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Abstract—Solid state disks (SSDs) consisting of NAND flash  However, SSDs have different performance parameters com-
memory are being widely used in laptops, desktops, and even pared with HDDs due to the difference in the characteristics
enterprise servers. SSDs have many advantages over hard klis s underlying storage media. For example, the unit size of

drives (HDDs) in terms of reliability, performance, durability, and . . . -
power efficiency. Typically, the internal hardware and sofivare read/write operations in SSDs, which we ctie clustered

organization varies significantly from SSD to SSD and thus ez~ Page sizeis usually greater than the traditional sector size used
SSD exhibits different parameters which influence the ovedd in HDDs. Therefore, if the size of write requests is smalamnt

performance. ) the clustered page size, the rest of the data should be @ad fr
In this paper, we propose a methodology which can extract the original data, incurring additional overhead [1]. Twialv

several essential parameters affecting the performance &SDs. : g : . .
The target parameters of SSDs considered in this paper are Y1 this overhead, it is helpful to issue read/write requests in

the size of read/write unit, (2) the size of erase unit, (3) tatype Multiple of the clustered page size. The problem is that the
of NAND flash memory used, (4) the size of read buffer, and (5) actual value of such a parameter varies depending on the type
the size of write buffer. Obtaining these parameters will alow us  of NAND flash memory employed and the internal architecture
to understand the internal architecture of the target SSD béter o SSps.
and to get the most performance out of SSD by performing SSD- |, this paner, we propose a methodology which can ex-
specific optimizations. . .

tract several essential parameters affecting the perfucema
of SSDs. The parameters considered in this paper include
the size of read/write unit, the size of erase unit, the type

A solid state disk (SSD) is a data storage device that usfsNAND flash memory used, the size of read buffer, and
solid state memory to store persistent data. In particwar, e size of write buffer. To extract these parameters, we
use the term SSDs to denote SSDs consisting of NANRRve developed a set _of microbenchmarks which issue a
flash memory, as this type of SSDs is being widely us&gduence of read or write requests and measure the access
in laptop, desktop, and enterprise server markets. Cordpaf@ency. By varying the request size and the access pattern,
with conventional hard disk drives (HDDs), SSDs offer saverimportant performance parameters of a commercial SSD can
favorable features. Most notably, the read/write bandwidP® Successfully estimated. _ _
of SSDs is higher than that of HDDs, and SSDs have noTh‘? rest of the paper is organized as follows. Section I
seek time since they have no moving parts such as arR¥§rviews the ch_aracterlstlcs of NAND flash memory, and
and spinning platters. The absence of mechanical compenenePS: and describes some related work. In Section Ill, the
also provide higher durability against shock, vibrationda detailed methodology for extracting several performanee p
operating temperatures. In addition, SSDs consume leserpotMeters of SSDs is described. We present experimentdisesu
than HDDs [24]. in Section IV to show the effectiveness of our approach. In

During the past few decades, the storage subsystem pection V, we discuss future work and conclude the paper.

been one of the main targets for performance optimization Il. BACKGROUND
in computing systems. To improve the performance of the \anD Flash Memory

storage system, numerous studies have been conducted which . . :
use the knowledge of internal performance parameters of har VAND flash memory is a non-volatile semiconductor de-
disks such as sector size, seek time, rotational delay, afige- A NAND flash memory chip consists of a number of
geometry information. In particular, many researchersehag’@s€ units, callellocks and a block is usually comprised of
suggested advanced optimization techniques using vadisks 4 OF 128 pages. pageis a unit of read and write operations.
parameters such as track boundaries, zone information, &Rf" Page in turn consists of data area and spare area. The
the position of disk head [17], [26], [28]. Understandingsh data area accommodates user or application contents, tivbile

parameters also helps to model and analyze disk performafiR8'€ areéa contains management information such as ECCs
more accurately [15]. (error correction codes) and bad block indicators. The data

area size is usually 2 KB or 4 KB, and the spare size is 64 B
. . o for 2 KB data) or 128 B (for 4 KB data). Figure 1 illustrates
1This work was supported by the Korea Science and Engineé&tinmda- ( PR -
tion(KOSEF) grant funded by the Korea government(MEST).(R61-2007- th€ organization of NAND flash where a block contains 128
000-11832-0). 4 KB-pages.

