
InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator with

Locality-aware Inner Product Processing

Daehyeon Baek∗, Soojin Hwang∗, Taekyung Heo∗, Daehoon Kim†, Jaehyuk Huh∗

∗School of Computing, KAIST
†Department of Information and Communication Engineering, DGIST

{dhbaek, sjhwang, tkheo}@casys.kaist.ac.kr, dkim@dgist.ac.kr, jhhuh@kaist.ac.kr

Abstract—Sparse matrix multiplication is one of the key
computational kernels in large-scale data analytics. However, a
naive implementation suffers from the overheads of irregular
memory accesses due to the representation of sparsity. To mit-
igate the memory access overheads, recent accelerator designs
advocated the outer product processing which minimizes input
accesses but generates intermediate products to be merged to
the final output matrix. Using real-world sparse matrices, this
study first identifies the memory bloating problem of the outer
product designs due to the unpredictable intermediate prod-
ucts. Such an unpredictable increase in memory requirement
during computation can limit the applicability of accelerators.
To address the memory bloating problem, this study revisits
an alternative inner product approach, and proposes a new
accelerator design called InnerSP. This study shows that non-
zero element distributions in real-world sparse matrices have a
certain level of locality. Using a smart caching scheme designed
for inner product, the locality is effectively exploited with a
modest on-chip cache. However, the row-wise inner product
relies on on-chip aggregation of intermediate products. Due to
uneven sparsity per row, overflows or underflows of the on-chip
storage for aggregation can occur. To maximize the parallelism
while avoiding costly overflows, the proposed accelerator uses
pre-scanning for row splitting and merging. The simulation
results show that the performance of InnerSP can exceed or be
similar to those of the prior outer product approaches without
any memory bloating problem.

Keywords-sparse matrix multiplication, hardware accelera-
tor, inner product

I. INTRODUCTION

Sparse matrix multiplication has been one of the key

computations used in a wide range of data analytics and

high-performance computing. The applications of sparse

matrices range from data analytics [3], recommendation

systems [17], circuit simulation [6], machine learning [14],

search engine [4], to computer graphics [25]. Although a

sparse matrix can be represented in many different forms, the

representation of sparsity itself incurs inherent indirect and

thus irregular memory accesses for operations on sparse ma-

trices. Due to the irregular patterns, memory access latency

and bandwidth become a critical performance bottleneck.

To provide fast multiplications on large-scale sparse ma-

trices, recent studies proposed accelerator designs combined

with high bandwidth 3D-stacked DRAM [21], [27]. In the

approaches, the key insight is that outer product computation

can be more efficient with accelerators than conventional

inner product approaches used in CPUs and GPUs. In the

two prior accelerators, the outer product algorithm generates

intermediate products which are not yet added to the final

output, and writes them to the memory. The final accumula-

tion of the intermediate outputs is done at the second stage.

OuterSPACE [21] first proposed such outer product-based

multiplication, and SpArch [27] improves the outer product

approach with an on-chip partial merging mechanism to

reduce the overheads of writing and reading a large amount

of intermediate products.

The outer product approaches minimized input reads at

the cost of increased memory traffic for partial products.

However, this study identifies an important downside of

the outer product approaches in its memory capacity usage.

The generation of partial products requires a large amount

of extra memory capacity, which can be multiples of the

final output. In addition, the required memory capacity for

a multiplication is unknown until the actual outer product

operations are completed, since the partial product sizes

depend on the distributions of non-zero elements. In sparse

matrices for large-scale commercial applications, such a

memory bloating problem can severely restrict the applica-

bility of the accelerators.

This study first analyzes 755 sparse matrices to show

the severity of the memory bloating problem. The analysis

shows that the worst 20% of the real-world matrices require

off-chip memory 16.9 times larger than the size of the

final output matrix to store partial products if the outer

product approach is used. In addition, the analysis also

shows that many common sparse matrices have a certain

level of access locality to be exploited during the inner

product computation.

Based on the analysis, this study proposes a new accelera-

tor design, called INNERSP, which revisits the conventional

inner product approach. Unlike the outer product approach,

INNERSP does not require any extra memory on top of two

input and one output matrices. It employs a row-wise inner

product, which multiplies one row of the first input matrix

with the second matrix, producing a row of the output.

To improve the row-wise inner product, InnerSP enhances

two performance-critical aspects, 1) exploiting locality in

the second matrix, and 2) maximizing parallelism under

a limited on-chip aggregation hash table. During a row

computation step, part of the second matrix is fetched, and

the intermediate results are merged in the on-chip hash table.

With on-chip aggregation, the first input is read only once,

and the final output is also written once. The second input

can be fetched multiple times, potentially causing a large

amount of memory traffic. However, there exists locality in

the second matrix accesses because of the clustered column

distribution of the first matrix. With the locality, a moderate

on-chip cache can provide data reuse for the second matrix,

reducing memory accesses significantly.

The second challenge in the acceleration with the row-

wise inner product is the trade-off between the parallelism

and potential overflows in the on-chip hash table for ac-

cumulating a row or rows of the output matrix. Due to

high sparsity variance in the number of non-zero elements

in each row, processing a single row or fixed number of

rows at a time can suffer from the limited parallelism if not

enough non-zero multiplications occur. On the other hand,

it can suffer from the overflow of the on-chip accumulation

hash table, if too many non-zero elements are generated.

To address the problem, this paper proposes a pre-scanning

technique. A quick first pass identifies the upper-bound

number of non-zero elements for each output row. The result

is used to determine the number of rows to be operated

together. In addition, if a single output row cannot be stored

in the on-chip accumulation hash table, the row is partitioned

by column to avoid overflows in the on-chip accumulation

hash table.

A recent study, MatRaptor [24], also investigated the po-

tential of the conventional row-wise inner product approach

with a new optimized sparse matrix format. It focuses on the

area efficiency of the row-wise inner product while achieving

better performance than OuterSPACE. Our study focuses

on the memory bloating problem based on the extensive

analysis of real square matrices from SuiteSparse Matrix

Collection [5]. In addition, we investigate the locality of

the second input matrix and the row merging and split-

ting technique to maximize the parallelism without hash

table overflows. The simulation-based evaluation shows that

INNERSP can exceed the performance of OuterSPACE by

4.57×, and MatRaptor by 2.45×. Compared to the best

performing outer product approach (SpArch), INNERSP

has 6.8% performance improvement without the memory

bloating problem, not requiring any extra memory to store

partial products during computation.

Compared to the prior approaches, the main contributions

of this study are as follows:

• This paper analyzes a large number of real-world sparse

matrices for identifying the partial product size and

locality. Based on the analysis, it identifies the memory

bloating problem of the outer product approaches.

• It proposes a new row-wise inner product accelerator,

a
00

a02
a10 a13

a31

a11

Matrix A

0 1 2 3

0

a
00

2

a02

0

a10
1

a11

3

a13

1

a31

Row

Pointers

Column

Indexes

Values

N
U
L
L

Matrix A in CSR Format

4

Figure 1: Compressed Sparse Row (CSR) format example

which can exploit the existing locality of the second

matrix accesses.

• It proposes a pre-scanning technique to almost elim-

inate the overflow problem of the accumulation hash

table in the inner product computation.

