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Abstract—Large language models (LLMs) with growing model
sizes use many GPUs to meet memory capacity requirements,
incurring substantial costs for token generation. To provide
cost-effective LLM inference with relaxed latency constraints,
recent studies proposed to expand GPU memory by leveraging
the host memory. However, in such host memory offloading,
the host-GPU interconnect becomes a performance bottleneck
for the transfer of weights and key-value (KV) cache entries,
causing the underutilization of GPUs. To address the challenge,
we introduce CAPTURE, an LLM inference system with KV-
activation hybrid caching. The activation cache stores activation
checkpoints instead of keys and values during intermediate
inference stages, requiring half of the memory capacity compared
to the conventional KV cache. While model parameters are
transferred to GPU from host memory, idle GPU resources can
be utilized for the partial recomputation. To balance the latency
of activation recomputation and parameter loading, our KV-
activation hybrid caching scheme determines the optimal ratio
between KV and activation caches to manage both recompu-
tation time and data transfer times. CAPTURE achieves 2.19x
throughput improvement over the state-of-the-art prior work for
offloading both model weights and KV cache.

I. INTRODUCTION

Large language models (LLMs) based on the Transformer
decoder architecture require substantial capacity of GPU mem-
ory to store both model weights and a Key-Value cache (KV
cache), which holds the keys and values of the prompt and
previously generated tokens for every layer [1], [2]. The KV
cache accounts for a significant portion of the GPU memory,
and its size grows as the token sequence length or batch size
increases. The substantial memory capacity requirements of
both the KV cache and model weights have increased the cost
of LLM services, as multiple GPUs are required for real-time
inference [3], [4]. However, in many non-interactive scenarios
such as dataset evaluations or large-scale text analysis [5],
higher latency is acceptable if it leads to the better cost
efficiency. Leveraging host CPU memory—which offers large
capacity with additional latency overhead—is a promising
solution for these scenarios. Such host memory offloading
can significantly reduce the cost of LLM processing at the
expense of increased latency [6]. FlexGen showed that both
model weights and KV cache can be offloaded to host memory,
enabling a single-GPU LLM inference [7].

The cause of main performance bottleneck of LLM in-
ference with host memory offloading is the limited com-
munication bandwidth between host memory and the GPU.
Since both the model weights and KV cache must be trans-
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ferred to the limited-capacity GPU memory, the GPU often
becomes idle waiting for the next operands to arrive from
host memory—even when communication and computation
are overlapped.

To address the memory and communication challenges of
host memory offloading, this study proposes a novel KV-
activation hybrid cache scheme based on activation caching.
In activation caching, unlike token recomputation that relies
on a full prefill step, input activation values of all layers are
stored in memory. Computing the KV cache of a layer from
the activation values requires a modest computation capacity,
compared to complete recomputation from token IDs. Keeping
activation checkpoints instead of keys and values reduces
the memory footprint and communication traffic of cached
contexts by half. The activation caching maintains the same
result as the conventional KV caching.

Although replacing the entire KV cache with the activation
cache can reduce the memory usage by half, the amount of
computation with activation recomputation also increases as
the batch size and/or sequence length increases. Therefore, a
balanced approach is necessary to determine the best ratio of
KV and activation cache entries stored in the host memory.
Figure 1 compares three approaches: (a) KV caching, (b)
activation caching, and (c) KV-activation hybrid caching.
While the first choice over-consumes host-GPU interconnect
bandwidth and the second one requires frequent KV recom-
putations, we deploy hybrid design (c) which reduces com-



munication latency and computational overhead to maximize
throughput by balancing both cache types. Our KV-activation
hybrid caching system, called CAPTURE, stores parts of the
prior KV cache entries as activation representation, and the
remaining parts as key and value representation. We propose
an algorithm to find the best ratio of KV and activation entries
to maximize GPU computation and host-GPU interconnect
utilization, and a scheduling technique to pack requests into
mini-batches with the best ratio of KV and activation entries.
We implement CAPTURE by extending vLLM with the
host memory offloading capabilities for both weight and KV
cache [4]. In evaluation with four variants of OPT models,
CAPTURE shows the throughput improvement of 2.19x over
FlexGen [7], and 1.35x compared to the activation cache-only
system in geometric mean. We open-source the implementa-
tion of CAPTURE at https://github.com/casys-kaist/Capture.