I. INTRODUCTION



TABLE |

Pagel [ oo Flash CHARACTERISTICS OFSLC [21]AND MLC [20] NAND FLASH MEMORY
KBl RAM Memory
512 KB| =7
1265 - SLC NAND MLC NAND
page size (2048+64) B (4096+128) B
Block Tl block block size (128+4) KB (512+16) KB
B = . # pages/block 64 128
: z Memory . . read latency 7785 (2 KB) 165.6:s (4 KB)
- ° Controller write latency 252.8s (2 KB) 905.8:s (4 KB)
Men’\ﬂcﬁ;\lgh?:mc) erase latency 1506 (128 KB)  150@s (512 KB)
@ (b)
Ftl)? 1. NAND flash memory internals (a) and the block diagrdnaro SSD ) Data Loading Time
Channel A C) Data Programming Time
NANDAOC (i)
NAND flash memory is different from DRAMs and HDDs NAND A
in a number of aspects. First, the latency of read and write NANDAZ i D0 )
operations is asymmetric as shown in Table |. Second, NAND NANDA3 i COC )
flash memory does not allow in-place update; once a page Time

is filled with data, the block containing the page should be
erased before new data is written to the page. Moreover, the
lifetime of NAND flash memory is limited by 10,000-100,000

program/erase cycles [22]. , is to translate read/write requests into flash memory ojpersit
According to the manufacturing technology, NAND flastbring handling read/write requests, the controller eitplo
memory can be classified into two types, SLC (Single-LevRiam “to temporarily buffer the write requests or accessed
Cell) and MLC (Multi-Level Cell). In SLC NAND flash gata The entire operations are governed by a firmware, lysual
memory, a memory cell only represents one-bit data likgyied a flash translation layer (FTL) [9], [11], run by the[$S
conventional memory devices. On the contrary, the voltaggniroller.
level of a cell in MLC NAND flash memory is minutely  Recently, developing a high-performance SSD has been
divided into four or more levels, and this allows a cell t key design goal. To increase the read/write bandwidth of
express two or more bits. As a result, MLC NAND flashssps many SSDs make use of the interleaving technique in
memory provides higher density and larger capacity than Skfe nardware logic and the firmware. For example, a write
NAND. Currently, two-bit MLC NAND flash memory where (or program) operation is accomplished by the following two
a cell represents two bits is commercialized. steps: (1) loading data to the internal page register of a
Although MLC NAND flash memory significantly reducesyanp chip, and (2) programming the loaded data into the
cost per bit, its operat_lonal characteristics are worse thﬁppropriate NAND flash cells. Because the data programming
those of SLC NAND. First of all, the programming latenCyime is longer than the data loading time, data can be loaded
is increased by three or four times, and the read performangesnother NAND chip during the data programming time.
is slightly degraded. In addition, the programming latenqyigure 2 illustrates a situation where 4-way interleavisg i
of MLC NAND. fluctuates in a relatively W|d§a range. ,F_Ofperformed on the channel (bug to hide the latency of page
example, two-bit MLC NAND flash memory typically exhibits rogramming in NAND flash memory. If there are multiple

two notable ranges of programming latency. This is due dependent channels, the read/write bandwidth of SSDs can
the device characteristics of MLC NAND where two differenpe accelerated further by exploiting inter-channel andaint

pages (callegbair page$ within a block are internally linked -hannel parallelism [18], [12].
together; programming the first pages can be done quickly, ]
but programming the second pages require more time to f%— Flash Translation Layer (FTL)
ish [10]. Another disadvantage is that the bit error rate &M FTL is the main control software in SSDs that gives an
NAND flash memory is higher than that of SLC NAND [14].illusion of general hard disks, hiding the unique charasties
This enforces the use of stronger ECCs. Finally, the lifetoh of NAND flash memory from the host. One primary technique
MLC NAND is reduced to 5,000-15,000 program/erase cyclesf FTL to achieve this is to map Logical Block Addresses
Table | compares the characteristics of contemporary SLdC aft BA) from the host to physical addresses in flash memory.
MLC NAND flash memory [20], [213. When a write request arrives, FTL writes the arrived data to a
; ; page in an erased state and updates the mapping information t

