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Abstract—With the growing importance of in-memory data processing, cloud service providers have launched large memory virtual
machine services to accommodate memory intensive workloads. Such large memory services using low volume scaled-up machines
are far less cost-efficient than scaled-out services consisting of high volume commodity servers. By exploiting memory usage
imbalance across cloud nodes, disaggregated memory can scale up the memory capacity for a virtual machine in a cost-effective way.
Disaggregated memory allows available memory in remote nodes to be used for the virtual machine requiring more memory than its
locally available memory. It supports high performance with the faster direct memory while satisfying the memory capacity demand with
the slower remote memory. This paper proposes a new hypervisor-integrated disaggregated memory system for cloud computing. The
hypervisor-integrated design has several new contributions in its disaggregated memory design and implementation. First, with the
tight hypervisor integration, it investigates a new page management mechanism and policy tuned for disaggregated memory in
virtualized systems. Second, it restructures the memory management procedures and relieves the scalability concern for supporting
large virtual machines. Third, exploiting page access records available to the hypervisor, it supports application-aware elastic block
sizes for fetching remote memory pages with different granularities. Depending on the degrees of spatial locality for different regions of
memory in a virtual machine, the optimal block size for each memory region is dynamically selected. The experimental results with the
implementation integrated to the KVM hypervisor, show that the disaggregated memory can provide on average 6% performance
degradation compared to the ideal local-memory only machine, even though the direct memory capacity is only 50% of the total
memory footprint.

Index Terms—Disaggregated memory, cloud computing, virtualization, remote memory.
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1 INTRODUCTION

P ROLIFERATION of data-intensive workloads, such as in-
memory databases, data caching, bioinformatics, and

graph processing, has been tremendously increasing the
memory capacity requirements in cloud servers. To ac-
commodate such big memory applications, cloud providers
have begun to offer large machine types with more than 1TB
of memory. Google Compute Engine announced a plan to
provide 1TB of memory in 2017 [1]. Amazon already started
to support EC2 x1e.32xlarge with 4TB of memory in four
AWS regions and announced a plan to launch EC2 instances
with 16TB of memory [2], [3]. With the ever-increasing
demand for fast in-memory big-data processing, the cloud
providers are expected to adopt large VM instances more
and more widely.

However, offering such large VM instances requires
massive investment for the existing infrastructure currently
composed of commodity volume servers connected through
high-speed interconnects. For example, the EC2 large virtual
machine instance with 4TB memory is supported only in
4 regions, limiting the benefits of large memory machines
for remotely located users. Furthermore, large memory ma-
chines with TBs of memory and high core counts, provide
far less performance per cost or performance per watt
than the commodity volume servers. Meanwhile, in the
cloud systems, the heterogeneity of workloads commonly
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incurs the imbalance of memory usages in each node. Such
variance in memory usages can cause memory shortages
in some machines, while other machines have ample free
memory. The inherent memory imbalance can open a new
opportunity to provide a large memory virtual machine
(VM) cost-efficiently by combining the free memory in mul-
tiple servers into a single unified memory [4].

To support large memory with volume commodity
servers, disaggregated memory allows distributed memory
across different physical servers to be used as a single mem-
ory, creating an illusion of larger memory than the physical
memory limit on a single machine. This paper proposes
a new hypervisor-based disaggregated memory, providing
large scalable memory for guest VMs transparently. With
the disaggregated cloud memory (dcm) based on VMs, an
application on a VM can use the remote memory in other
machines in addition to the local memory without any
modification in the application binary and guest operating
systems. Instead, the hypervisor hides all the complexity of
accessing remote memory via page-oriented remote mem-
ory accesses. If the accessed memory page from a guest VM
is not in the local memory, a page fault will initiate an access
to the remote memory, and the new local memory page will
be allocated for the faulting VM.

In the proposed hypervisor-based design, the disaggre-
gated memory support is directly integrated to the page
management in the KVM hypervisor. Unlike the prior
study [5] which supports the remote memory as a block de-
vice and uses the existing storage-based swap mechanism,
the proposed integrated design can provide fine-grained
adjustments of memory eviction and high scalability with
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the hypervisor integration.

One of the key observations from the disaggregated
cloud memory is that the granularity of memory fetch-
ing from remote machines affect the frequency of remote
memory accesses significantly. If the memory access pat-
terns have high spatial locality, increasing the granularity
of memory fetching (block size) can reduce future page faults
by a prefetching effect. If the memory access pattern exhibits
small random accesses, a small block can reduce the remote
memory access overhead for each fault. This paper proposes
a dynamic block size adjustment technique, called elastic
block, to find the optimal block size for each VM. The
proposed mechanism can assign the optimal block size not
only for each VM but also different memory regions in VMs,
as it tracks the spatial locality in the hypervisor-managed
memory map for each VM.

Compared to the prior work, the paper has the following
new contributions.

• The paper proposes an integrated hypervisor-based
design for disaggregated memory. Instead of relying on
the conventional swap system designed for slow disks,
the disaggregated memory support is directly added to
the memory management in the KVM hypervisor.

• The integrated design overhauls the memory manage-
ment mechanisms and policies with a new replacement
scheme turned for disaggregated memory, a latency
hiding mechanism by overlapped memory reclamation
and network operations, and scalability improvements.

• This study identifies the importance of selecting right
memory fetching sizes from remote systems in disag-
gregated memory designs. The best block size may vary
by many factors including access patterns, available
local memory, I/O activities, and program phases.

• The design allows a fine-grained adjustment of block
size to minimize the overhead of remote memory
accesses, while maximizing prefetching effects. Block
sizes are dynamically adjusted for each page address in
a virtual machine, and thus the adjustment mechanism
can find the best block size for different regions even
within a virtual machine

The implementation tightly integrated to the KVM hy-
pervisor also exploits the reduced latency provided by one-
sided remote direct memory access (RDMA) operations
which do not require an involvement of a processor, and the
experimental results based on the implementation show that
the disaggregated memory can support 6% performance
degradation on average compared to the ideal large memory
machine with the entire memory footprint stored in the local
memory, even though the local memory capacity with our
scheme is only 50% of the total memory footprint [6].