II. BACKGROUND AND RELATED WORK
A. LLM Inference Serving

Recent research on LLM inference serving has primarily
focused on latency-sensitive, multi-turn conversational ap-
plications [8], [9], where multi-GPU strategies enable real-
time interaction. Approaches in this domain are designed to
sustain high throughput under strict latency constraints [3],
[4], [10]-[12], despite the difference of main ideas. However,
as model sizes grow larger and request concurrency inten-
sifies, maintaining a low-latency focus under all conditions
becomes prohibitively expensive in terms of infrastructure
and operational costs. In contrast, non-interactive scenarios
like dataset evaluation and document summarization [5] can
accommodate longer processing times, making throughput and
cost efficiency more critical than immediate responsiveness.

B. Batched LLM Inference

Batched LLM inference offers a cost-efficient way for real-
time processing by amortizing computational overhead across
multiple requests. By grouping large numbers of queries into a
single batch, it reduces redundant operations such as repeated
weight loading and improves GPU utilization. For example,
OpenAl’s Batch API [13] processes up to 50,000 requests per
batch, delivering results within 24 hours while reducing costs
by 50% compared to real-time inference. This approach is
particularly well-suited for non-interactive workloads where
immediate response times are not required, such as dataset
evaluations, content classification, and embedding generation.

C. Host Memory Offloading

Host memory offloading alleviates the shortage of GPU
memory capacity by utilizing host CPU memory to store
weights and KV cache, enabling cost-effective batched infer-
ence. For efficiency, weights and KV cache of layer ¢ + 1
are prefetched during the processing of layer ¢. DeepSpeed-
Inference [6] progressively transfers weights on demand, re-
ducing peak GPU usage, and FlexGen [7] subdivides large
batches into mini-batches per layer to further mitigate mem-
ory constraints. Recent methods also employ approximation
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Fig. 2: Performance of FlexGen [7] with OPT-30B: (a) token
generation throughput, and (b) KV cache memory footprint
for 1024 input tokens, across varying batch sizes.

Prompt | B=1 B=8 B=16 B=64 B=256 B=1,024
128 toks | 3.96 587 6.83 6.86 6.76 5.77
256 toks | 393 576 642  7.02 7.14 7.15
512 toks | 349 557 635 7.27 6.99 6.28

TABLE I: Token generation throughput of PowerInfer [15] in
LLaMA-70B [2]. B denotes batch size.

techniques to reduce data transfers [14], [15], but these can
introduce errors that are detrimental to tasks that require high
precision.

III. MOTIVATION
A. Challenges for Increasing the Batch Size

Limited benefits of increasing batch size. Increasing the
batch size is a common strategy to improve generation
throughput. Larger batches allow more tokens to be generated
from a single transfer of weights from host memory, maximiz-
ing weight reuse and reducing the overhead of frequent data
transfers. However, larger batch size does not always result
in proportional gains. As shown in Figure 2 (a), throughput
scales linearly for batch sizes below 128 but saturates beyond
this point, with minimal performance improvements as batch
size increases further.

Bottleneck from KV cache transfer. Increasing the batch size
improves weight reuse, but introduces a bottleneck in attention
operations because the KV cache cannot be shared across
multiple requests (i.e. unable to be batched). As a result, the
PCle transfer volume scales with the sum of context lengths,
limiting GPU utilization. Figure 2 (a) demonstrates that
throughput saturates for batch sizes above 128 in FlexGen [7].
As illustrated in Figure 2 (b), this saturation occurs because of
the increasing amount of KV cache transfer: The size of KV
cache grows linearly with batch size, reaching up to 168GB
per single iteration of token generation. Such large transfers
impose significant pressure on PCle bandwidth, reducing GPU
utilization to as low as 7.4%. Even Powerlnfer [15], which
loads frequently accessed weights onto GPU while keeping
sparse weights on CPU, experiences throughput saturation at
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Fig. 3: Token generation latency normalized to the baseline (no
recomputation) for varying recomputation ratios on OPT-30B
(left) and 66B (right). The red line denotes the normalization
reference.

large batch sizes (Table I), underscoring that escalating KV
cache traffic remains the main bottleneck.