B. SOI'd. State D'SFS (SSDs) ) point to the location of the up-to-date physical page. Thk ol

A typical SSD is composed of a host interface contrage that has the original copy of data becomes unreachable

logic, an array of NAND flash memory, a RAM, and an SSlang opsolete. A read request is served by reading the page
controller, as shown in Figure 1-(b). The host interfacet@n ingicated by the mapping information.

logic transfers command and data from/to the host via USB, onother important function of FTL igjarbage collection
PATA, or SATA protocol. The main role of the SSD controllerGarbage collection is a process that eratiety blocks which

have obsolete pages and recycles these pages. If a block
2Note that the actual page size or the block size may vary dtpgron pag y pag

the flash memory chip model and the manufacturer. For exarsptee SLC Selected to be erased has V_a"d pages, those pages areeahigrat
NAND flash memory has 4KB page size [23]. to other blocks before erasing the block.

Fig. 2. 4-way interleaving on the same bus
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According to the granularity of mapping information, FTLs
are classified into page-mapping FTLs [6] and block-mapping % 7
FTLs. In page-mapping FTLs, the granularity of mapping %
information is a page, while that of block-mapping FTLs is
a block. As the size of a block is much larger than that of a

Channel 0

page, block-mapping FTL usually requires less memory space 5 ; R4 FPEgEs]

than page-mapping FTL to keep the mapping information in : : : :

memory. Recently, several hybrid-mapping FTLs have been

proposed. These hybrid-mapping FTLs aim to improve the sk »‘—//74 ﬁ/'/}/y

performance by offering more flexible mapping, while kegpin : : : :

the amount of mapping information low [8], [16]. Mooy Mooy Momary Momary
Chip 0 Chip 1 Chip 2 Chip 3

T Channel 1

I I I
D. Related Work —— —— ——

Extracting performance-critical parameters for HDDs has i
been widely studied for designing sophisticated disk sahed %

7

ing algorithms [30], [27], [29] and characterizing the per- o

formance of HDDs to build the detailed disk simulator [5], i : i :
[13], [19], [25]. However, as SSDs have completely différen Memoy  Memory  Memory  Memory
architecture compared to HDDs, the methodology for extract Chip 4 Chip 5 Chip 6 Chip 7

ing performance parameters in HDDs is different from th%g. 3. An example of a clustered page (block), which is ietared in eight
of SSDs. Our work introduces a methodology for extractingsh memory chips on two channels

performance parameters of SSDs and show the results of four

commercial SSDs. To the best of our knowledge, our work

is among the first to examine the performance parametergtical parameters of a RAID system, including the number
obtained from commercial SSDs. of disks, chunk size, level of redundancy, and layout scheme

Agrawal et al. provide a good overview of the SSD archSimilarly, based on the existing knowledge on SSDs, we can
tecture and present various tradeoffs in designing SSDs [dlevise a methodology for extracting essential performance
In order to obtain several tradeoffs for SSDs, they developparameters of SSDs.

a modified version of the DiskSim simulator. Using this
simulator, they explore the benefits and potential drawbatk

various design techniques by varying performance parasetd. Parameters in SSDs

such as the page size, the degree of overprovisioning, thefhe performance parameters of SSDs are different from

amount of ganging, the range of striping, etc. Their studjiose of HDDs as described in Section I. We now describe

indicates that such parameters play important roles in tBéme of important performance parameters of SSDs before
performance of SSDs. we present our methodology in detail.