The rest of the paper is organized as follows. Section

2 describes the background in sparse matrix multiplication

acceleration. Section 3 discusses the memory bloating prob-

lem of the outer product and potential locality in memory

accesses of the inner product approach. Section 4 describes

the proposed accelerator design, and Section 5 reports the

experimental results. Section 6 presents the related work,

and Section 7 concludes the paper.

II. BACKGROUNDS

A. Sparse Matrix and Multiplication

A sparse matrix is a matrix where most of its elements

are zeroes. There have been several formats to represent

sparse matrices in a memory-efficient manner by skipping

zero elements. One of the most widely used formats is

the Compressed Sparse Row (CSR) or Compressed Sparse

Column (CSC) format. In this paper, we will use CSR as

our primary format. Figure 1 illustrates an example of the

CSR format. It consists of three arrays: value, column-index,

and row-pointer arrays. The value array stores actual non-

zero values in the sparse matrix in row major order. The

column-index array (column array) has the column indices

for corresponding elements in the value array. The row-

pointer array (row array) points the starting index of each

row in column-index and value array.

Generalized matrix multiplication (GEMM) produces the

M ×K size of output matrix (C) from the M ×N size of

first input matrix A and N ×K size of second input matrix

B. In this paper, A, B, and C will be used to denote the first

and second input matrices and the output matrix. A typical

inner product matrix multiplication computes a dot product

of a row of A and a column of B to produce an element of

C:

C[i, j] =
∑

N−1

k=0
A[i, :] ·B[:, j]

SpGEMM accelerators: There have been several studies

which proposed accelerators for sparse GEMM [21], [24],

[27]. In the designs, an accelerator has a dedicated memory

with high bandwidth, such as 3D-stacked High Bandwidth

Memory (HBM). Input matrices in the CPU-side system

× 𝑖𝑡ℎMatrix A Matrix B

𝑗𝑡ℎ𝑘𝑡ℎ𝑟𝑡ℎRow-wise

Inner

Product

+

Matrix CIntermediate Results

(b)

Outer

Product

𝑖𝑡ℎMatrix A Matrix B

𝑗𝑡ℎ𝑘𝑡ℎ𝑖𝑡ℎ +

Matrix C

𝑗𝑡ℎ𝑘𝑡ℎ ×××
Partial Products

(a)

Figure 2: Comparison of outer product and row-wise inner

product

memory are copied to the accelerator memory via DMA

operations, and the output matrix is copied back to the

system memory after computation. Since the accelerator

memory capacity is fixed and the data transfer between the

system DRAM and accelerator memory has much lower

bandwidth than the accelerator memory, efficient utilization

of the accelerator memory is important. Two common ap-

proaches for the accelerator algorithm are outer product and

inner product techniques.

B. Outer Product Accelerators

Figure 2 (a) illustrates the outer product algorithm. In the

outer product algorithm, the result matrix C is calculated

by summing partial product matrices. Each partial product

matrix is generated by multiplying a single column of A and

a single row of B, when the column index of A and the row

index of B match. Assuming the number of columns in A

is equal to N, repeating the outer product calculation from

the first to the last column of A and corresponding row of B

produces N partial products. Final C is produced by adding

all partial products.

C =
∑

N−1

k=0
Ck, where Ck = A[:, k]×B[k, :]

A key advantage of the outer product algorithm is that

it sequentially reads both A and B only once, eliminating

repeated reads of B, which occur in the inner product

algorithm. However, it needs to write all partial products

to the memory and read them again to summarize them to

the final output C.

OuterSPACE: OuterSPACE is the first outer-product-based

sparse matrix multiplication accelerator [21]. It is based

on the assumption that typical sparse matrices with a low

density do not generate a large amount of partial products.

If the density of input sparse matrices is low, then each non-

zero element of the output C is accumulated from one or a

small number of partial products. In such cases, the overall

size of partial products may not be significantly larger

than C. OuterSPACE proposed a two-phase algorithm with

multiply and merge phases. The multiply phase produces all

partial products by iterating N times. After all the partial

products are written to the memory, they are read and

accumulated to produce the final C matrix.

SpArch: SpArch improves the outer product approach by

adding on-chip merging of partial products [27]. Unlike

OuterSPACE, SpArch attempts to merge multiple partial

products with on-chip parallel merge trees, and the partially

merged intermediate products are written to the memory.

Compared to OuterSPACE, it can reduce the memory write

and read traffic for partial products with the on-the-fly

merging mechanism. The effectiveness of the on-chip merge

is dependent on the locality of row and column indices for

partial products. It further improves the merging efficiency

by condensing A to reduce the number of partial matrices

while sacrificing the efficiency of reading B. To overcome

the disadvantage, SpArch adds a prefetcher for B to hide

read latency and reduce duplicated accesses of B.

C. Row-wise Inner Product Based Solutions

Another widely adopted matrix multiplication algorithm

is a row-wise inner product. For its high parallelism and

low memory footprint, the row-wise inner product is used

in CPU-based solutions [10] and in GPU-based ones [2],

[16], [19], [20]. Figure 2 (b) illustrates the row-wise inner

product algorithm. A single row of the result matrix C is

the sum of intermediate results, which are generated by

multiplying each element of a row in A and row vectors of B.

The intermediate row is the multiplication result of elements

from the row of A whose column indices are matched with

the row indices of corresponding rows in B. The amount of

intermediate products which must be stored, is much smaller

than the outer product algorithm, since they are merged

for each C row and they are no longer needed after the

completion of the output row.

C[i, :] =
∑

(A[i, k]×B[k, :])

MatRaptor: A recent study that uses the row-wise inner

product approach is MatRaptor [24]. MatRaptor proposes

C2SR, a new hardware-friendly sparse matrix format to

efficiently utilize the memory bandwidth. With this read

optimization, MatRaptor uses three on-chip queues to merge

and sort each intermediate row. However, this approach

raises an exception to the CPU when the queues overflow,

and the CPU handles the rest of the row that is not merged in

the on-chip queues. Such overflows can lead to performance

degradation for certain inputs. Although MatRaptor and

INNERSP are both based on the row-wise inner products,

this study investigates the memory bloating problem of outer

product and the locality opportunities of B. In addition, this

study addresses the overflow and underflow challenges of

on-chip merging storage.

Table I shows the comparison of the prior three ap-

proaches and ours. OuterSPACE [21] and SpArch [27]

use outer product approaches for calculation. Therefore,

the two approaches have the memory bloating problem

due to intermediate partial matrices. These partial matrices

cannot be fit in on-chip memory, which causes additional

Methods
Outer–

SPACE [21]

SpArch

[27]

MatRaptor

[24]

INNERSP

(Ours)

Algorithm Outer Outer Inner Inner

of B Reads Once Multiple Multiple Multiple

of C Writes Multiple Multiple Once Once

Mem. Bloat

Prevention
✗ ✗ ✓ ✓

Caching B ✗ ✓ ✗ ✓

Merge Ovf.

Handling
✗ ✗ ✗ ✓

Table I: Comparison to prior accelerators.

off-chip memory traffic. To reduce the off-chip memory

traffic, SpArch also uses caching. MatRaptor [24] uses an

inner product approach with on-chip row merging. It can

prevent memory bloating, but it does not reduce repetitive

B reads and does not address the performance degradation

by overflowing output rows that cannot be fit in on-chip

merging storage.