B. Limitation of KV Cache Recomputation

Token recomputation. Rather than storing or transferring all
KV entries, token recomputation reconstructs the cache by re-
executing the prefill phase using the tokenized representations
of the accumulated context (prompt + generated tokens). By
eliminating the need for full KV storage or transfer, this
method significantly reduces memory consumption and data
movement. In principle, this enables larger batch sizes and
shifts communication overhead into computation, potentially
improving scalability over fully cached KV data.

Limited performance gains of recomputation. Despite re-
duction of host-to-GPU data transfers, recomputation does not
always yield better throughput. As illustrated in Figure 3, with
a batch size of 64 and context lengths of 1024 for the 30B
model or 512 for the 66B model, a recomputation ratio of
20% reduces data transfer overhead by 20% but increases
latency by 1.45x and 1.31x, respectively. Hence, the overhead
from repeated prefill steps outweighs the savings from fewer
transfers.

FFNs dominate recomputation latency. Reconstructing KV
tensors from token IDs requires not only regenerating KV
entries for the target layer but also recomputing all preceding
layers to reconstruct their intermediate activations. As shown
in Figure 4(a), this sequential recomputation significantly
inflates latency by processing each layer in order. Additionally,
Figure 5 highlights that feed-forward networks (FFNs), which
generate inputs for subsequent layers, dominate execution
time (see the Tok bar). This overhead becomes more pro-
nounced with larger batches or longer contexts, underscoring
the inefficiency of full recomputation. Storing intermediate
activations instead of recomputing them could mitigate this
cost by bypassing redundant FFN processing.

C. Potentials of Activation Cache

We apply an Activation cache as a novel alternative to the
conventional KV cache, aiming to enhance KV recomputation
efficiency via activation checkpointing. By storing only the
decoder input activations, our approach allows faster KV
regeneration at each layer, skipping redundant operations after
QKV generation without sacrificing accuracy. As a result,
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Fig. 5: Breakdown of a single layer execution time of OPT-
30B, with token recomputation from token IDs (Tok) and
activation recomputation from activation checkpoints (Act).

Activation cache provides the potential of a memory-efficient
and computationally balanced framework for large-scale LLM
serving with host memory offloaded system.

Efficiency over KV cache. Unlike KV caching, which stores
both key and value tensors, our Activation cache retains only
the input activations (A.). As shown in Equation 1, these
activations are converted into K. and V. through a single
linear transformation.

[Kc Vc] = Ac X [WK WV] (1)

This reduces memory and data transfer overhead by 50%.
Furthermore, activation checkpointing often leverages idle
GPU cycles for recomputation, balancing communication and
compute demands more effectively than KV caching.
Efficiency over token recomputation. Compared to token
recomputation that accompanies computations of all preceding
layers to rebuild KV tensors for layer k (Figure 4(a), activation
checkpointing regenerates K. and V. only from the stored
activations of layer k (Figure 4(b)). In Figure 5, the single-
layer execution latency of OPT-30B [1] is reduced by an
average of 78% when using activation checkpointing for KV
cache recomputation (Act) instead of token recomputation
(Tok), highlighting a substantial computational advantage.

IV. CAPTURE SYSTEM DESIGN

Replacing the entire KV cache with an activation cache can
reduce memory usage, but at the cost of increased recom-
putation. Building on these insights, we present CAPTURE,
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Fig. 6: Overview of the proposed system with KV-Activation hybrid caching mechanism.

a host-memory offloading framework designed to optimize
both memory efficiency and computational performance. CAP-
TURE incorporates KV-Activation hybrid caching to balance
storage and recomputation, an asynchronous inference engine
to overlap data transfers with GPU execution, and a cache
management policy to dynamically allocate resources and
minimize bottlenecks.