Recently, Adrian et al. have developed Gordon, a flashClustered Page: We define aclustered pagas an internal
memory-based cluster architecture for large-scale datgit of read or write operation used in SSDs. As discussed
intensive applications [3]. The architecture of Gordoniie-s in Section 1I-B, SSD manufacturers typically employ the
ilar to that of SSDs in that it uses NAND flash memorynterleaving technique to exploit inherent parallelismoam
and flash memory controller. The controller supports the FTlead or write operations. One way to achieve this is to ealarg
functionality and multi-channel structure that can exipfEr- the unit size of read or write operations by combining severa
allelism. To acquire the high I/O performance of data-istee physical pages, each of which comes from a different NAND
work, they tune some performance parameters such as fiagh chip. Figure 3 shows an example configuration where a
clustered page size that will be introduced in Section llI-Alustered page is interleaved in eight flash memory chips on
They also found that the performance of NAND flash-basado channels. Note that, depending on FTLs used in SSDs, it
storage is affected by a number of parameters. is also possible to form a clustered page with just four plalsi

Our methodology for extracting performance parametepages on the same channel in Figure 3, allowing two channels
is similar to the gray-box approach [2], [7]. The gray-boxo operate independently.
approach is a methodology that acquires information whichThe clustered page size is the same or a multiple of the
is unavailable or cumbersome to maintain. This approaphysical page size of NAND flash memory. The clustered
is different from the white-box approach or the black-bogage size is a very critical parameter for application-léA@
approach, which has the full knowledge or no knowledge grerformance as shown in Gordon [3]. If we adjust the size
the target system, respectively. Instead, the gray-boxoagh of data transfer to the clustered page size, we can enhance
assumes some knowledge of the algorithms used in the systdm. 1/0O performance more effectively, since FTL does not
Yotov et al. have applied the gray-box approach to the memarged to read or write more data than requested. In addition to
hierarchy [31]. They introduce a methodology which exsacenhancing the performance, the use of the clustered page can
several memory hierarchy parameters in order to optimiee tteduce the memory footprint required to maintain the magppin
system performance under a given platform. Timothy et ahformation inside SSDs.
have also characterized RAID storage array using the goay-b Clustered Block: We define alustered bloclas an internal
approach [4]. They employ several algorithms to deterntiee tunit of erase operation used in SSDs. Similar to the cludtere

IIl. M ETHODOLOGY



[ Changed Region

Procedure 1ProbeClusteredPage

7

1 Unchanged Region ||Invalid Space  SW: The size of a write request
Read-Modify-Write Region DValid Space  SB: The clustered block size Input:  F, /* file descriptor for the raw disk device opened with MRECT */
(1) The size of a write request . TSW, I* the total size to write (in KB, e.g., 1024 KB) */
= The size of a clusteredqpage Initial State ISW, [* the increment in size (in KB, e.g., 2 KB) */
m Dﬂ] Dﬂ] Dﬂ] Dﬂ] m Dﬂ] NI [* the number of iteration (e.g., 64) */
Write Request SB 1: SW <« 0 /* the size of write request (in KB) */
‘ (1) SW < SB : Sequential (above) 2: write_init( F) /* initialize the target SSD by sequentially updating &iétavailable
3 and R w) Wri sectors to minimize the effect of garbage collection */

LClustered PagelClustered Page: v - 3: while SW < T'SW do
(2) The size of a write request 4: SW < SW + ISW
< The size of a clustered page 5: Iseek, 0, SEEK_SET) I* set the file pointer to the offset 0 */

- 6: Start < gettimeo fday()

7. fori=1to NIdo

W/////%%_ 8: write_file(F', SW) /I* write SW KB of (_iata toF */

Clustered Page!Clustered Page 18._ endA;I;)Ar_FLUSH_CACHE() /* flush the write buffer */
(3) The size of a write request U | 11; End < gettimeofday()
> The size of a clustered page (3) SW > SB; SW =2 x SB : Sequential 12: print the elapsed time by usin§tart and End