III. MOTIVATION

A. Dataset

In this paper, we analyze 755 sparse matrices from SuiteS-

parse and SNAP [5]. From the suites, the 755 matrices are

selected and used for evaluation to show the general perfor-

mance of INNERSP. The selected matrices (total dataset)

are square matrices, and the number of non-zero elements

is within the minimum and maximum number of non-zero

elements from the benchmark matrices used in the prior

work [27]. Among them, 14 matrices (comparison dataset)

are used to compare our performance result to the prior

work, as they are the common matrices used by all three

prior studies [21], [24], [27].

B. Memory Traffic Analysis

In this subsection, we analyze the amount of required

memory accesses for the base outer product and inner

product approaches to show that the memory traffic of the

base outer product commonly exceeds that of the inner

product.

Base outer product: The outer product approach reads

A and B only once, but it can generate read and write

operations for partial products. In the base outer product,

the entire partial products are written to the memory during

multiplication phase, and fetched for accumulation phase.

The amount of partial product writes and reads depends

on the number and distribution of non-zero values. If the

majority of elements of C are the accumulation of many

partial product values, then the amplification of writes for

partial products will be severe. Otherwise, the partial product

traffic will be similar to the write traffic of C. We will

use size() function to denote the memory size of a matrix

including the row pointers, column indices, and values.

100 101 102

Normalized Total Size of Partial Products

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

214.89

3.93

16.95

Figure 3: CDF of memory bloating factor. Red × marks

present the matrices used in the evaluation of prior studies

(comparison dataset) [21], [24], [27].

The total memory traffic required for partial matrices is

the twice of the total sum of partial matrices (size(P)). One

is for writing partial matrices to memory, and the other is

for reading partial matrices to generate the result matrix C.

The final output C will be written after that. Therefore, the

total memory access of outer product is equal to size(A) +

size(B) + 2 × size(P) + size(C). However, if intermediate

products are partially merged inside the accelerator as used

in SpArch, memory accesses will be reduced.

Row-wise inner product: With the row-wise inner product,

if the on-chip accumulation storage is large enough to hold

a row of C, the accumulation is completed without extra

memory writes for partial products. Therefore, the final

C needs to be written only once. The main source of

performance degradation in the inner product approach is

reading B multiple times. If A and B are dense matrices, B

must be read N times, where N is the number of rows in

A. However, due to the sparsity of A, only part of B is read

from the memory. For a non-zero row of A, a row of B is

read only if the row index of B matches the column index

of a non-zero element in the row of A.

Therefore, the row-wise inner product requires one read

for A, multiple reads for B, and one write for C. The amount

of read accesses for nonzero elements of B is identical

to size(P) of the base outer product. Therefore, the total

memory accesses of row-wise inner product is equal to

size(A) + size(P) + size(C) + α×size(A). The last term,

α×size(A), is to read two adjacent row pointers of B for

every non-zero element of A, which is used to retrieve the

elements of a B row matching the column index of a non-

zero A element. α is the ratio of the size of two row pointers

of B and a column-value pair for a non-zero element of A.

In our case, α is 2/3. The analysis shows that the base outer

product commonly has more memory accesses than the inner

product, and the difference is size(B) + size(P) - α×size(A).

C. Memory Bloating of Outer Product

A key problem of outer product is memory bloating.

Memory bloating is defined as the extra off-chip memory

usage in addition to store A, B, and C. This subsection

quantifies the extra off-chip memory capacity required to

Comparison
Dataset

Total
Dataset

0

2

4

6

Av
g.

 M
em

or
y

Bl
oa

tin
g

Fa
ct

or
3.07

5.41

Figure 4: Average memory bloating factors of the compari-

son dataset and total dataset

1GB 2GB 4GB 8GB 16GB0
50

100
150
200
250

of

 O
ve

rfl
ow

ed
 M

at
ric

es

19 7 2 0 0

194

112

54
28

6

Inner Product Outer Product

Figure 5: The numbers of sparse matrices that cannot be

computed with given memory sizes and algorithms (lower

is better)

hold the partial products for the base outer product approach.

In this analysis, a memory bloating factor is the ratio of size

of partial product and the size of the output.

Figure 3 presents the cumulative distribution function

(CDF) of matrices with respect to their memory bloating

factor. Even in the best case, the extra memory for partial

products is similar to the size of matrix C. 50% of the

matrices generate partial products that consume more than

3.93× memory capacity compared to final outputs. For the

top 20% with the largest memory bloating, partial matrix

sizes are 16.95 times larger than the sizes of C. Furthermore,

this extra memory capacity required to store partial products

is not known before multiplying sparse matrices, as its size

is determined by the distribution of non-zero values in A

and B.

In Figure 3, the fourteen matrices (comparison dataset)

used in prior studies [21], [24], [27] are marked with red

cross marks. The memory bloating factors of the comparison

dataset are relatively low. Figure 4 compares the average

memory bloating factors between the comparison set and

total dataset. While the comparison set has a bloating factor

of 3.07 on average, the total dataset has a bloating factor of

5.41.

This memory bloating problem may result in two crit-

ical problems. First, as the sizes of sparse matrices have

been increasing for many real-world problems, the limited

DRAM capacity of the accelerators cannot sustain the large

extra memory required for the partial products. Second,

the unpredictable extra memory size of the outer product

approach requires dynamic memory allocation incurring

101 102 103 104 105
Distance

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

39
100

25%
50%

Figure 6: CDFs of distances presenting the locality of sparse

matrix multiplications

extra overheads.

Figure 5 shows the number of sparse matrices that cannot

be computed because of memory overflows from the total

dataset. We counted the number of overflowed matrices

while varying the matrix multiplication algorithm and accel-

erator memory capacity. The figure shows that the numbers

of non-computable matrices of the base outer product are

significantly higher than those of the inner product approach.

When the accelerator DRAM capacity is 4GB, the outer

product approach cannot handle 54 matrices (out of 755

matrices), while the inner product approach cannot cover

only two matrices.

SpArch proposed on-chip merging with a Huffman sched-

uler and pipelined merge tree to reduce the extra memory

capacity that partial products consume. It mitigates the mem-

ory bloating problem of the base outer product approach.

However, SpArch still needs to store some partial products in

off-chip DRAM due to the limited merge tree and imperfect

pipelining. Compared to outer product approaches, the row-

wise inner product does not incur any extra memory for

partial products, since all partial products are accumulated

in the on-chip buffer and the final value is written to C only

once.

D. Locality in Inner Product

One of the key assumptions of outer-product-based sparse

matrix accelerators is the low locality of memory accesses.

The locality of memory accesses in sparse matrix multi-

plications largely depends on the distribution of non-zero

elements. Row-wise inner product involves multiplication

between a row from A and rows from B, as described in

Section II. As the non-zero element of ith column of a row

of A requires the ith row of B, the frequent appearance

of non-zero elements on the ith column in A increases the

locality of the ith row of B. We define a metric, distance,

which is the number of non-zero elements between two non-

zero elements on the ith column when presented in the CSR

format. The shorter distance implies the higher locality of

the ith row of B.