A. KV-Activation Hybrid Caching

Hybrid cache block structure. We propose a hybrid caching
mechanism that divides tokens into two distinct block types:
KV blocks, which store conventional key-value (KV) tensors,
and ACT blocks, which store input activations (i.e., activation
checkpoints). Each block represents a group of 16 tokens,
analogous to the concept of a “page” in PagedAttention [4]. As
depicted on the left side of Figure 6, these KV and ACT blocks
are jointly managed by a unified block table that spans host
and GPU memory. As the number of tokens per block is fixed,
each KV block requires twice the memory space of an ACT
block. This design offers a balanced trade-off between memory
usage and computational overhead: while KV blocks facilitate
rapid attention computations, ACT blocks enable on-demand
KV regeneration directly on the GPU, thereby reducing both
storage requirements and data transfer costs.

Logical-Physical block mapping. To accommodate unpre-
dictable LLM output lengths, CAPTURE adopts PagedAtten-
tion’s page-based strategy that enables non-contiguous phys-
ical memory allocation while maintaining logical contiguity,
thereby reducing the internal fragmentation caused by tradi-
tional maximum-size memory reservation approaches. During
the prefill phase, tokens from each request are stored either
in KV or ACT blocks, tracked by a per-request block table
(Figure 6, left) that records block type, physical location, and
Physical Block Number (PBN). During inference, CAPTURE
consults this table to either directly load KV blocks or regen-
erate them from ACT blocks. By dynamically tuning the ratio
of KV to ACT blocks, the system can effectively overlap PCle
transfers and computations.

B. Asynchronous Inference Engine

Three-step decode pipeline. We design an asynchronous
inference engine that overlaps host-to-GPU data transfers with

computations. As shown on the right side of Figure 6, each
iteration of the decode phase consists of three steps: loading
activation or KV blocks into GPU buffers, recomputing KVs
from activation checkpoints (“KV Gen”), and executing the
forward pass for the newly generated token.

Memory allocation strategy. A key design choice is that
while host memory can store both Activation cache and KV
cache, GPU memory is exclusively allocated for Activation
cache blocks. This allocation provides sufficient time for
KV recomputation from activation checkpoints during weight
prefetching, making optimal use of limited GPU memory
during token generation.

Double-buffered execution flow. Our engine employs double-
buffering to overlap data transfers with GPU computations.
During each decode iteration, three operations occur in par-
allel: (1) activation blocks are loaded and converted to KV
tensors on the GPU, (2) the next layer’s weights and existing
KV blocks are prefetched from host memory, and (3) the re-
generated and prefetched KV tensors are merged for attention
computation. This pipeline repeats for each token through-
out both the prefill and decode phases, ensuring continuous
computation-communication overlap.

Mini-batch processing and buffer management. Our sched-
uler splits large batches into mini-batches of up to 8,192 tokens
to prevent memory bloating from intermediate tensors during
attention computation. Without this constraint, large batch
sizes would overflow GPU memory with temporary matrices.
We manage these mini-batches through three specialized GPU
buffer pairs: the ACT buffer for activation blocks, the KV buffer
for key-value blocks from host memory, and the Attention
buffer for merged KV cache. Each buffer type is duplicated
for double-buffering—while one buffer is used to process the
current mini-batch on the GPU, the other buffer is used to
receive the next mini-batch from the host. With buffer capacity
matching the maximum mini-batch size (8,192 tokens), this
design prevents memory bloating while enabling continuous
processing across mini-batches.