T (above) and Random (below) Writes )
Write Request o 0 [0 [ 13: end while
Clustered Page!Clustered Page
@ ®) There are many possible architectural organizations and

Fig. 4. (a): A write request that is aligned (1) and unaligrigd3) to the tradeoffs in SSDs as d'SCPssed in [1]. As a result, th? specifi
clustered page boundary (b): Sequential vs. random writesnvihe request Of internal hardware architecture and software algorittsmdu
size is smaller than (1), equal to (2), or larger than (3) thestered block in SSDs differ greatly from vendor to vendor. In spite of
size this, our methodology is successful in extracting the afune-
tioned parameters from four commercial SSDs. This is bexaus
our methodology does not require any detailed knowledge on
1e target SSDs such as the number of channels, the number of
ND flash memory chips, the address mapping and garbage
lection policies, etc. We develop a generic methodology
sed on the common overheads and characteristics found in
target SSDs, which are independent of the specific model
tails. The proposed methodology is applicable to manysSSD

page, SSDs often combine several blocks coming from diff
ent NAND flash chips into a single clustered block. Figure
shows an example of a clustered block which consists o8
eight physical blocks. The use of the clustered block impsovb

the garbage collection performance by performing severgy
erase operations in parallel. Using the clustered blocKsis a4e

effective in reducing the amount of mapping informatio s long as they use the interleaving technique to enhance the

especially in block-mapping FTLs, since a clustered bloc : : ) : )
instead of an individual physical NAND block, now takes u%(;;);rr:gvgt_jrt&z.ind employ a variant of block-mapping or page

one mapping entry.
Type of NAND Flash: Because of the contrasting charB. Measuring the Clustered Page Size
acteristics of SLC NAND and MLC NAND, SLC SSDs and As described in the previous subsection, the clustered page
MLC SSDs are currently aiming at different market segmenis. treated as the unit of read and write operations insidesSSD
SLC SSDs are typically used for servers and high-performang order to enhance the performance using channel-level and
storage due to higher reliability and higher performance ofhip-level interleaving. This suggests that when only & pér
fered by SLC NAND. On the other hand, MLC SSDs arg clustered page is updated, the SSD controller should first
preferred for laptops and desktop PCs because of their lowgad the rest of the original clustered page that is not being
price. updated, and combine it with the updated data, and write the
For end-users, it is sometimes useful to find out which typgew clustered page into flash memory. This read-modifyewrit
of NAND flash memory has been employed in their SSDs. Ifperation [1] incurs extra flash read operations, increpsie
this paper, we suggest a methodology to identify the type wkite latency.
NAND flash without cracking in to the hardware. Consider a case (1) in Figure 4(a), where all the write
Read/Write Buffer: Many SSD controllers use a part ofrequests are aligned to the clustered page boundary. In this
DRAM as read buffer or write buffer to improve the accessase, no extra operations are necessary other than noritel wr
performance by temporarily storing the requested datatiteo operations. However, cases (2) and (3) illustrated in Eigifa)
DRAM buffer. Although users can obtain the DRAM buffemecessitate read-modify-write operations as the first éisec
size via ATA IDENTIFY DRIVE command, it just displays the (2)) or the second (in case (3)) page is partially updated.
total DRAM size, not the size of read/write buffer. Thus, we To measure the clustered page size, we have developed
present methodologies that can estimate the accuratedfizea microbenchmark which exploits the difference in write
these buffers in Section IlI-E and Section IlI-F. latency depending on whether the write request is aligned
The read buffer size or the write buffer size can be t@ the clustered page boundary or not. The microbenchmark
valuable hint to buffer cache or 1/0 scheduler in the hosepeatedly writes data sequentially setting the request &s$
operating system. For example, if we know the maximum siza integer multiple of physical NAND page size (e.g., 2 KB).
of write buffer, the 1/0 scheduler in the host system can mer@wing to the extra overhead associated with unaligned write
incoming write requests in such a way that the request simxjuests, we expect to observe a sharp drop in the average
does not go beyond the write buffer size. Similarly, the reaarite latency whenever the request size becomes a multiple o
buffer size can be used to determine the amount of data tothe clustered page size. Procedure 1 describes the pseledoco
prefetched from SSDs. of our microbenchmark.