The rest of this paper is organized as follows. Section
2 presents the background and prior work on disaggre-
gated memory. Section 3 proposes the disaggregated cloud
memory architecture and Section 4 shows how to exploit
the spatial locality for minimizing performance degrada-
tion. Section 5 presents the experimental results. Section 6
discusses the comparison to the swap subsystem, and the
adoption of new memory. Section 7 concludes the paper.

2 BACKGROUND

2.1 Memory Usage Imbalance in Clouds
The cloud systems serve heterogeneous guest applications
from clusters of physical machines. Due to the heteroge-
neous memory usages of the user applications, available free
memory may vary widely across cloud nodes [5], [7], [8], [9].
Furthermore, each node is configured to accommodate the
worst-case peak memory usage, and thus the memory over-
provisioning can lead to severe memory under-utilization
and imbalance of memory usage across the cluster [5].
Without the flexibility of disaggregated memory, tightly pro-
visioning bare-metal servers is challenging since the system
administrator must determine a particular configuration of
hardware including the size of the DRAM at the cluster
installation time [10]. A study, analyzing two production
clusters, showed that during 70% of the running time, the
clusters experience severe memory utilization imbalance [5].
Samih et al. showed that the aggregated memory capacity
reaches 437TB during a typical workday in a data center
cluster [11]. However, only 69% of its overall memory capac-
ity is allocated. The heterogeneity of guest applications and
per-node memory over-provisioning results in the available
free memory spaces across the cloud cluster, although the
availability can fluctuate.

The idle remote memory scattered across the cluster can
constitute a logical pool of memory, accessible with high-
speed cluster networks supporting RDMA functionality [6].
The logical pool can be dynamically partitioned and ex-
posed to the VMs in the cluster. The logical memory pool
provides a cost-effective way to scale and share server mem-
ory to accommodate applications requiring large memory
capacities in their VMs.

2.2 Remote Memory Access Performance
The idea of using remote memory has been proposed and
implemented for more than two decades. In recent years,
the network speed increases dramatically and such high-
speed networks have become available in common server
clusters. With such readily available high bandwidth net-
works, using remote memory is drawing more and more
attention from multiple communities than ever. The high-
bandwidth low-latency interconnects constitute the basis of
memory disaggregation and rack scale computing [12].

The remote memory is accessed by the RDMA controller
provided by modern interconnects. The RDMA supports the
zero-copy and one-sided control of data movement. The
zero-copy prevents the data from being copied to/from
a kernel buffer for data transmission, and the one-sided
control allows that CPU involvement is not necessary in
remote systems for data transfers, unlike SEND/RECV
model [13]. In addition to the high performance of RDMA,
the one-sided control makes networked systems more ro-
bust because RDMA data connections survive the software
failures including OS kernel crashes on the remote server.
The separation of RDMA data route from the CPU domain
provides the improved robustness.

The maximum bandwidths of InfiniBand FDR 4x, FDR
12x, and EDR 12x are 6.8 GB/s, 20.5 GB/s, and 37.5 GB/s
respectively. Fig. 1 shows the bandwidth and latency of
InfiniBand FDR 4x and InfiniBand EDR 4x, compared to



IEEE TRANSACTIONS ON COMPUTERS 3

those with a state-of-the-art NVMe SSD. In the figures, the
x-axis is the sizes of message increased from 512B to 128KB.
In the results, RD , SQRD , and RNRD prefixes notate
read, sequential read, and random read respectively. For the
SSD evaluation, the messages are sent either in sequential or
random order, as the SSD has different bandwidth and la-
tency characteristics depending on the access patterns. Write
performance exhibits similar trends to the read operations,
and thus is not shown in the figures.

In the figures, the network performance far exceeds that
of the SSD, showing higher than 5GB/s bandwidth and
lower than 4us latency in case of 4KB message size [14], [15].
In addition, InfiniBand EDR 4x supports 12GB/s of maxi-
mum bandwidth, with similar latencies to FDR 4x. Messages
larger than 4KB can utilize the maximum bandwidth on
both FDR and EDR network according to our measurement
presented in Fig. 1a. As shown in Fig. 1b, although the
latency increases with the message size, the latencies with
8KB, 16KB, 32KB, and 64KB are increased to 1.2x, 1.64x,
2.47x, and 4.15x, respectively, compared to the latency of the
4KB message. This observation indicates that increasing the
message size can reduce per-page latencies by amortizing
the transmission initiation and finalization overheads. As
a comparison to the RDMA performance, the NVMe SSD
can support 2,800MB/s for 64k sequential read/write and
460K IOPS for 4KB random read/write micro-benchmark
in its manufacturer specification. Fig. 1 presents the SSD
measurement by using the fio [16], showing 2,600MB/s as
the maximum bandwidth and much longer latencies than
InfiniBand families.

RDMA is widely adopted by modern interconnects such
as RDMA over Converged Ethernet (RoCE), internet Wide
Area RDMA Protocol (iWARP), InfiniBand and Intel Omni-
Path Architecture (OPA). Recently, Intel has announced that
Xeon Scalable processor optionally integrates OPA on its
package which delivers 2 * 100Gbps bandwidth with two
ports. With the broad adoption, RDMA is expected to be-
come even more cost-effective in the near future [17].

2.3 Related Work

Swap-based Disaggregated Memory: An evolutionary de-
sign for disaggregated memory is to rely on the current
swap subsystem available in most of the operating systems.
There have been several prior studies focused on providing
the expansion of the memory abstraction by using the
swap subsystem [8], [18], [19], [20], [21], [22]. The network
RAM, based on the observation of uneven free memory in
computing clusters, proposed the networked memory sys-
tem exploiting faster networks than disks [22]. Nswap also
proposed a network swap system for heterogeneous Linux
clusters to allow any cluster node suffering from memory
pressure to use the remote memory in the cluster [8].
However, the techniques require the increased utilization
of processors due to additional computation for controlling
network operations on each memory donation node.

To reduce the computation overheads on the memory
donation node, the one-sided control provided by RDMA-
capable interconnects eliminates the involvement of the
processor for moving data. High performance block device
(HPBD) exploited a reduced latency of networks over disks
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Fig. 1. Performance of RDMA operations with Mellanox ConnetX-3(IB
FDR) and ConnectX-4 (IB EDR), and DMA operations with Intel P750
(NVMe SSD).

and high bandwidth of up to 10Gbps supported the RDMA
capable networks such as InfiniBand and Quadrics [23].
NBDX and NVMEoF are RDMA-based virtual block devices
which use either remote memory or remote storage as
their back-end storage [24], [25]. INFINISWAP implemented
a block device which supports a remote memory paging-
based caching system designed for RDMA networks in a
decentralized manner [5].