To evaluate the locality of memory accesses of sparse

matrix multiplications, we measure the distances of matrices

in the total dataset. Figure 6 presents the CDFs of distances

0 8 16 24 32 40 48 56 64 12
8

19
2

25
6

51
2

76
8

10
24

20
48

30
72

40
96

81
92

12
28

8
16

38
4

53
77

76
1

Number of Products in a Row

0.0

2.5

5.0

7.5

10.0

Pr
ob

ab
lit

y
(%

)

Interval: 8 64 256 1024 4096 >4096

Figure 7: Distribution of the number of products generated

in a row

0 8 16 24 32 40 48 56 64 12
8

19
2

25
6

51
2

76
8

10
24

20
48

30
72

40
96

81
92

12
28

8
16

38
4

10
76

93

Number of Nonzeros in a Row

0

5

10

15

Pr
ob

ab
ilit

y
(%

)

Interval: 8 64 256 1024 4096 >4096

Figure 8: Distribution of non-zeros in a result row

on the 25th percentile and 50th percentile of each workload.

The memory access localities in sparse matrix multiplication

largely depend on the distribution of non-zero elements of

matrices. The figure shows that real-world sparse matrices

have locality that can be exploited by on-chip caching. For

50% of workloads, the distance on the 25th percentile is

less than 39, and the distance on the 50th percentile is less

than 100. Since B rows are reused within a relatively short

distance, small on-chip caches can provide reused B data

effectively.

E. Variance in Row-wise Sparsity

The row-wise inner product approach merges row-wise

partial products with an on-chip storage, such as a hardware

hash table. However, with the fixed size of the on-chip

merging storage, dealing with the variance in sparsity per

row is an important challenge. When the number of products

is far less than the size of the merge storage, the storage

is not only underutilized, but also the parallelism is not

large enough to fully exploit the on-chip multiplication units.

On the other hand, if the number of products is larger

than the size of the merging storage, the off-chip memory

must be used to write the overflowed elements that are

not stored by the on-chip merging storage. Although the

fallback mechanism allows the SpGEMM operation even

under a high variance of sparsity, it can lead to a significant

performance drop, due to the slow off-chip memory access

latency.

Figure 7 shows a histogram for the distribution of the

number of partial products per output row. Each region

divided by dotted lines has different interval width for each

bar as denoted in the graph, for efficient representation

within a wide and sparse range. This result shows the

multiplication parallelism for each row of output. The results

are from the total dataset. As shown in the figure, there is

a significant variance in the number of partial products per

output row. The densities are high in the low range of the

number of products, but there are still many output rows

which can have more than 1000 partial products.

Figure 8 shows a histogram for the distribution of the

number of elements per C row. As well as Figure 7, this

histogram also has different bar ranges along regions. This

analysis is directly related to the on-chip storage requirement

for processing a single row of the output. Although the

occurrence of overflow might not be frequent, the cost

of handling an overflow is very expensive with off-chip

memory accesses.

INNERSP addresses this variance of sparsity with new

row merging and row splitting techniques. Using fast pre-

scanning, INNERSP approximates the required merging stor-

age. As long as on-chip storage is allowed, it merges rows

to process them together. If an overflow is expected, it

splits a row to avoid any overflow. With a 256KB on-chip

merging storage, up-to 16,384 elements per row can be

merged without any overflow. From the total dataset, we

found 21,157 rows from 42 matrices that have rows that

exceeds the 16,384 limit.

IV. ARCHITECTURE

A. Overview

INNERSP uses a row-wise inner product algorithm, and

merges intermediate products on an on-chip hash table

with accumulators as shown in Figure 9. The memory

efficiency of the inner product algorithm eliminates the

memory bloating problem of the outer product approach

described in Section III-C. It allows much larger sparse

matrices to be processed with a given fixed high bandwidth

memory capacity attached to an accelerator.

In addition to 16 multiplication units in the multiplier

array, two main components of INNERSP are the hardware

hash table for accumulating intermediate results, and caching

supports for the matrix B, exploiting the data locality in

typical sparse matrices. The multiplication result is accumu-

lated in the hash table, producing elements of C. Figure 10

describes the detailed architecture of the hash table. To

support 16 outputs from the multiplication units in each

cycle, the hash table consists of 16 banks. Each bank

includes an adder for accumulation in addition to the hash

storage.

A critical consideration for the hash table performance is

a hash table overflow. If the number of non-zero elements

of the current row-block exceeds the size of the hash table,

H

B

M

A Reader

B Row

Cache

B Col, Val

Cache

H

B

M

B Reader

B Cols

B Vals

B Rows

A Cols

A Vals

Intermediate

Product Counter

A Rows

B
 R

o
w

s

Hash Table

Size Int NNZ

R/W

Hash Table

(256KB)

C Writer

1
6

 F
M

U
L

s

1
6

 H
a

s
h

 U
n

it
s

A Vals

B Cols

B Vals

NNZs

C Cols

C Vals

N
N

Z
sB Rows

Figure 9: Overview of INNERSP architecture

some contents of the on-chip hash table should be evicted

to the off-chip memory. With the backing memory, the

computation still can be executed correctly, but the per-

formance is significantly degraded due to off-chip memory

access latency. To avoid such overflows for the hash table,

INNERSP proposes a quick pre-scanning to identify the

number of intermediate results for each row, and uses the

intermediate results as an approximation of the hash table

requirement.

Based on the pre-scanned analysis, a set of consecutive

non-zero rows are processed together. We define a row-

block as a batch of consecutive non-zero rows of A and

corresponding rows of C processed together. The hash table

accepts one row-block at a time to avoid overflows, and the

size of each row-block is determined by the pre-scanning

analysis. The hash table is indexed by the row and column

indices of C to support the row-block processing.

INNERSP uses two caches for B to exploit the data

locality of sparse matrices, row pointer cache and column-

value cache. In INNERSP, the access pattern of the row

pointer array is different from that of column and value

arrays. For the B row pointer array, two adjacent row

pointers are read for each row fetch, and the row pointer

fetching has random patterns. However, B column-value

arrays are read semi-sequentially for each row. Therefore,

a small 32KB cache with 8B block size is used for the row

pointer array, and the column and value cache capacity is

256KB or 512KB with a larger block size of 64B.

B. Major Components

The major components of INNERSP are the A reader, B

reader, B caches, execution units, hash table, and C writer.

A reader: INNERSP reads the matrix A once in a sequential

manner. It includes three simple FIFO queues which read

row pointer, column index, and value arrays sequentially.

Each FIFO queue can store 1024 entries to hide memory

access latency.

B reader & B caches: To exploit the locality of accessing

B, INNERSP uses two caches, row cache, and column-

value cache for storing part of row pointer, column index,

and value arrays of B. The row cache uses a 32KB 16-

way associative cache to store the row array entries of B.

HBM

(hash val, val)

HT

Bank

HT

Bank

HT

Bank

HT

Bank
...

HT

Bank

HT

Bank

HT

Bank

HT

Bank
...

HBM

FADD

Scratchpad

Memory

Scratchpad

Memory

Comparator Comparator

Comparator Comparator

Scratchpad

Memory

Scratchpad

Memory

...

...

Figure 10: INNERSP hash table architecture. The hash table

has 16 banks, and each bank has one adder and 16 pairs of

1KB scratchpad memory and comparators.

The cache consists of 16 banks with 8B block size, since

row pointer accesses require only two adjacent row pointers

(4B+4B) with low spatial locality. From the cache with 16

banks, the B row fetcher can fetch 16 row pointer pairs

simultaneously in each cycle.

The column-value cache is used to store column and value

entries of B. The column-value cache can store both of the

column and value arrays. For each row fetch, the B column-

value reader sequentially reads the columns and values of an

entire row of B. To maximize the sequential read bandwidth,

the column-value cache uses 64B block size.