C. Cache Management Policy

Efficient inference requires a seamless overlap between
PCle data transfers and GPU computation. Over-allocating KV
cache increases PCle traffic, resulting in GPU idle time. Con-
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Terms & Functions for Time

Tioad_w Latency for one decoder block weight load
To_gen Function for KV generation (recompute) latency
Tload kv Function for KV cache load latency

Terms for # of Blocks
#K Vst Number of KV blocks in host memory
#ACTHost  Number of ACT blocks in host memory
#ACTegpy  Number of ACT blocks in GPU memory

TABLE II: Symbols for allocation and scheduling decision.

versely, overly relying on activation caching leads to frequent
KV regeneration, leaving the PCle bandwidth underutilized.
Therefore, the key challenge is dynamically balancing the
ACT-to-KV cache ratio to achieve optimal resource utilization.

To address this challenge, we propose a cache allocation
and scheduling policy for KV-Activation hybrid cache. As
illustrated in Figure 7, our policy consists of three key
steps: @ Host memory block allocation determines cache
allocation between KV and ACT blocks in host memory.
@ Request block allocation assigns blocks to each request

based on the host memory allocation ratio. € Dynamic

mini-batch formation organizes mini-batches to balance PCle
communication and recomputation.

Problem definition. We formalize the inference pipeline
latency for a single Transformer decoder layer using the
notation defined in Table II. The latency consists of two main
components: (i) Tpcye, the time required to load weights and
KV blocks from host memory, and (ii) Tcomputation, the time
needed to regenerate KV cache from ACT blocks stored in
GPU and host memory. These latencies are defined as:

TPCIe = Crload_w + and_kv (#KVHost) (2)
TComputation = Tkv_gen (#ACTHost + #AOTGPU) (3)

Our objective is to balance these two latencies, avoiding
prolonged idle time for either the GPU or the PCle bus. This
can be expressed as minimizing:

Minimize ‘TPCIe - TC’omputation| (4)

1) Host Memory Block Allocation: Host memory allocation
between KV and ACT blocks directly determines the balance

between PCle traffic and computational workload, as shown
in equations (2) and (3). Our strategy employs a two-step
approach (Figure 7 @), Algorithm 1): First, we establish an
initial allocation to eliminate resource idle time by leveraging
the natural overlap between activation recomputation and
weight loading. Second, we distribute the remaining host
memory capacity to optimize the balance between PCle and
computation latencies.

Initial allocation. Initially, the number of host blocks required
to eliminate idle time is calculated by comparing the recom-
putation time of ACT blocks allocated to the GPU with the
time taken to load weights (lines 11-18 of Algorithm 1). If
weight loading time exceeds recomputation time, additional
host ACT blocks (ACT;,;;) are allocated to prevent GPU
idle time. Conversely, if computation time is longer, host KV
blocks (K'V;,;:) are prefetched to prevent PCle idle time.

Remaining allocation. After establishing the baseline allo-
cation, we distribute the remaining host memory capacity
between additional activation and KV blocks to achieve op-
timal latency balance. The remaining capacity is calculated
by subtracting the memory required for weight parameters
and baseline blocks from the total host memory. We then
determine the number of additional ACT and KV blocks such
that Ty gen (BACT) = Tjoad_ko(#KV), ensuring a balance
between the two latencies. Since both latencies scale linearly
with block count (Thy gen X #ACT, Tipgd kv o< #KV)
and Sacr = %S kv, this optimization reduces to solving a
straightforward linear system.

2) Request Block Allocation: Based on the two-step allo-
cation policy, the number of ACT and KV physical blocks
to allocate in host memory is set to ACT;nit + ACT remain
and KV + K Viemain, respectively. Since this ratio balances
Tpcre and Teomputations CAPTURE ensures that each request
maintains the same ratio when storing its KV cache, as shown
in Figure 7 @:

#ACT oy : #K Vg = #ACT 10wt : #K Virow  (5)

#ACT, ¢, and #K V..., represent the number of each block type
that a request uses. After the prefill phase, context blocks are
stored through either activation checkpointing or KV caching
according to this ratio. During the decode phase, new blocks
are allocated maintaining this ratio. For instance, if the ratio of
#ACTH st and #K Vs is 3:1 when a request has five ACT
blocks and two KV blocks, the next block allocated would be
an ACT block.