However, the swap system has been designed to cope
with the huge performance disparity between the memory
and traditional disk (block devices), and its memory recla-
mation is focused on the pages initially used but rarely re-
used [26]. As faster block devices, such as NVMe SSD, Intel
Optane SSD, and Samsung Z-SSD, emerge, a patchset for
making the swap subsystem more scalable [27] has been
introduced. However, such improvements address only a
latency optimization of swapping operation by reducing
contentions on locks in swap caches and swap devices. The
idle page tracking mechanism of Linux requires clearing
the accessed bit of page table entry for identifying the
idleness of each page [28], [29]. Recently, SPAN proposed
a prefetching mechanism by improving the current swap
architecture and by exploiting the parallelism of future
NVM storage [30]. It is evaluated by using an emulated
3D Xpoint device. However, although modern processors
have multiple cores, it did not address a scalability concern
for updating shared resources such as pattern table used for
prefetching.
Disaggregated Memory managed by Hypervisor: Memory
management for the virtual machine has been studied since
early 2000. Carl A. Waldspurger addressed several memory
management mechanisms and policies, such as ballooning,
idle memory tax, content-based page sharing, and hot I/O
page remapping, introduced in VMware ESX Server [31].
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Amit et al. studied the hypervisor swap by implement-
ing the improved swap subsystem (VSWAPPER) for the
KVM [32], [33]. The VSWAPPER proposed a guest-agnostic
memory swapper for solving various types of superfluous
swap operations, decayed swap file sequentiality, and in-
effective prefetching decision. Ye et al. suggested a hybrid
memory model motivated by the lower-cost, higher-density,
and lower-power memory technologies. They prototyped
the memory management architecture with a virtual ma-
chine monitor [34]. Based on the memory management of
the hypervisor, MemX project studied a hypervisor-level
implementation for providing cluster-wide memory as a
single memory abstraction [35], [36]. Lim et al. also sim-
ulated and implemented a memory disaggregation system
by using the Xen hypervisor with the content-based page
sharing [4], [9]. Moreover, Rao et al. conducted a feasibil-
ity study of disaggregated memory connected to compute
and storage systems using commercial network technology
for an widely deployed workload, Spark SQL analytics
queries [10], [37].

This study designs a hypervisor-based disaggregated
memory system from scratch to overcome the limitation
of the swap-based approach. Its hot-cold separation mecha-
nism is integrated to the hypervisor memory management
for fine-grained tracking of access status tracking. Remote
memory accesses are fine-tuned to hide their latencies as
much as possible. The overall structure is designed to
provide scalability for many cores since the disaggregated
memory system must process much higher rates of page
reclamation than the traditional swap system. Finally, this
study supports the application-aware elasticity to the block
management to improve the performance by inferring the
memory access pattern of the VM.

3 MEMORY DISAGGREGATION ARCHITECTURE

The memory disaggregation architecture provides an illu-
sion of a big-memory VM whose memory extends beyond
the physical machine boundary. Multiple physical machines
connected through RDMA-capable networks donate their
free memory to the VM. The hypervisor allows the big-
memory VM to access the donated memory transparently.
The entire guest software stacks, including guest operating
systems (OS), middlewares, and applications running on
the big-memory VM do not require any changes to use the
disaggregated memory. In this section, the overall archi-
tecture, direct memory replacement policy, and scalability
consideration are described.

3.1 Overall Architecture

The processor directly accesses the local memory, or direct
memory, installed in the machine, but requires indirect ac-
cesses to the memory on the remote node (indirect memory).
In contrast to the direct memory, the indirect memory access
requires a page-level fetching operation: fetching a page
from the remote node on demand, selecting a victim page
from the direct memory to make a free direct page, and
writing back the victim page to a remote node. The remotely
fetched memory pages are accessible from the direct mem-
ory, until they are later evicted by the replacement policy.
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We implemented the overall architecture with a kernel
module, dcm, running on the node requiring memory ex-
tension. The kernel module is linked to Linux Kernel-based
Virtual Machine (KVM) [33] and provides most of the func-
tionality for the disaggregated memory system. In addition,
each donor node runs a memory donor application, and the
donor application grants their memory to the nodes in a rack
through the RDMA networks. The KVM module is modified
to invoke the extended page tables (EPT) violation handler
of dcm when an EPT violation occurs during the execution
of VM context. Fig. 2 illustrates the execution flow of dcm: it
opens dcm device file, connects to the donors granting their
memory as RDMA regions, and maps the extended memory
region to the VM guest physical address (GPA) space. It
handles page faults on both the host virtual address (HVA)
and GPA spaces by manipulating the host page tables (HPT)
and EPT [38]. It disconnects the donors when the VM is
terminated.

There are two distinct address spaces mapped to the
physical memory: GPA and HVA as shown in Fig. 3. GPA
is used to access the memory from the VM context, and
the EPT maintains its mapping to the physical address
space. For a memory access from an application in a VM,
the guest virtual address must be translated to the phys-
ical address via two mapping tables. For a TLB miss, the
hardware page table walker traverses the guest page table
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(GPT) to find the corresponding GPA and then traverses
EPT for the mapping between the GPA and host physical
address (HPA). If no mapping is established or the access
permission is not valid, an EPT violation occurs. For serving
the memory accesses with a configurable block granularity,
dcm manipulates the EPT. The HVA space is accessed from
the QEMU process context to emulate I/O devices, the
advanced programmable interrupt controller (APIC) and so
forth. The HVA to HPA mapping is maintained with the
host page table (HPT).
Page descriptor: The states of each page is recorded and
tracked by the page descriptor. The page descriptor is in-
dexed by the guest physical page number. Each descriptor
entry contains the state which will be discussed in the next
section, and its location in the direct memory or indirect
memory. In addition, the entry contains links used for the
state queues and writeback operations.
Memory block: Although a 4KB page is the minimum unit
of management in dcm, the actual management unit is a
block whose size changes by the elastic block mechanism
which will be discussed in Section 4. A block is a set of
adjacent pages, and its size is always a power of two of the
minimum 4KB page size. In the page descriptor, the block
size is encoded to identify the block each page belongs to,
and the page states in the same block are always in the
same state. In the rest of this paper, block is used as the
management unit in dcm.