Procedure 2 ProbeClusteredBlock Procedure 3ProbeNANDType

Input: F", /* file descriptor for the raw disk device opened with MRECT */ Input: F, /* file descriptor for the raw disk device opened with MRECT */
SP, I* the clustered page size obtained in Section III-B (in KBg., 16 KB) */ SP, I* the clustered page size obtained in Section III-B (in K8g., 16 KB) */
TN P, [* the total number of cluster pages (e.g., 1024) */ SB, I* the clustered block size obtained in Section III-C (in K&g.,4 x 1024
T SW, I* the total size to write (in KB, e.g.,§ x 1024 x 1024 KB)) */ KB)*/
NP [* the initial number of clustered pages (e.g., 2J.P x SP is the actual N B /* the number of clustered blocks (e.g., 16) */
_ size of write requests */ 1: AW <= 0 /* the amount of written data so far (in KB) */
11 NI < 0/*the number of iteration */ 2: write_init(F) /* initialize the target SSD */
2: while NP < TNP do o 3: Iseek{, 0, SEEK_SET) I* set the file pointer to the offset 0 */
3: NP < NP x 2 [* We assume the clustered block size is a power of 2 4- while AW < NB x SB do
multiple of the clustered page size */ 5: AW < AW + SP
4 write_init(£") /* initialize the target SSD */ 6 Start < gettimeofday()
5. Start < gettimeofday( o 70 write_file(F, SP) /* wiite SP KB of data to F' */
6: Iseek, 0, SEEK_SET) I* set the file pointer to the offset 0 */ 8: ATA_FLUSH_CACHE() /* flush the write buffer */
7 NI <= TSW/(NP x SP) 9: End < gettimeofday()
8. fori=1toNIdo ) 10:  print the elapsed time by usin§tart and End
9: write_file(F', NP x SP) [* write (NP x SP) KB of data to ' */ ) .
10: ATA_FLUSH_CACHE() /* flush the write buffer */ 11: end while
11: end for
12: End < gettimeofday()
13: print the elapsed time of sequential writes by usifitnrt and End
14: write_init( F) . . .
15:  Start < gettimeofday() when the size of random write requests becomes a multiple
16: for i = 1to NI do i
17: R < rand()%N1I [* choose R randomly */ of the clu_stered block size. . X
18: R< Rx (NP x SP) x 1024 To retrieve the clustered block size, our microbenchmark
19: Iseek(F, R, SEEK_SET) H ; ; H ; 0
20 write_file(F, NP x SP) exploits the dlff_erence_ in write ba_ndW|dth _between se_qladant
21: ATA_FLUSH_CACHE() and random writes. Initially, the size of write request i tee
22: end for i i i
53 Bnd = gettimeofday() the _clustered page size. And thgn, for the given request size
24:  print the elapsed fime of random writes by usifigart and End we issue a number of sequential and random writes which
25: end while are aligned to the clustered page boundary, and measure the

bandwidth. We repeat the same experiment, but each time
the request size is doubled. As the request size approaches
e the clustered block size, the gap between the bandwidth

There are some implementation details worth mentioni : . ; !
sequential writes and that of random writes will become

in Pr re 1. First, w n the raw disk device wi . - :
O_DIgCEeCdTu f?ag to a\slgid aen;?ri‘lu;nge zomdbsuffedrecacc?he it maller. Evenf[ual!y, they will show the similar bandwidtice

the host operating system. Second, before the actual neeas e request size is eq_ual to or larger than the _clustered<bloc
ment, we initialize the target SSD by sequentially updatirg}2e: Procedure 2 briefly shows how our microbenchmark
all the available sectors to minimize the effect of garba orks 1o probe the clustered block size.