3) Dynamic Mini-batch Formation: While Algorithm 1
ensures a balance between KV and activation within a single
request, it is also important to consider this balance at the
mini-batch level for better performance. Since a mini-batch
handles both computation and communication, balancing KV
and activation dynamically is essential. This approach not only
maximizes PCle and computational resource utilization, but
also improves the efficiency of double buffering.

Ensuring pipeline balance. To achieve the best performance,
mini-batch should always keep the balance between T}, gen



Algorithm 1 Hybrid Cache Allocation Policy

Parameter: 7j,qq_.,: Weight load latency for one decoder block
#ACTcpu: Number of ACT blocks in GPU memory
Mpost: Total capacity of host memory
Sweight: Total size of weight parameter
Skv: Size of a KV block
Sacr: Size of an ACT block (= 1 Skv)

Output: #ACT_Host, #KV_Host

# Step 1: Initial allocation
ACTinit, KVinit + init_cache_alloc()

# Step 2: Allocate remaining blocks after initial alloc
ACTremm’na K‘/remain
+— alloc_remain(ACTinit, KVinit)

RN SRR

# Step 3: Return #ACTrHost, #K Viost
9: return (ACTan + ACTremain)7 (K‘/init + eremain)

11: def init_cache_alloc():

12: ACTinit, KVinit < 0,0

13: Tbudget = noad_w - Tkv_gen (#ACTGPU)
14: if Tbudget > 0 then

15: ACTinie +— find #ACT s.t. Thy_gen = Thudget
16: else

17: KVinit < find #KV s.t. Tload_kv = _Tbudget
18: return ACTinit, K Vinit

19:

20: def alloc_remain(ACTinit, KVinit):

21: Moccupied - SACT X ACTLnlt + SKV X KVinit
22: Mre'mmlning = MHost - Sweight - Moccupie(i

23: ACTremain, KViemain < find #ACT, #KV s.t.
24: Miremaining = Sact X #ACT + Skxv X #KV
25: Tkv_gen (#ACT) = Tload_kv (#KV)

26: return ACTremain, K Viemain

and Tjoad_kv- We use balance as a metric to measure how
balanced two pipelines are in a mini-batch. Basically, balance
is a ratio of Tyy_gen and Tjoqq_ro in the current mini-batch,
as defined in Equation 6.

balance = Tiy_gen #ACT00) /Tioad_ko H#E Vinp) — (6)

Note that #KV,,,;, and #ACT,,,; are the number of KV blocks
and ACT blocks for the current mini-batch. Since an ideal
value of balance is 1, the purpose of the request scheduling
algorithm is to make balance converge to 1 in each mini-
batch. To transform this into the minimization problem, we
define a cost function Fj as Equation 7.

Fy(#ACT pp, #K Vi) = max(balance, 1/balance)  (7)

The goal of our mini-batch formation algorithm is minimizing
F;, for each mini-batch.

Solving bin packing problem for mini-batches. Our dynamic
mini-batch formation algorithm uses a greedy approach to
minimize both the number of mini-batches and the imbalance
metric balance. The algorithm first defines #ACT,, . and
#KV,,.. based on the available GPU buffer size, which serve
as capacity constraints for each mini-batch (bin). For each
request, the algorithm checks two conditions: (1) whether the
request fits within the remaining capacity constraints (#KV

and #ACT), and (2) whether adding the request reduces the
imbalance compared to the current mini-batch state. If both
conditions are satisfied, the request is added to the current
mini-batch. When no more requests can be accommodated,
a new mini-batch is created. This process continues until all
requests are allocated, ensuring efficient resource utilization
while maintaining balance.

V. EVALUATION
A. Methodology

Implementation. CAPTURE is a single-GPU LLM inference
system that extends vLLM [4], incorporating host memory
offloading capabilities for both weights and KV caches. KV-
Activation hybrid caching is implemented by modifying 12K
lines of code using Python and C++/CUDA with PyTorch. To
ensure seamless integration of the hybrid cache, CAPTURE ex-
pands PagedAttention kernel of vLLM to enable self-attention
functionality across diverse KV cache types.