3.2 Direct Memory Management

To reduce costly remote memory accesses, memory blocks
stored in the direct memory must be managed to retain
the blocks which will be re-referenced in near future. In
dcm, a modified LRU-3 replacement policy is adopted for
managing the direct memory [39]. The direct memory is
managed by using three different FIFO queues: proactive,
active, and inactive queues. A victim from the proactive
queue is evicted to the active queue, and a victim from the
active queue is evicted to the inactive queue. The blocks in
the inactive queue are still in the direct memory, but their
mappings are removed from the EPT of the VM. In each
queue, the head of the queue becomes the next victim, and
a new block is inserted to the tail. When a block is evicted
from the inactive region, it is written back to the remote
memory. Note that accesses to the memory blocks in the
proactive and active queues are not traced by dcm, as they
do not incur any exception. Once blocks are evicted to the
inactive queue, any references to the blocks can be detected,
and the re-referenced blocks are promoted to the proactive
queue.

With the three queues in the direct memory, each block
is in one of the following states:
NotDirect: The block is not touched yet or located in the

remote donor node. The remote location of the block is
maintained by dcm in the page descriptor.

Active: The block is either fetched from the indirect mem-
ory or newly touched on demand, and it is placed
on the direct memory and mapped to either HVA,
GPA, or both. A block transitioning to Active is moved
to Proactive by a small random probability of ε. The
random insertion to the proactive queue avoids a low
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Fig. 4. State transition diagram of each block (ε = 0.1).

utilization of the direct memory in case of sequential
memory accesses.

Proactive: When a block is re-referenced while it is in Inac-
tive or Writeback, the block is inserted into the proactive
queue. The proactive queue contains the blocks with a
known re-reference history, or by a random promotion
as described in the aforementioned Active transition.

Inactive: The block still exists in the direct memory, but its
mapping to HVA or GPA is disconnected. If the block is
re-accessed, the mapping is restored with the local copy.
Note that dcm detects memory accesses only through
fault exceptions. The fault handling checks whether the
block exists in the inactive region.

Writeback: The block is being transferred to an allocated
remote block in a donor node. It is not in any of the
three queues, but linked to a writeback descriptor. The
fault handler will confirm the completion of network
transfer at the next fault of the same vCPU.
Dcm does not use the periodic checking of access bits

for maintaining the LRU chain of each queue [39]. Unlike
the traditional swap system which infrequently demotes
unaccessed pages to the slow swap disk, the disaggregated
memory system moves significantly more pages back and
forth between the direct and indirect memory repeatedly, to
address the deficiency of local memory capacity all the time.

3.3 Latency Hiding with Overlapped Execution
To reduce the page reclamation overheads of the swap
system, conventional mechanisms employ either batching
schemes or dedicated servers. The batching increases the
throughput of the page reclaimer by batch processing mul-
tiple pages at once. The dedicated server thread receives
”memory pressure” signals from the memory requester
thread, and then the server evicts multiple pages by specu-
lating about the future demands. In common, the batching
and dedicated server thread increases their reclamation
efficiency by amortizing the cost by swapping out multi-
ple pages. However, it is essential to keep the speculation
balanced. Over-speculation hurts the performance of ap-
plications by reclaiming potentially useful pages early, and
under-speculation increases the demand paging latencies by
delaying the preparation of free pages.

In dcm, fine-grained memory reclamation is used to
avoid the risk of bulk reclamation of the batching and
dedicated server. However, to reduce the cost of fine-
grained reclamation, dcm overlaps the page reclamation
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process with network transfers by leveraging the one-sided
asynchronous transfer of RDMA operations. The writeback
latency overlaps with the execution of the virtual machine
context, and the fetching latency overlaps with the page
reclamation as described in Fig. 5. This overlapping not
only hides the writeback network latency but also improves
vCPU utilization by performing victim selection while the
vCPU waits for the completion of fetching. It does not
need to reclaim memory pages speculatively, because it re-
claims as many victim pages as the VM needs. The reduced
overhead enables to apply a more sophisticated algorithm
for victim selections, as the victim selection itself can be
overlapped with a page fetching.

The reliable connection of RDMA guarantees the order
of the writeback transfer operations to the indirect memory,
eliminating the need for waiting its completion. For exam-
ple, Fig. 6 shows how such ordering guarantee simplifies the
overlapped operations. In the figure, vCPU0 selects page
number 10 from the direct memory (direct-10) as a victim
page and writes back the page to page number 200 in the
indirect memory (indirect-200). During the transfer, vCPU1
incurs a demand page fault to the same direct memory
page 10, which reuses the data directly from the page in the
writeback state. As direct-10 is reused during the writeback
and exists in the direct memory, indirect-200 is no longer
necessary. The next victim selection by vCPU2 uses the freed
indirect memory page 200 to write back another page (direct-
11). In the example, even though vCPU2 reuses the indirect
memory 200, it does not check and wait for the completion
of the prior writeback by vCPU0. The write ordering of
RDMA guarantees that the second writeback to indirect-
200 occurs only after the completion of the first writeback,
allowing the second writeback to safely overwrite the page.

3.4 Scalability Consideration

Dcm must be scalable enough to support multiple large scale
virtual machines with many vCPUs in a system. To mitigate
scalability bottlenecks, the internal data structures of dcm
are designed to reduce conflicting accesses to the critical
shared data. To minimize the contention on the critical
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normal ownership and a canceled ownership respectively. Grey circle A,
P, and W represent the active state, proactive state, and writeback state
respectively. The direct memory (DM), whose state are not the writeback
state, represents a canceled relationship because of re-reference during
their writeback processes.

