sig-
nificantly increase tail latency of server applications. To
provide strict proportional fairness on multi-core systems,
this paper proposed Global Virtual Time Fair Scheduling
(GVTS) which extends the virtual time fair scheduling on
multi-core systems with negligible thread migration over-
head. The proposed scheduler is implemented on the Linux



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, MAY 2018 14

kernel and its source code is available online. The experi-
mental results show that it removes performance variance
of batch workloads and significantly reduces tail latencies
of server workloads. Our source code is publicly available
at https://github.com/cdkimcode/gvts.

ACKNOWLEDGMENTS

This work is supported by the National Research Founda-
tion of Korea (NRF-2016R1A2B4013352) and by the Institute
for Information & communications Technology Promotion
(IITP-2017-0-00466). Both grants are funded by the Ministry
of Science and ICT, Korea.

REFERENCES

[1] I. Molnar, “CFS scheduler,” http://people.redhat.com/mingo/
cfs-scheduler/sched-design-CFS.txt, last accessed: 2018-05-19.

[2] A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The
single-node case,” IEEE/ACM Transactions on Networking, vol. 1,
no. 3, pp. 344–357, Jun. 1993.

[3] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (bvt)
scheduling: Supporting latency-sensitive threads in a general-
purpose scheduler,” in Proc. Symposium on Operating Systems Prin-
ciples (SOSP), 1999, pp. 261–276.

[4] P. Goyal, X. Guo, and H. M. Vin, “A hierarchical cpu scheduler
for multimedia operating systems,” in Proc. USENIX Symposium
on Operating System Design and Implementation (OSDI), 1996, pp.
107–122.

[5] A. Chandra, M. Adler, P. Goyal, and P. Shenoy, “Surplus fair
scheduling: A proportional-share cpu scheduling algorithm for
symmetric multiprocessors,” in Proc. USENIX Symposium on Oper-
ating System Design and Implementation (OSDI), 2000, pp. 4:1–4:14.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Pro-
portionate progress: A notion of fairness in resource allocation,” in
Proc. Symposium on Theory of Computing (STOC), 1993, pp. 345–354.

[7] A. Chandra and P. Shenoy, “Hierarchical scheduling for symmet-
ric multiprocessors,” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, no. 3, pp. 418–431, March 2008.

[8] T. Li, D. Baumberger, and S. Hahn, “Efficient and scalable mul-
tiprocessor fair scheduling using distributed weighted round-
robin,” in Proc. symposium on Principles and Practice of Parallel
Programming (PPoPP), 2009, pp. 65–74.

[9] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Computer Architecture News, vol. 34, pp. 1–17, September 2006.

[10] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and
evaluation methodology for latency-critical applications,” in Proc.
IEEE International Symposium on Workload Characterization (IISWC),
2016, pp. 1–10.

[11] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: characterization and architectural implications,” in Proc.
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2008, pp. 72–81.

[12] Y. Zhang, D. Meisner, J. Mars, and L. Tang, “Treadmill: Attribut-
ing the source of tail latency through precise load testing and
statistical inference,” in Proc. International Symposium on Computer
Architecture (ISCA), 2016, pp. 456–468.

[13] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the
three cpu schedulers in xen,” SIGMETRICS Performance Evaluation
Review, vol. 35, no. 2, pp. 42–51, Sep. 2007.

[14] J. Nagle, “On packet switches with infinite storage,” IEEE Transac-
tions on Communications, vol. 35, no. 4, pp. 435–438, April 1987.

[15] J. Nieh, C. Vaill, and H. Zhong, “Virtual-time round-robin: An o(1)
proportional share scheduler,” in Proc. USENIX Annual Technical
Conference (ATC), 2001, pp. 245–259.

[16] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng, “Group
ratio round-robin: O(1) proportional share scheduling for unipro-
cessor and multiprocessor systems,” in Proc. USENIX Annual
Technical Conference (ATC), 2005, pp. 337–352.

[17] B. Caprita, J. Nieh, and C. Stein, “Grouped distributed queues:
Distributed queue, proportional share multiprocessor schedul-
ing,” in Proc. Symposium on Principles of Distributed Computing
(PODC), 2006, pp. 72–81.

[18] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flex-
ible proportional-share resource management,” in Proc. USENIX
Conference on Operating Systems Design and Implementation (OSDI),
1994, pp. 1:1–1:11.

[19] D. Petrou, J. W. Milford, and G. A. Gibson, “Implementing lottery
scheduling: Matching the specializations in traditional sched-
ulers,” in Proc. USENIX Annual Technical Conference (ATC), 1999,
pp. 1:1–1:14.

[20] Y. Kwon, C. Kim, S. Maeng, and J. Huh, “Virtualizing performance
asymmetric multi-core systems,” in Proc. International Symposium
on Computer Architecture (ISCA), 2011, pp. 45–56.

[21] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeck-
hout, “Fairness-aware scheduling on single-ISA heterogeneous
multi-cores,” in Proc. the international conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2013, pp. 177–187.

[22] C. Kim and J. Huh, “Fairness-oriented os scheduling support
for multicore systems,” in Proc. the International Conference on
Supercomputing (ICS), 2016, pp. 29:1–29:12.

[23] ——, “Exploring the design space of fair scheduling supports for
asymmetric multicore systems,” IEEE Transactions on Computers (in
press), pp. 1–16, DOI: 10.1109/TC.2018.2796077.

[24] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fe-
dorova, “The linux scheduler: A decade of wasted cores,” in Proc.
the European Conference on Computer Systems (EuroSys), 2016, pp.
1:1–1:16.

[25] S. Huh, J. Yoo, M. Kim, and S. Hong, “Providing fair share
scheduling on multicore cloud servers via virtual runtime-based
task migration algorithm,” in Proc. IEEE International Conference on
Distributed Computing Systems (DCS), 2012, pp. 606–614.

Changdae Kim is a research fellow in Computer
Science at Korea Advanced Institute of Science
and Technology (KAIST). His research interests
are in computer architecture, operating systems,
and cloud computing. He received his BS, MS,
and PhD in computer science from KAIST.

Seungbeom Choi has received the BS degree
in computer engineering from Sungkyunkwan
University (SKKU) and MS degree in com-
puter science from KAIST. His research focuses
on cloud computing, parallel computing, deep
learning, and GPU acceleration.

Jaehyuk Huh is an associate professor of Com-
puter Science at KAIST. His research interests
are in computer architecture, parallel computing,
virtualization and system security. He received
a BS in computer science from Seoul National
University, and an MS and a PhD in computer
science from the University of Texas at Austin.