Models. We evaluate CAPTURE with four OPT [1] model
sizes: 6.7B, 13B, 30B, and 66B parameters (all in floatl6).
While larger models (13B-66B) require host memory offload-
ing, OPT-6.7B fits entirely in GPU memory. We include it to
show how activation caching reduces PCle traffic compared to
KV caching, even for models not requiring offloading.

Baselines. We compare CAPTURE with two modern host
memory offloading frameworks: DeepSpeed-Inference [6] and
FlexGen [7]. We exclude sparsification-based frameworks
like InfiniGen [14] that have potential negative impacts on
language modeling accuracy, though these methods could
complement our approach by reducing data transfer. For
FlexGen, we use its optimal configuration, which keeps most
weights on the GPU while offloading KV cache and remaining
weights to host memory. DeepSpeed-Inference, lacking zig-
zag scheduling, uses the batch size that avoids OOM during
the prefill phase, resulting in smaller batches compared to
FlexGen. We also evaluate CAPTURE-Act-Cache, a variant of
CAPTURE using only activation caching.

Environment Setup. We perform evaluation in a single GPU
system featuring an NVIDIA RTX 4090 GPU with 24GB
of GDDR6X memory and PCle 4.0 x16 interface. The host
system is powered by a dual-socket 16-core Intel Xeon Gold
6326 processor, with 882GB of DDR4 memory.

Evaluation metrics. We evaluate CAPTURE based on token
generation throughput, defined as the number of tokens gener-
ated per unit time, a critical metric for batched LLM inference.
Additionally, we analyze KV transfer volume between the host
and GPU and measure GPU temporal utilization, defined as the
percentage of cycles with active computation, using NVIDIA
Nsight Systems.

B. Throughput Improvement

Figure 8 compares the throughput of CAPTURE (CAPTURE-
Hybrid-Cache) with FlexGen, DeepSpeed-Inference, and
Activation-cache only system (CAPTURE-Act-Cache) across
varying input prompt lengths. Throughput is calculated as
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Fig. 9: Breakdown of PCle transfer volume for KV and
Activation using OPT-30B. Shaded bars represent FlexGen,
while solid bars represent CAPTURE.

the total number of tokens divided by the end-to-end latency
(prefill + decode), with a batch size of 128 and 128 output
tokens per request.

Comparison with KV cache-only systems. CAPTURE-
Hybrid-Cache improves throughput by 2.19x over FlexGen
and 1.61x over CAPTURE-Act-Cache by efficiently utilizing
GPU cycles for KV recomputation, reducing host-to-GPU
KV cache traffic and alleviating data transfer bottlenecks.
These benefits scale with model size; for example, throughput
improves by 2.05x for 6.7B models and 2.33x for 66B models,
where longer weight transfer times enable greater overlap with
activation recomputation.

In contrast, DeepSpeed-Inference achieves only 29% of
FlexGen’s throughput and 13% of CAPTURE-Hybrid-Cache’s
due to its lack of mini-batch scheduling. Without the ability to
divide large batches into smaller mini-batches, it is forced to
use smaller batch sizes in memory-constrained scenarios, sig-
nificantly limiting throughput. Prior studies [7] have reported
similar scalability challenges in DeepSpeed-Inference.

Comparison with Activation cache-only systems. CAP-
TURE-Hybrid-Cache improves throughput by an average of
1.35x over CAPTURE-Act-Cache by alleviating both data
transfer and computational bottlenecks. While an activation
cache-only system eliminates host-to-GPU traffic, it incurs
excessive KV regeneration, straining GPU resources. Hybrid
caching mitigates this by dynamically balancing KV and
activation blocks, optimizing both memory efficiency and

Fig. 10: GPU utilization of OPT-30B with varying batch sizes
and input prompt lengths, comparing FlexGen and CAPTURE.

computational overhead. This advantage is more pronounced
in larger models, where regeneration costs scale with model
size. Specifically, hybrid caching achieves a 1.23x speedup
for the 6.7B model and 1.4x for the 66B model, demonstrat-
ing its effectiveness in sustaining high throughput as model
complexity increases.