shared data, the internal organization extensively employs
per-vCPU data structures.
Scalable memory state management: The queue-based
block state management discussed in Section 3.2 is im-
plemented for scalability improvement. Fig. 7 describes
the scalable implementation of the proactive, active, and
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inactive queues. For the proactive and active queues, per-
vCPU buffers are used for enqueue and dequeue opera-
tions, which relieve the contention on the head and tail
of the two shared queues. Between the per-vCPU buffers
and shared queue, the insertion to and deletion from the
queue are batch processed to amortize the locking overhead.
Unlike the proactive and active queues which serve multiple
vCPUs at the head and tail of the queues, any entries
in the inactive queue can be updated by multiple vCPUs
to serve page faults. To avoid the contention on a single
global inactive queue, the inactive queue is organized as
multiple per-vCPU synchronized queues. With the multi-
queue organization, the inactive queue is not a global FIFO
queue, but the approximate approach is good enough for
the inactive state management.
Lockless writeback descriptor: The writeback implementa-
tion is also designed to avoid a global data structure. When
a writeback operation is initiated by a vCPU by selecting a
victim from the inactive sub-queue of the vCPU, a write-
back descriptor is created and attached to the per-vCPU
writeback (WB) head, as shown in Fig. 8. Each writeback
descriptor has a link to the page descriptor associated to the
writeback operation. Note that the direct memory freed by a
writeback operation is used to serve future page faults, not
the currently pending one, to avoid serializing writeback
and fetching operations. The current pending fetch opera-
tion uses the direct memory block freed by a prior writeback
operation.

A block must be transitioned to the proactive state
if it is re-referenced by another vCPU thread during the
writeback operation. To allow such state transition for an
in-flight writeback operation without acquiring a lock, dcm
checks the ownership with pairwise double links between
a writeback descriptor and page descriptor. Fig. 8 shows
that the descriptors of writeback operations are linked to a
per-vCPU structure, and each direct memory descriptor is
doubly linked to the corresponding writeback descriptor.

If a block is re-referenced before the completion of the
writeback operation by another vCPU thread, the page
descriptor is updated to represent the canceled ownership
by removing a link from the direct memory descriptor to a
writeback descriptor. Fig. 8 shows the link removal in circle
2. The link from the writeback descriptor is preserved to
mark the reuse status and prevent a data race. Subsequently,
when the vCPU checks the writeback descriptor during the
next fault processing, the writeback descriptor is simply
discarded.

3.5 Fault Tolerance
Using remote memory donors makes the system vulnerable
to failures in the remote nodes, and dcm shares the fault-
tolerance issue of the disaggregated memory with the prior
approaches. The conventional fault tolerance mechanism
maintains redundant pages over several remote donors, as
discussed by the prior approaches [5], [40], [41], [42]. Such
redundancy provides a transparent fault handling to guest
operating systems and applications, at the cost of additional
indirect memory usage. To reduce the memory capacity
overhead of remote nodes by redundancy, local storages can
be used to asynchronously back up the memory content, as
adopted by INFINISWAP [5].
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Fig. 9. Performance of a microbenchmark with sequential memory ac-
cesses normalized to dcm4k: dcmXk (x-axis) is a VM with 4GB direct
memory and XKB block size.

Although dcm does not employ the redundancy-based
fault tolerance in the current implementation, it improves
the reliability by using the robustness of RDMA. Dcm uses
a heartbeat-based fault detecting and migration policy in
response to a software failure. RDMA data connections
survive the software failures such as kernel crashes on
the memory donor nodes. A failure does not affect the
established RDMA data connection as long as the mem-
ory donor does not disconnect its connection. Dcm module
periodically communicates to the entire memory donors
and migrates the indirect blocks to another memory donors
when a software crash of the memory donor system is
detected. Investigating the incorporation of the additional
redundancy-based mechanism is our future work.

4 ELASTIC BLOCK

As discussed in Section 2.2, fetching multiple memory pages
in a single message can reduce the cost of remote data
transfer in RDMA. However, without spatial locality, fetch-
ing a large chunk of memory pages for a single fault to
the direct memory not only wastes the network bandwidth,
but also pollutes the direct memory with unused pages. In
this section, we discuss how to select the optimal migration
granularity (block size) by tracing the spatial locality in
different memory regions in VMs. The proposed hypervisor-
integrated disaggregated memory facilitates the identifica-
tion of spatial locality by maintaining the page fault records
for each VM memory page.

A complicating factor in the hypervisor-based approach
is that the hypervisor can trace the spatial locality only in
the guest physical address (GPA) space. The virtual-to-GPA
mapping controlled by the guest operating system can po-
tentially break applications’ inter-page spatial locality when
it is observed through GPA by the hypervisor. However, the
application-level spatial locality is commonly preserved in
the GPA for modest ranges for two reasons. First, the com-
mon use of the transparent huge page enabled by defaults
from Linux 2.6.38 provides the contiguous mapping within
the 2MB large page. Second, the buddy memory allocation
by the guest OS often maps contiguous guest physical
pages to virtual pages [43], [44]. With the two factors, the
application-level spatial locality up-to 64KB block size, if it
exists, is commonly preserved in the GPA.
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Fig. 11. Performance of two stages with snap-aligner(s): the loading
stage prefers the 64KB block size, while the alignment stage prefers
4KB when the direct memory is small (D25).

4.1 The Effect of Block Size
To investigate the performance impact of the block size,
we first evaluate a simple micro-benchmark. Fig. 9 shows
the performance of a VM application which sequentially
accesses 16GB memory, when the block sizes are varied.
In the figure, The dcmXk (x-axis) denotes a VM with 4GB
direct memory and XKB block size. The baseline is the
dcm4k which uses a VM with 4GB direct memory and
4KB block size, and the rest of the memory is located in
a remote node. A performance gap between the baseline
and a vanilla VM, which uses only the direct memory
as an ideal configuration, is large with 27.8% difference.
The performance of dcm for the sequential access patterns
improves significantly, as the block size increases; the per-
formance of dcm64k increases by 24% and shows only 3%
slower performance than the ideal vanilla VM because the
sequential memory access has strong spatial locality.