Execution units: The multiplier array is composed of

four SIMD units. Each SIMD unit consists of four double

precision floating point multipliers, and the total number of

multipliers is 16. In addition, there are 16 hash units to com-

pute hash keys for subsequent hash table accesses. While

multipliers generate double-precision floating point values,

the hash units compute hash keys from row and column

indices. With 16 multipliers and adders in 1GHz frequency,

the ideal performance of INNERSP is 32 GFLOPS. shows

the maximum performance of 32 GFLOPS.

Hash table: The hash table merges multiple intermediate

results in parallel for different elements of C. Therefore, we

designed the hash table as a group of 16 hash table modules

with 16KB scratchpad memory in each module. Every

module has a double-precision floating point adder that

accumulates intermediate results, and 16 hash comparators

to compare indices of non-zero elements in parallel. The

hash table module also has a memory port to access the

off-chip hash table buffers in the external memory when

overflows occur.

Each hash entry contains 8B for the row (4B) and column

(4B) indices, and 8B for value. The size of the hash table is

256KB or 512KB. The 256KB hash table contains 16,384

entries. For every request, a hash comparator lookups the

corresponding bucket for the request, with the following

three cases:

• Hash Hit: The comparator finds the hash entry that

has the same row and column index in the scratchpad

Algorithm 1 Counting the number of intermediate products

per output row

1: input: A.row, A.col, B.row
2: output: intermediate product count (icnt)
3: for i = 0 → A.nrow do
4: read A.row[i], A.row[i+ 1]
5: icnt[i] = 0
6: for j = A.row[i] → A.row[i+ 1] do
7: read colA = A.col[j]
8: read B.row[colA], B.row[colA+ 1]
9: icnt[i] = icnt[i] +B.row[colA+ 1]−B.row[colA]

10: end for
11: if icnt[i] > B.ncol then
12: icnt[i] = B.ncol
13: end if
14: end for

memory. In this case, the comparator sends the value

from the multiplier and the value from the existing hash

entry to the floating-point adder. The added value is

written back to the scratchpad memory.

• Hash Insertion: The comparator finds an empty entry

from scratchpad memory for insertion. The empty entry

is updated to the newly added row index, column index,

and value.

• Overflow: If the hash table is full without the matching

indices, then the comparator sends the new value to the

DRAM hash table buffer.

All hash table requests with the same hash key go into

the same hash comparator. The comparator serializes all

requests to ensure atomicity for every hash insertion request

to maintain the correctness of parallel hash insertion. For

each request, a hash comparator reads its scratchpad memory

in a linear-probing manner until a hit occurs or it inserts new

entry. If a comparator reads all of 1KB scratchpad memory,

and there is no room for the request, then the comparator

fallbacks on the DRAM-resident hash table buffer.

With the 16 comparators for each 16 hash modules, the

hash table can handle 256 hash entry accesses simultane-

ously, which is sufficient to receive 16 new entries per cycle

with a small chance of pipeline stalls.

C writer: The C writer is composed of a row writer, a

column writer, and a value writer. When writing C, the C

row writer first receives the number of non-zero elements

from the hash table, and accumulates them to generate row

index pointers before writing. After that, the row writer

writes a row pointer of C, and the column and value writers

write the corresponding column indices and values to the

memory. To hide the write latency, the column and value

writers have a queue of 1024 entries for each writer.

C. Pre-scanning for Output Size Approximation

To avoid hash table overflows while maximizing the

parallelism by increasing the row-block size, it is necessary

to identify non-zero output elements for each row of C

Hash Table

A row of C

Overflow

A row of C

B1 B2Matrix A Matrix B Matrix A

Hash Table Hash Table

Split

× ×

Figure 11: Row Splitting avoids hash table overflows by

dividing the matrix B into smaller ones.

before computing C. To find the accurate number of non-

zero elements of C, the algorithm must traverse the entire

row and column arrays of A and B, consuming a significant

amount of memory bandwidth. The time complexity of the

algorithm is O((number of nonzero elements in A)×(number

of nonzero elements in B)), which is equal to the complexity

of index matching in real SpGEMM operation. To reduce

the time complexity, INNERSP uses an approximate pre-

scanning method which reads only the A row and column

arrays, and the B row array. The approximate algorithm only

finds the upper-bound of the number of non-zero elements

for C by calculating the number of intermediate products.

The number of non-zero elements is always less than or

equal to the number of intermediate products for each C

row.

Algorithm 1 shows how the numbers of intermediate

products are counted from the row pointers and column

indices of A, and the row pointers of B. For each row of A,

column indices of non-zero elements of the row are read.

For each retrieved column index, the number of non-zero

elements of the B row corresponding to the column index

is accumulated to the intermediate product counters (icnt[]).

The number of intermediate products of each row is used

for determining the amount of row splitting and merging.

D. Row Splitting and Merging

Splitting a row to prevent overflows: If the number of

non-zero elements in a C exceeds the hash table capacity,

the overflowed C elements must be stored in the off-chip

memory hash table, as shown in the left-side of Figure 11.

However, such overflows can incur a significant performance

degradation.

To prevent hash table overflows, INNERSP finds an upper-

bound of non-zero elements in each C row with the pre-

scanning step as described in Algorithm 1. If the upper-

bound number of non-zero elements of a C row exceeds

the hash table limit, INNERSP divides the rows of C, and

processes split rows separately. For example, as shown in

the right side of Figure 11, if there is a chance of overflow

by the upper-bound analysis from the pre-scanning, C is

divided into two split rows. To compute a split row, only

the corresponding columns of B are multiplied with a row

1 2 3 ... 2 4 3 2

Distance Buffer

Distance

Generator 2

7

1

25 3

Distance Tag Block

D
is

ta
n

c
e

-a
w

a
re

C
a

c
h

e
 E

v
ic

tio
n

B Reader

A Reader

Row Buffer

H

B

M

Column Buffer

Value Buffer

Scan on

insertion

Update Update

on

cache

access

B Cache

Figure 12: B cache structure with P-OPT. Distance generator

utilizes the A column buffer data to generate next access

times. This data is used in B cache for optimal eviction.

of A, producing a split C row. Until the prior split row

computation is completed, the computation of next split row

is postponed. However, to prefetch inputs, next input values

can still be fetched and stored in on-chip buffers until the

buffers are full.

Merging multiple rows to improve parallelism: To

maximize parallelism when the hash table has enough space,

INNERSP merges the computation of multiple rows of C into

a single row-block. A row-block can be one or more rows

of C.

Based on the upper-bound numbers of non-zero elements

for rows of C, row-block sizes are adjusted for different rows

of C. Similar to split rows, until a row-block computation

is completed, the computation of the next row-block is

blocked. After the completion of a row-block computation,

the values in the hash table are written to the memory by

the C writer. Note that even if the multiplications and hash

table accesses are blocked for next row-blocks until the prior

one is completed, the A and B readers can continue to fill

the queues for the next row-blocks until the queues are full.

Such decoupling can support pipelined data fetching and

execution to hide long memory latencies.

E. Improving B Cache Replacement Policy

To further improve the utilization of the B cache, IN-

NERSP exploits the computation pattern of sparse matrix

multiplication, and enhances its replacement policy. This

scheme is based on P-OPT [1], which improves the cache

replacement policy for a large CPU last-level cache, when

the CPU is running graph computation. Based on the obser-

vation from P-OPT, we modify and apply the technique to

the B cache in our sparse matrix multiplication accelerator.