C. Host-GPU Traffic Analysis

Figure 9 presents the host-to-GPU data transfer breakdown
during decoding across different input lengths for batch sizes
of (a) 32 and (b) 64. The x-axis represents input sequence
length, while the y-axis indicates the transfer volume. For
each sequence length, the left bar (comb-patterned) represents
FlexGen, while the right bar corresponds to CAPTURE.

Replacing KV blocks with smaller ACT blocks, CAPTURE
reduces traffic by up to 1.27x for batch size 32 and 1.38x
for batch size 64 compared to FlexGen. This advantage scales
with batch size, as larger batches require transferring propor-
tionally more KV cache over PCle. By substituting some KV
cache entries with Activation cache, CAPTURE mitigates PCle
bottlenecks in high-throughput settings.

D. GPU Utilization

Figure 10 compares GPU utilization between FlexGen and
CAPTURE across different batch sizes and input lengths. On
average, CAPTURE achieves 7.39x higher utilization than
FlexGen, with the largest gain at a batch size of 128, where
utilization improves by 13.39x. This disparity occurs because



#Params | Act-Only  + Hybrid  + Alloc & Sched
6.7B 25.06 31.49 (1.26%) 31.53 (1.26x)
13B 13.90 18.61 (1.34x) 19.06 (1.37%)
30B 6.28 8.68 (1.38x) 10.10 (1.61x)
66B 2.96 4.12 (1.39%) 4.63 (1.56x)

TABLE III: Ablation study showing throughput (tokens/s)
for activation cache, hybrid cache, and hybrid cache with
allocation and scheduling, with speedups over activation cache
in parentheses.

FlexGen heavily depends on KV cache transfers, leading to
only a slight increase in GPU utilization from 8.2% to 12.6%
as batch size grows from 32 to 128.

In contrast, CAPTURE increases GPU utilization from
35.6% to 78.2% over the same range. This improvement
is driven by its ability to generate activation recomputation
tasks dynamically, leveraging available GPU resources while
minimizing idle time. While higher utilization does not guar-
antee proportional throughput gains, CAPTURE reduces KV
cache traffic and enhances resource efficiency, making it more
effective than FlexGen in maximizing GPU performance.

E. Effect of Cache Management Policy

Table III presents an ablation study on the impact of hybrid
caching and cache management policies on throughput, using
a prompt length of 1920 and a batch size of 128. Without
dynamic scheduling and allocation, hybrid caching follows a
static policy where Activation cache is filled first, followed by
KV cache. This enforces a fixed 1:1 host memory split between
Activation and KV cache, allocating equal host memory to
both. While this approach improves throughput by an average
of 1.34x—with gains of 1.26x for the 6.7B model and 1.39x
for the 66B model—its effectiveness is limited. Larger models
see greater benefits due to longer weight loading times,
which allow more activation recomputation. However, static
allocation does not account for pipeline imbalances, causing
recomputation to exceed PCle latency and restricting further
speedups.

Introducing cache management policies, including dynamic
host memory allocation and bin-packing, further improves
throughput—achieving speedups of 1.61x for the 30B model
and 1.56x for the 66B model compared to CAPTURE-Act-
Cache. For smaller models, these improvements are marginal,
as their default 1:1 memory split aligns with the optimal ratio
for overlap. In contrast, larger models benefit significantly,
with optimal KV-to-ACT memory ratios of 2:1 (30B) and
1.78:1 (66B). By dynamically adjusting memory allocation
and improving overlap efficiency, these policies mitigate bot-
tlenecks and enhance overall performance.

VI. CONCLUSION

This paper addresses communication-computation imbal-
ance in host memory offloading for batched LLM infer-
ence with activation checkpointing and KV-Activation hybrid
caching. This improves throughput and efficiency, enabling

scalable, cost-effective inference. The source code of CAP-
TURE framework is available at https://github.com/casys-kaist/
Capture.
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