Fig. 10 shows the performance of workloads with five
different block sizes and three direct memory ratios, which
is normalized to the performance of the ideal vanilla VM.
The experimental setup of the figure is described in Sec-
tion 5.1. DX denotes X/100 fraction of the Resident Set Size
(RSS) of each VM is allocated in the direct memory. The
figure indicates that the performance of workloads is highly
affected by the block size and the ratio of the direct memory.
It discloses various characteristics depending on both the
block size and the degree of pressure on the direct memory.
movielens_small, GraphX with twitter, and TPC-C
on VoltDB prefer 32KB block, 8KB block, and 8KB block
under D25, respectively. movielens_large does not show
any preference. In addition, with different direct mem-

ory ratios, the best block size changes. For example,
snap-aligner(s) prefers large block sizes under D75 as
presented in Fig. 10. However, increasing the block size to
32KB or 64KB produces a negative effect on D25 configura-
tion, which has only 25% direct memory compared to the
total memory footprint. For the workload, block sizes larger
than 8KB under D50 exhibit better performance than 4KB
block size under D75, although D75 has 16GB bigger direct
memory than D50. The result indicates the importance of
using a good block size, as the block size can be more impor-
tant than the direct memory capacity for certain scenarios.
snap-aligner(n) generally prefers a small block size.

However, the analysis with Fig. 10 does not account the
access characteristics in different times and locations in the
memory, as it fixes the block size for each run. Applications
can have different best block sizes for different phases.
Among the benchmark applications, snap-aligner(s)
consists of two phase executions. The first stage loads the
reference data from a large file and the second stage aligns
the target sequence data with the reference data loaded
in the first stage. Fig. 11 shows the different block size
preference for the two phases of snap-aligner(s). Two
phases have opposite characteristics in the preference on the
block size: the loading stage prefers large blocks, but the
alignment stage prefers small blocks.

Based on the analysis in this section, the optimal block
size depends on multiple factors, access patterns which
can vary by execution phases or by memory regions, and
available direct memory capacity. To accommodate such a
dynamic nature of block size selection, a dynamic block
adjustment mechanism is required to achieve the best per-
formance improvement.

4.2 Dynamic Block Adjustment

It is challenging to decide the appropriate block size because
the best block size depends on various conditions of each
workload, access patterns affected by computation stages
and memory regions, and the degree of memory pressure.
Smaller block sizes than the best one may not extract poten-
tial performance of the workloads with high spatial locality.
When the spatial locality is high, large block sizes can
provide the prefetching effect as they can bring the nearby
pages even before demand accesses to the pages occur.
However, larger block sizes can waste network bandwidth
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Algorithm 1 STRETCH operation
1: procedure STRETCH(GPA) . guest physical address
2: chead:= the head page descriptor of the block for a

given GPA
3: bhead:= the head page descriptor of the buddy block
4: mhead:= the head page descriptor of the merged

block
5: if block size of chead = block size of bhead
6: and bhead block exists in direct memory then
7: acquire the lock of buddy block
8: if buddy block is included in active list then
9: move to the MRU (tail) position of active list

10: end if
11: copy the state of the buddy block into mhead
12: for all member descriptors do
13: increase the block size
14: end for
15: release the buddy block’s lock
16: return stretched
17: end if
18: return not stretched
19: end procedure

and pollute the direct memory for applications with random
memory access patterns.

To find the best block size, we define an elastic block that
consists of multiple pages and dynamically changes its size
of 212+βKB, 0 ≤ β ≤ 4, in this study. The first page of a
block is the head page, and the rest of pages are members.
Each page in a block is associated with its page descriptor
along with the block size for the page. The descriptor also
has a lock variable to control concurrent accesses to a block.
We designed the block management using the same buddy
algorithm as the buddy page in the memory management
of operating systems. With the design, the elastic block
mechanism selects an appropriate block size dynamically
for each memory page, and thus even for a single VM,
different regions of memory can have distinct block sizes.

The elastic block introduces two maintenance opera-
tions: STRETCH and REDUCE through which it is adapting to
the memory access patterns of the workloads. The STRETCH
operation is triggered when a related fault is raised, and the
REDUCE operation is triggered just after completing a write-
back of a block. Its management employs a conservatively
stretch and aggressively reduce (CSAR) policy to cope with
iterative sequential memory accesses and abrupt random
memory accesses.

STRETCH: As shown in algorithm 1, a block is stretched
when a page fault is handled, fetching pages from
the indirect memory. If an adjacent block (buddy block)
already exists in the direct memory and a new block
neighboring with it enters the direct memory by the
page fault, the two blocks becomes a candidate for
stretch. To maintain the block size constraint of a power
of two pages, a stretch requires that the buddy block has
the same size as the new block. Since the new block is
added to the direct memory, the entire stretched block is
moved to the MRU (tail) position of the active list, if the
buddy block was in the active list. During the stretch

Algorithm 2 REDUCE operation
1: procedure REDUCE(block) . an elastic block
2: if more than a half of pages in the block are refer-

enced then
3: return not reduced
4: end if
5: acquire the locks of all the member descriptors
6: for all member descriptors do
7: reset the block size of member descriptor
8: copy the state of the head to each member de-

scriptor
9: end for

10: release the locks of all the member descriptors
11: return reduced
12: end procedure

operation, the lock variables of the fault block and
buddy block are acquired for synchronization before
the block size information of each descriptor of block
candidates is updated. As a conservative stretch policy,
the stretch operation is performed only once for each
fault handling.

REDUCE: As presented in algorithm 2, a block is reduced
completely to the minimum 4KB page size during its
eviction from the direct memory, if less than a half
of pages in the block are referenced. The aggressive
reduce quickly responds to the changes to random
access patterns. The reference information, collected by
checking the access bits of HPT and EPT whenever the
pages are unmapped, is maintained, while the block
exists in the direct memory. A reduce operation requires
the lock variables of all member pages to update the
block size.

The elastic block allows the system to choose an ap-
propriate size of each block for the entire memory regions
dynamically. It changes the block size according to the
characteristics of memory regions in different time periods.

4.3 Synchronization of Elastic Operation
The stretch operation enlarges the block by merging the
adjacent blocks, and the reduce operation reduces the cov-
erage of the block. However, the two elastic operations for
a block have a chance to be concurrently executed with
fault handling for the target block of the operations. For
example, the reduce operation is triggered when a block is
evicted from the direct memory due to its insufficient spatial
locality. At the same time, a demand for a member page
may occur. The fault handler must identify the changing
coverage of the target block and use a valid synchronization
variable.