In the inner product computation, for a column index of A,

the corresponding row of B is needed for multiplication.

If the distance between the same column indices across

different rows of A is known, the reuse distance of the

corresponding row of B can be inferred.

INNERSP identifies the column distance of A from the on-

chip buffer of A column-value reader. The buffer contains

up-to 4096 entries of column-value pairs. As shown in

Figure 12, the distance is computed from the buffer, if the

Component Description

A Row Fetcher Queue with 4B, 1024 entries

A Column Value Fetcher Queue with (4B, 8B) pair, 4096 entries

B Row Fetcher Queue with (4B, 4B) pair, 1024 entries

B Column Value Fetcher
64 queues with (4B, 8B) pair,

128 entries each queue.

B Row Cache 32KB 16-way cache, 8B block size

B Column Value Cache
256 or 512KB 16-way cache, 64B block size

16 ports to main memory.

Multiplier

4 × 4 double-precision floating point

multipliers with 1GHz frequency.

Total 16 GFLOPS.

Interm. NNZ R/W 2 queues with 4B x 1024 entries.

Hash Table

16 × 16KB hash table modules

Each module is composed of 16 × 1KB

scratchpad memory and 16 hash processors,

& a double-precision floating point adder.

16 GFLOPS total for addition.

C Row Writer Queue with 4B, 128 entries.

C Column Value Writer
Queue for 4B column indices (1024 entries)

Queue for 8B values (1024 entries).

Main Memory

HBM with 16 64-bit pseudo-channels each

at 8GB/s. 80ns minimum latency,

100ns average latency.

Table II: Architectural simulation parameters

same column index appears in the buffer. The distance is

stored in a separate distance buffer. With 4096 entries in the

buffer, 12 bits are needed to represent each distance. For

every insertion of column of A in the buffer, the distance

generator updates distances of the nearest entry with the

same column index.

Whenever the B row and column-value caches are ac-

cessed, the distance information is updated to the replace-

ment policy bits in the caches. The cache has two bytes of

age-bits to track eviction order in each block. The age-bits

are divided into upper 12 bits for distance values and lower

4 bits for LRU position in a 16-associativity set. With every

read access to a cache block, the upper 12 bits are updated

to the new distance value. In a set, the block with the largest

age value is evicted. When a block is evicted, the lower 4-

bit LRU position is updated. In this scheme, the caches can

evict a block near-optimally to minimize misses, since the

replacement policy is based on near future access pattern.

V. EVALUATION

A. Methodology

We implemented an in-house cycle-accurate simulator

combined with DRAMsim3 [13] to evaluate the performance

of INNERSP. Table II describes the simulation parameters

used for the simulator. For the performance comparison, we

normalize the results to that of the common baseline, Intel

Math Kernel Library (MKL) [10]. We run experiments with

MKL on a real system with Intel Core-i7 5930k processor,

which is the same processor used in SpArch [27]. The main

dataset used in the evaluation section is the comparison

dataset described in Section III-C. Additionally, we show the

speedups over MKL for the total dataset. We evaluate two

configurations of INNERSP. InnerSP-256 has a 256KB

2cu
be

s.

am
azo

n.

ca-
Con

d.

cag
e1

2

fac
eb

oo
k.

filt
er3

D

m13
3-b

3

mari
o0

02

off
sho

re

p2
p-G

nu
.

po
iss

on
.

sci
rcu

it

web
-G.

wiki-
Vote

Geo
Mea

n
10−1

100

101

102

Sp
ee

du
p

Re
la

tiv
e

to
 M

KL

3.
95

16
.9

7.
4 16

.6
18

.0

OuterSPACE SpArch MatRaptor InnerSP-256 InnerSP-512

Figure 13: Speedup of INNERSP compared with previous works normalized to MKL (comparison dataset)

101 102

Relative Speedup

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

22.0
23.9

10.8 11.6

InnerSP-256
InnerSP-512

Figure 14: CDF of speedup with InnerSP-256 and

InnerSP-512 for the total dataset, normalized to MKL

B column-value cache, and InnerSP-512 has a 512KB

cache, while the other configurations are equal.

B. Speedup

Figure 13 presents the performance of OuterSPACE,

SpArch, MatRaptor, and INNERSP on the comparison

dataset. The y-axis shows the relative speedup with respect

to MKL. InnerSP-512 shows 11.7 GFLOPS and 18.0×
better performance than MKL on average. It outperforms

OuterSpace by 4.57×. SpArch is the best-performing prior

technique, and InnerSP-512 outperforms SpArch by

6.8% without the memory bloating problem. Compared to

the prior inner product scheme, MatRaptor, INNERSP shows

2.45× better performance. Therefore, INNERSP can achieve

both performance and memory capacity efficiency goals,

compared to the prior inner and outer product approaches.

Figure 14 shows the performance of InnerSP-256 and

InnerSP-512 on the total dataset with a CDF graph,

normalized to Intel MKL. With the total dataset, INNERSP

reaches 14.0 GFLOPS in the geometric mean and 15.5

GFLOPS in the arithmetic mean with standard error ±6.00

GFLOPS. Compared with Intel MKL, InnerSP-256

is 10.8× faster in the median, and shows more than

22.0× performance boost on the top 20% of matrices.

InnerSP-512 shows higher performance improvement

than InnerSP-256, as it is 11.6× faster in the median.

C. Row-Block Adjustment Technique

INNERSP employs row splitting and row-merging tech-

niques to avoid hash table overflows and to improve the

bl
ow

.

Ch
eb

y.

sx
-a

sk
.

sx
-s

up
.0

20

40

60

80

Pe
rf.

 Im
pr

ov
em

en
t 85

.7
x

31
.2

x

18
.7

x

23
.9

x

Figure 15: Row splitting: Performance improvements with

InnerSP-256

blo
w.

Che
by

.

sx-
ask

.

sx-
sup

.

10−2

100

Av
g.

 #
 o

f O
ve

rfl
ow

s
Pe

r R
ow

No Split Split

Figure 16: Row splitting: Comparison of average number

of external memory accesses per row in each matrix in

InnerSP-256

parallelism. This subsection discusses the effectiveness of

those techniques with the comparison dataset and five addi-

tional sparse matrices.

Row Splitting: Although the hash table overflow may

not occur frequently, its performance impact is very high

if it happens. The following four matrices are used to

show the cases that suffer from hash table overflows:

bloweya [8], Chebyshev4 [18], sx-askubuntu, and

sx-superuser [12]. The result matrices of the four ma-

trices contain many rows that are larger than the hash table

size. Figure 15 shows the performance improvements for

the four cases by row splitting. Figure 16 shows the average

number of overflows per row without and with row splitting.

As shown in the figure, the reduction of memory traffic from

hash table overflows from more than 1.33 memory accesses

2c
ub

es
.

am
az

on
.

ca
-C

on
d.

ca
ge

12
fa

ce
bo

ok
.

filt
er

3D
m

13
3-

b3
m

ar
io0

02
of

fsh
or

e
p2

p-
Gn

u.
po

iss
on

.
sc

irc
uit

we
b-

G.
wi

ki-
Vo

te
Ge

oM
ea

n

0x

1x

2x

3x

4x

Pe
rf.

 Im
pr

ov
em

en
t

1.
4x 2.