Fig. 12 shows an example of a synchronization between
the reduce operation and fault handling for GPA 0x11000.
vCPU1 decides to reduce the block with 16KB size as
marked by circle 1. Concurrently, vCPU0 accesses a member
of the block at GPA 0x11000 during the reducing process,
and waits for the completion of the operation by referencing
the head descriptor at 0x10000 and storing the block size
locally as represented by the circle 2. After the completion,
vCPU0 notices the changed block size of the demand block
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Fig. 12. Synchronization between REDUCE operation and demand fault
handling: circle 1 is the reduce operation on a block at 0x10000, and
circle 1’ indicates lock release. Circle 2 and 2’ are repeated lock acquire
attempts for handling demand faults at 0x11000.

Algorithm 3 Locking protocol
1: procedure LOCK BLOCK(block) . an elastic block
2: loop
3: bhead := the head descriptor of the block
4: block size := block size of the block
5: acquire the lock of bhead
6: if block size == block size of the block then
7: break . lock of the block is acquired
8: end if
9: release the lock of bhead

10: continue . the block is changed during spinning
11: end loop
12: end procedure
13:
14: procedure UNLOCK BLOCK(Block) . an elastic block
15: bhead := the head descriptor of the block
16: release the lock of bhead
17: end procedure

by comparing the copied block size and the block size of
the descriptor for the GPA 0x11000 as shown in the circle
2’. Upon detecting the change, vCPU0 uses a new head
descriptor and proceeds the fault handling for GPA 0x11000
by the lock for GPA 0x11000. Algorithm 3 shows the locking
protocol as stated above. The LOCK BLOCK acquires a lock
variable of its head descriptor after confirming the validity
of the block size, and the UNLOCK BLOCK releases a lock
variable of its head descriptor.

5 EXPERIMENTAL RESULTS

5.1 Methodology

The evaluation system consists of five physical nodes. A
node hosting a big memory VM is directly connected to four
donor nodes via InfiniBand FDR x4. The big memory VM
node is equipped with two Intel Xeon E5-2670v3@2.3GHz,
DDR4 96GB memory, and two Mellanox ConnectX-3 FDR
dual-port host channel adapters (HCA). The Ubuntu 15.04,
Linux Kernel 3.19, and Mellanox OpenFabrics Enterprise
Distribution (OFED) 3.2 are installed to build an envi-
ronment for the proposed dcm module. The donor nodes
are equipped with two Intel Xeon E5-2650@2GHz, 160GB

TABLE 1
Workloads: Performance and resident set size (RSS)

Workload
Exec. time/
Performance
on vanilla VM

RSS of VM

movielens (small) 26.9s 7,556MB
movielens (default) 1,226.4s 22,321MB
twitter 355.9s 17,334MB
TPC-C 39749.1TPS 27,018MB
snap-aligner (small) 215.3s 63,556MB
snap-aligner (normal) 1557.6s 81,493MB

memory and Mellanox ConnectX-3 FDR single-port HCA.
Ubuntu 17.04, Linux Kernel 4.10, and Mellanox OFED 4.0
are installed. Each memory exporter running on a donor
node covers a consecutive 4GB memory region, and each
donor node exports 64GB memory with 16 exporters. The
big-memory VM is configured to have 16 vCPUs and 256GB
memory, and Ubuntu 16.04 is used as the guest OS. The
transparent huge page (THP) of the guest OS is not disabled.

Table 1 shows the application workloads with their
execution time/performance and memory requirements in
our experiments. The resident set size (RSS) is a physically
resident memory also known as memory footprint of a VM
for executing the target workload. We measure either the
execution time or the performance of workloads running on
a VM where the transparent huge page of the host operating
system is turned off to support fine-grained page migration
between the direct and indirect memory, and to isolate the
performance effect and variance by huge pages. The current
version of the Linux Kernel also splits the large page into
small pages to swap out.

To evaluate the proposed memory disaggregation sys-
tem for the cloud computing, we chose four types of
workloads to represent each area in the in-memory com-
puting: in-memory analytics (movielens), graph analytics
(Apache Spark-based graph analytics with twitter), in-
memory database (TPC-C on VoltDB), and bioinformat-
ics (snap-aligner) [45], [46], [47], [48], [49]. In addition to
the basic four types, we complement movielens (small)
and snap-aligner (small) analyzing a small size of input
data. The movielen with Apache Spark runs a collabora-
tive filtering algorithm in-memory on a dataset of user-
movie ratings. The twitter running on Spark, is a graph
analytics benchmark with large-scale datasets. Movielens
and twitter are part of CloudSuite, a benchmark suites for
cloud services [45], and they are configured as a single-node
deployment. VoltDB is an in-memory database system for
running the TPC-C workloads, and the snap-aligner is a
genome sequence aligner.

We evaluate three scenarios with different direct memory
ratios compared to the total RSS of the benchmark VM. The
three direct memory ratios are 75%, 50%, and 25% of the
ResidentSetSize (RSS) of the VM, and they are denoted by
D75, D50, and D25, respectively in this section.

5.2 Performance Evaluation

To evaluating the performance of the elastic block support,
we compare the performance of each workload running on
the elastic block-enabled VM to the best and the worst result
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Fig. 13. dcm Performance with three direct memory configurations. Per-
formance is normalized to the baseline. The static best and static worst
are the best result and the worst result of the static blocks respectively.

of the static block size selection. Fig. 13 shows the result
of the experiments and the y-axis value is normalized to
the performance of the baseline which uses only the direct
memory.

Most of the workloads with the D75 configuration result
in the near direct-only performance because of the low
pressure of the direct memory. The static best and elastic
block results show 98.5% and 98.4% of the performance of
the baseline, and even the static worst also shows 94.4% of
the performance of the baseline. However, a performance
degradation between the D75 and D50 is not significant
because the guest OS keeps the page caches in its memory
and the effect on the performance is not noticeable yet.
In the D50 results, although only 50% of RSS is allocated
in the direct memory for each workload, the performance
degradation is within 10%, showing the potential of disag-
gregated memory. As the pressure on the direct memory in-
creases significantly with 25%, the performance degradation
is increased.

Although the performance gap between the static best
and the static worst increases up to 50%P under the D25,
the performance gap between the static best and the elastic
block is less than 5%P for all the cases. It proves that
the proposed elastic block mechanism can effectively select
the block size dynamically during the execution of various
workloads.