1x

1.
4x 1.

9x

1.
1x 1.
1x

3.
4x

3.
0x

1.
5x 1.
6x

1.
2x

2.
5x

1.
5x

1.
5x 1.
7x

Figure 17: Row merging: Performance improvements with

InnerSP-256

per row to less than 0.027 accesses per row, making the

performance of INNERSP jumps by from 18.7× to 85.7×.

The results validate that INNERSP can effectively handle

large matrices with many concentrated non-zero elements in

a row of the output matrix.

Row Merging: Row merging improves the performance

by enhancing available parallelism, by processing as many

rows as possible without causing hash table overflows.

Figure 17 shows the performance improvement from row

merging compared to the baseline without the row merging

technique. On average, it can improve the performance by

1.7×. For example, in wiki-Vote, 37.3% of rows from the

result matrix do not have any non-zero elements. For such

workloads, row-block sizes can be increased significantly to

improve the utilization of the execution units and hash table.

D. Performance Sensitivity

B column-value cache latency: In our configuration, the

latency of the B column-value cache is set to 4ns. To

evaluate the performance sensitivity to the latency, we in-

crease the latency from 4ns to 8ns. Figure 18 shows the

average performance using the comparison dataset with 4ns,

6ns, and 8ns latencies for the B column-value cache. The

performance is normalized to that with 4ns. As shown in the

figure, the latency change does not significantly affect the

overall performance. 8ns reduces the performance only by

0.66%. As data fetching, execution, merging, and C writing

are pipelined, the performance is highly dependent on the

memory bandwidth than the latency. Therefore, the primary

benefit of caching is the reduction of memory bandwidth

consumption.

Non-square matrices: The comparison and total datasets

only use square matrices. To evaluate the effect of non-

square matrices, we randomly selected 13 non-square ma-

trices from SuiteSparse Matrix Collection [5]. To evaluate

non-square matrices, we evaluate the multiplication of a

matrix and the transpose of the same matrix, since the

row and column dimension must match for multiplication.

Figure 19 shows the speedup normalized to MKL. The

figure shows two results. The first bar is the performance

of the multiplication of a matrix and the transpose of the

4n
s

6n
s

8n
s

0.90

0.95

1.00

1.05

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Figure 18: Average performance with various latency set-

tings on B column-value cache in InnerSP-256, normal-

ized to the 4ns (comparison dataset)

ba
s1l

p

ch7
-8-

b4
db

ic1

Delo
r64

K

flo
wer_

8_4

fom
e2

1

mk1
3-b

5

n4
c6-

b9

pd
s10

0
pss

e2
rlfp

rim

scf
xm

1-2
r
TF1

9

ge
om

ea
n

10−1

100

101

102

Sp
ee

du
p

Re
la

tiv
e

to
 M

KL

20
.6

1
8.

9

A×AT AT ×A

Figure 19: Speedup of InnerSP-256 with non-square

matrices normalized to MKL

same matrix, and the second bar is the performance of the

multiplication of the transpose of a matrix and the original

matrix. The average speedup is 20.6 and 8.9 for the two

scenarios. The reason the second one has a much lower

speedup is due to the dimension of the matrices. In most

of the non-square matrices, the number of columns is much

bigger than the number of rows. Therefore, the second one

produces much bigger output matrices after multiplication.

E. Exploiting Data Locality

INNERSP exploits the data locality of sparse matrices with

the B caches. To evaluate the effectiveness of caches, we

conducted experiments with various sizes of B cache with

the comparison dataset. Figure 20 presents average miss

rates with various sizes of row and column-value caches.

The figures also compare LRU and P-OPT policies. For

Figure 20 (a), the size of B column-value cache is fixed

to 256KB. For Figure 20 (b), the size of B row cache is

fixed to 32KB.

Figure 20 (a) shows the B row cache has relatively low

miss rates due to the small footprint of the row pointer array.

With 32KB capacity and LRU policy, the average miss rate

of the B row cache is only 14.2%. As shown in Figure 20

(b), the B column-value cache has higher miss rates than the

row cache. However, with 512KB capacity and LRU policy,

the miss rate is reduced to 40.5%, showing the significant

locality of B accesses captured by the modest cache capacity.

In the figure, we compare the base LRU replacement

policy with the P-OPT policy. As shown in the figure, P-

OPT can reduce miss rates for both B row and column-

value caches. The column-value cache benefits more from

4K
B

8K
B

16
KB

32
KB

0.0

0.5

1.0

M
iss

 R
at

e

LRU P-OPT

(a) B row cache

64
KB

12
8K

B
25

6K
B

51
2K

B
0.0

0.5

1.0

M
iss

 R
at

e

LRU P-OPT

(b) B column-value cache

Figure 20: Average miss rates with various B cache sizes

(comparison dataset)

0.0 0.2 0.4 0.6 0.8 1.0
Cache Miss Rate

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

ab
ilit

y

Row
Col-Val (256KB)
Col-Val (512KB)

Figure 21: CDF of B cache miss rates with InnerSP-256

and InnerSP-512 for the total dataset

the P-OPT optimization than the row cache. The result shows

the efficacy of the P-OPT policy for reducing the outgoing

memory bandwidth consumption. For the 512KB B column-

value cache, P-OPT reduces the miss rate to 24.3%.

Figure 21 presents the cumulative distributions of miss

rates of B row and column-value caches, collected for the

total dataset. With the total dataset, the B row cache and

B 512KB column-value cache show the miss rates of 3.1%

and 7.7% in geomean, respectively.

F. Area & Power Analysis

Table III compares the area and power overhead of

INNERSP with prior studies. We estimate the area overhead

and power consumption using CACTI for SRAM com-

ponents and the synthesis results from the prior double-

precision floating point multipliers and adders [7]. We

estimate the area and power overhead of FIFO queues,

caches, hash tables as an SRAM structure for CACTI

and estimate the DRAM power consumption using the re-

ported power consumption from the HBM specification [11].

INNERSP requires only 33% (InnerSP-256), and 66%

(InnerSP-512) of the area of SpArch.

VI. RELATED WORK

Sparse matrix accelerators: In addition to OuterSpace,

SpArch, and MatRaptor, there have been other accelerator

studies for sparse matrix-matrix multiplication and sparse

matrix-vector multiplication. 3D-LiM was designed for the

logic layer of 3D-stacked memory to accelerate sparse

matrix multiplications [28]. It uses Doubly Compressed

OuterSPACE

[21]
SpArch

[27]
MatRaptor

[24]
INNERSP-256/512

(Ours)

Technology 32nm 40nm 28nm 40nm

Area 87 mm
2 28.49 mm

2 2.257 mm
2 9.41/18.7 mm

2

Power 12.39W 9.26W 1.34W 9.80/13.12 W

DRAM
HBM

128GB/s
HBM

128GB/s
HBM

128GB/s
HBM

128GB/s

Table III: Area and power comparison with prior studies

Column Format (DCSR) for input matrix A, and Coordinate

List Format (COO) for input B. Sadi et al. proposed a sparse

matrix-vector (SpMV) multiplication accelerator for highly

sparse matrices [23]. SpaceA investigated SpMV multiplica-

tion accelerators optimized for processing-in-memory [26].