The performance of the elastic block is directly related
to the accuracy of the prefetching as shown in Fig. 14. The
accuracy of the prefetching is defined as the ratio of the
number of prefetched pages to the number of used pages.
The overall accuracy of prefetching with the elastic block,
under the D75 and D50, is 0.93, although the accuracy
of 8KB, 16KB, 32KB, and 64KB block is 0.94, 0.86, 0.80,
and 0.75 respectively. These results show that the elastic
block effectively exploits the spatial locality and provides a
chance for improving the performance. In addition, twitter
and snap-aligner with small input dataset outperform static
blocks thanks to the effectiveness of the variable block size
supported by the elastic block. The composition of the
variable block of each configuration is shown in Fig. 15.
Under the D75, the elastic block does not reduce most of the
large pages, but a block size adapts to the pattern of memory
access as the capacity of the direct memory decreases.

6 DISCUSSION

Comparison to conventional swap with RAMdisk: To
evaluate the effectiveness of dcm against the current swap
component, we compare the performance of dcm against
the Linux swap system with RAMdisk. A RAMdisk block
device provides an ideal block device for the swap device,
as it does not incur any I/O operations for swapping the
memory pages from/to the swap device. With this RAMdisk
setup, the performance depends on the efficiency and scala-
bility of victim selection and page migration, as the indirect
memory also resides in the same local memory. dcm is
compared to the ideal memory-based swap system with
multiple vCPUs for evaluating the scalability of dcm. Note
that the indirect memory of dcm is still the remote memory
in other donor nodes transferred through the networks,
unlike the RAMdisk used for swap.

Fig. 16 shows that the execution time of snap-aligner(s)
with various local memory capacities and numbers of vC-
PUs. In the x-axis, the configurations of local memory are
32GB, 24GB, 16GB, and 8GB denoted as L32, L24, L16, and
L8 respectively for the RAMdisk swap and dcm. For the
swap runs, the direct memory capacity is controlled by
using the cgroup of Linux. For each memory configuration,
the number of vCPUs is varied from 8 vCPUs to 24 vCPUs.
The leftmost vanilla configuration shows the execution time
of snap-aligner(s) running in a VM entirely with only the
direct memory. The y-axis shows their execution time of
snap-aligner(s).

The figure shows that more vCPUs are allocated to
the VM, the execution time decreases significantly for the
workload when it runs in the vanilla VM. However, the
memory-based swap does not support such scalability. As
the local memory size decreases from L32 to L8, the swap
system suffers from significant increases of execution times.
In addition, even if the number of vCPUs increases, the
execution times are increased in L16 and L8. The results
show that the current swap system cannot properly handle
the frequent memory reclaim and fetch operations required
for the disaggregated memory. However, by the scalable
design of dcm, such as the per-vCPU data structures, scal-
able memory state management, and lockless writeback
descriptor, dcm can provide relatively minor increases of
execution times compared to the ideal vanilla VM. In ad-
dition, even if the direct memory size is the smallest 8GB,
increasing the number of vCPUs still reduces the execution
time significantly.
Emerging new memory technology: Recent advancements
of non-volatile memory technologies can potentially extend
the disaggregated memory to use the new memory as indi-
rect memory, as the new memory technologies have signif-
icantly increased the bandwidth of the storage devices. The
recent Intel Optane SSD supports 2500MB/s and 2200MB/s
bandwidth for sequential reads and writes [50]. High-
performance SSDs such as Samsung Z-SSD provide the
bandwidth of the sequential read/write up to 3.2GB/s [51].
To expand the memory capacity with the new technologies,
Intel Memory Drive Technology exploits the high band-
width Optane SSD as the second-level memory [52].

In this section, we discuss how dcm can be extended
to use the new memory technologies. Fig. 17 shows the
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Fig. 16. RAMdisk swap vs. dcm for snap-aligner(s): LX denotes a VM
with XGB direct memory.
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Fig. 17. Normalized performance of snap-aligner(s) running in dcm with
Intel Optane SSD and 4KB block.

performance of snap-aligner(s) running in dcm with Intel
Optane SSD DC P4800X instead of the remote memory.
The performance is normalized to the performance of the
vanilla VM with 8 vCPUs. Due to the reduced bandwidth
of the SSD, the performance of dcm is modestly reduced.
For D25 when the direct memory is insufficient, the perfor-
mance degradation is 12%P compared to the performance

with the prior remote memory, since the SSD bandwidth
is still lower than the InfiniBand FDR which supports at
most 56Gbps. The elastic block management may reduce
the performance degradation, but further optimizations are
necessary. However, by exploiting the proposed scalable
design, dcm can provide the scalability with more vCPUs
for the snap-aligner(s) across different direct memory ca-
pacities, unlike the scalability problem of the memory-based
swap presented in Fig. 16.
Application-level memory sharing: Memory sharing at the
application-level has been used to allow accesses to the re-
mote memory in data processing framework such as Apache
Spark. For example, Apache Ignite supports the sharing of
data across multiple nodes in a Spark cluster [53]. Apache
Ignite tightly coupled to Spark, stores data in the form of
key-value pairs. On the other hand, the proposed system
provides the memory of the VM as a more generic way than
Ignite by managing the memory hierarchy by the hypervisor
instead of the middleware. Dcm maintains the conventional
memory abstraction for hierarchically composed memory
architectures, and it transparently exploits temporal and
spatial locality of applications unlike the middleware ap-
proach designed for a specific application.

7 CONCLUSION

This paper proposed a new memory disaggregation system
backed by RDMA-supported high bandwidth networks.
The proposed hypervisor-based design for disaggregated
memory provides memory extension to the remote memory
transparently to guest operating systems and applications.
Its new design proposed a new replacement scheme, over-
lapped memory reclaim and network transfer, and scalabil-
ity supports by per-vCPU data structures and lockless write-
back operations. In addition, the elastic block maximizes
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the performance benefit of exploiting the spatial locality,
as it dynamically adapts to changing access patterns. The
experimental results showed that the disaggregated mem-
ory can provide on average 6% performance degradation
compared to the ideal local-memory only machine, even
though the direct memory capacity is only 50% of the
total memory footprint. In addition, the proposed design
provides scalable performance with increasing numbers of
vCPUs. With the advent of high bandwidth non-volatile
memory technologies, the proposed disaggregated memory
will be able to expand its support for general hierarchical
memory systems, such as conventional DRAM and new
non-volatile memory. To prove its design flexibility, the
paper also showed the preliminary performance evaluation
with the new Optane SSD as the indirect memory.
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