Sparse neural network accelerators: SIGMA accelerates

sparse matrix-matrix multiplication for deep neural network

applications [22]. It maps its workloads into their flexible

dot product engine dynamically via rich interconnect fab-

rics. UCNN accelerates sparse convolutional neural network

layers by maximizing reuse of matrices in convolution

operations [9]. Both approaches target deep neural network

applications with 10-90% density, which is much higher than

the traditional SpGEMM applications our study is targeting.

GPU software techniques: For GPU computing, inner

product has been used as a common algorithm. BHSPARSE

is a software framework for GPUs which applies different

algorithms based on the number of intermediate products

for each row to improve load balancing [15]. Nsparse uses

a hash table with an inner-product approach, utilizing GPU

shared memory for merging intermediate products with a

two-pass algorithm to save memory usages [19].

VII. CONCLUSION

This study identified the memory bloating challenge of

outer product approaches and proposed an accelerator design

based on the row-wise inner product algorithm. To mitigate

the weakness of inner product approaches, it proposed to

utilize locality in sparse matrix multiplication and to avoid

overflows in the on-chip merging table while maximizing

execution unit utilization. Based on the optimizations, this

study showed that the inner product acceleration can be

a viable alternative to the outer production approach with

efficient memory usage.

VIII. ACKNOWLEDGMENT

This work was supported by the National Research Foun-

dation of Korea (NRF-2019R1A2B5B01069816) and the

Institute for Information & communications Technology

Promotion (IITP2017-0-00466). Both grants are funded by

the Ministry of Science and ICT, Korea. This work was also

partly supported by Samsung Electronics Co., Ltd.

REFERENCES

[1] V. Balaji, N. Crago, A.Jaleel, and B. Lucia, “P-OPT: Prac-
tical Optimal Cache Replacement for Graph Analytics,” in
Proceedings of the 27th IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2021.

[2] N. Bell and M. Garland, “CUSP: Generic Parallel Algo-
rithms for Sparse Matrix and Graph Computations,” https://
cusplibrary.github.io/, [Online; accessed 25-November-2020].

[3] D. Buono, F. Petrini, F. Checconi, X. Liu, X. Que, C. Long,
and T.-C. Tuan, “Optimizing Sparse Matrix-Vector Multipli-
cation for Large-Scale Data Analytics,” in Proceedings of
the 30th ACM International Conference on Supercomputing
(ICS), 2016.

[4] A. Coady, “Process and System for Sparse Vector and Matrix
Representation of Document Indexing and Retrieval,” 2004,
US Patent 6,751,628.

[5] T. A. Davis and Y. Hu, “The University of Florida Sparse Ma-
trix Collection,” ACM Transactions on Mathematical Software
(TOMS), vol. 38, no. 1, pp. 1–25, 2011.

[6] T. A. Davis and E. P. Natarajan, “Sparse Matrix Methods
for Circuit Simulation Problems,” in Proceedings of the 8th
Scientific Computing in Electrical Engineering (SCEE), 2010.

[7] S. Galal and M. Horowitz, “Energy-Efficient Floating-Point
Unit Design,” in IEEE Transactions on Computers, vol. 60,
no. 7, 2010, pp. 913–922.

[8] N. Gould, Y. Hu, and J. Scott, “GHS indef collection,”
ftp://ftp.numerical.rl.ac.uk/pub/matrices/symmetric/, [Online;
accessed 20-August-2021].

[9] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and
C. Fletcher, “UCNN: Exploiting Computational Reuse in
Deep Neural Networks via Weight Repetition,” in Proceed-
ings of the 45th ACM/IEEE International Symposium on
Computer Architecture (ISCA), 2018.

[10] Intel, “Intel Math Kernel Library,” https://software.intel.com/
content/www/us/en/develop/tools/math-kernel-library.html.

[11] JEDEC, “High Bandwidth Memory (HBM) DRAM
JESD235D,” 2021.

[12] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large
Network Dataset Collection,” http://snap.stanford.edu/data,
jun 2014.

[13] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob,
“DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM
Simulator,” IEEE Computer Architecture Letters, vol. 19,
no. 2, pp. 110–113, 2020.

[14] T.-K. Lin and S.-Y. Chien, “Support Vector Machines on
GPU with Sparse Matrix Format,” in Proceedings of the 9th
IEEE International Conference on Machine Learning and
Applications (ICMLA), 2010.

[15] W. Liu and B. Vinter, “An Efficient GPU General Sparse
Matrix-Matrix Multiplication for Irregular Data,” in Proceed-
ings of the 28th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2014.

[16] W. Liu and B. Vinter, “A Framework for General Sparse
Matrix–Matrix Multiplication on GPUs and Heterogeneous
Processors,” Journal of Parallel and Distributed Computing,
vol. 85, pp. 47–61, 2015.

[17] X. Luo, M. Zhou, S. Li, Z. You, Y. Xia, and Q. Zhu, “A
Nonnegative Latent Factor Model for Large-Scale Sparse
Matrices in Recommender Systems via Alternating Direction
Method,” IEEE Transactions on Neural Networks and Learn-
ing Systems, vol. 27, no. 3, pp. 579–592, 2015.

[18] B. Muite, “Ill-conditioned Chebyshev integration matrices,”
[Online; accessed 20-August-2021].

[19] Y. Nagasaka, A. Nukada, and S. Matsuoka, “High-
Performance and Memory-Saving Sparse General Matrix-
Matrix Multiplication for NVIDIA Pascal GPU,” in Pro-
ceedings of the 46th International Conference on Parallel
Processing (ICPP), 2017.

[20] M. Naumov, L. S. Chien, P. Vandermersch, and U. Kapasi,
“CUSPARSE Library,” https://developer.nvidia.com/cusparse.

[21] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng,
C. Chakrabarti, H.-S. Kim, D. Blaauw, T. Mudge, and
R. Dreslinski, “OuterSPACE: An Outer Product Based Sparse
Matrix Multiplication Accelerator,” in Proceedings of the
24th IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2018.

[22] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan,
D. Das, B. Kaul, and T. Krishna, “SIGMA: A Sparse and
Irregular GEMM Accelerator with Flexible Interconnects for
DNN Training,” in Proceedings of the 26th IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA), 2020.

[23] F. Sadi, J. Sweeney, T. M. Low, J. C. Hoe, L. Pileggi,
and F. Franchetti, “Efficient SpMV Operation for Large and
Highly Sparse Matrices using Scalable Multi-way Merge
Parallelization,” in Proceedings of the 52nd IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2019.

[24] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Ma-
tRaptor: A Sparse-Sparse Matrix Multiplication Accelerator
Based on Row-Wise Product,” in Proceedings of the 53rd
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020.

[25] J. Theiler, G. Cao, L. R. Bachega, and C. A. Bouman, “Sparse
Matrix Transform for Hyperspectral Image Processing,” IEEE
Journal of Selected Topics in Signal Processing, vol. 5, no. 3,
pp. 424–437, 2011.

[26] X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu,
and Y. Xie, “SpaceA: Sparse Matrix Vector Multiplication
on Processing-in-Memory Accelerator,” in Proceedings of the
27th IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2021.

[27] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch:
Efficient Architecture for Sparse Matrix Multiplication,” in
Proceedings of the 26th IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2020.

[28] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti,
“Accelerating Sparse Matrix-Matrix Multiplication with 3D-
Stacked Logic-in-Memory Hardware,” in Proceedings of the
IEEE High Performance Extreme Computing Conference
(HPEC), 2013.