collection during the experiment [11]. Third, we make th o
first write request during each iteration always begin at the Identifying the Type of NAND flash

offset 0 using Iseek(). Finally, all experiments are perfed As explained in Section II-A, NAND flash memory used in
with the write buffer in SSDs enabled. To reduce the effe®SDs can be classified into two types, SLC and MLC, accord-
of the write buffer, we immediately flush data to NAND flashng to the manufacturing technology. Because of distimctiv
memory by issuing ATA FLUSH CACHE command, afteidevice characteristics between SLC and MLC, the distriouti
writing data to the target SSD. Most of these implementatiaf write latencies in SLC NAND is different from that of write
strategies are also applied to other microbenchmarksmexbe latencies in MLC NAND.

in the following subsections. While SLC NAND shows a relatively consistent write la-
tency, the write latency in MLC NAND fluctuates severely de-
C. Measuring the Clustered Block Size pending on the location of the page written (cf. Section )I-A

Qerefore, the latency of each write request falls into aavar

The cl lock is the unit of ion in SSHEerefc \ :
e clustered block is the unit of an erase operatlon in SS ge in SLC NAND, but that is grouped into two or more

to improve the write performance associated with garba .

collection. This indicates that if only a part of a clustebback  C1USters in MLC NAND. .

is updated when garbage collecfion is triggered, live pages'© identify the type of NAND flash memory, our mi-
in the original clustered block should be copied into anoth&roPenchmark issues a number of write requests that can fill
free space in SSDs. This valid copy overhead affects t entire clustered block, and measures the elapsed time

write performance of SSDs, decreasing the write bandwicfh €ach request. All the write requests are aligned to the
noticeably. oundary of clustered page, and the request size is equal to

Consider a case (1) illustrated in Figure 4(b) where the si%e clustered page size. Procedure 3 shows the pseudocode of

of write requests is smaller than that of the clustered hloc e benchmark.
Assume that the leftmost clustered block has been selested_a
a victim by the garbage collection process. When a series of
blocks are updated sequentially, there is no overhead tither ~ The read buffer in SSDs is used to improve the read perfor-
erasing the victim block during garbage collection. Howgvemance by temporarily storing the requested and/or predetch

if there are many random writes whose sizes are smaller thdata. If the requested data cannot be found in the read buffer
the clustered block size, the write bandwidth will suffesrfr or if the size of the read request is larger than the size of the
the overheads of copying valid pages. As shown in cases (8ad buffer, then the data has to be read directly from NAND
and (3) of Figure 4(b), the additional overhead disappealss o flash memory, which results in larger read latencies.

Measuring the Read Buffer Capacity



Procedure 4 ProbeReadBuffer

Procedure 6 ProbeWriteBuffer

Input:  F, /* file descriptor for the raw disk device opened with @MRECT */ Input:  F, /* file descriptor for the raw disk device opened with MRECT */
TSR, I* the total size to read (in KB, e.g., 1024 KB) */ TSW, I* the total size to write (in KB, e.g., 1024 KB) */
ISR [* the increment in size (in KB, e.g., 1 KB) */ ISW, [* the increment in size (in KB, e.g., 1 KB) */
1: SR <« 0 /* the size of read request (in KB) */ NI [* the number of iteration (e.g., 30) */
2: write_init( F") /* initialize the target SSD */ 1: SW < 0 /* the size of write request (in KB) */
3: while SR < TSR do 2: write_init( F") /* initialize the target SSD */
4: SR < SR+ ISR 3: while SW < T'SW do
5: R < rand()%1024 /* chooseR randomly */ 4: SW < SW + ISW
6: Iseek, 1024 x 1024 x 1024 + R x 16 x 1024 x 1024, SEEK_SET) 5: for i =1to NI do
/* set the file pointer randomly */ 6: ATA_FLUSH_CACHE() /* flush the write buffer */
7: read file(F', 16 x 1024) /* read 16 MB of data fromF’ */ 7: IseekE, 0, SEEK_SET) I* set the file pointer to the offset 0 */
8: R <= rand()%63 8: Start < gettimeo fday()
9: Iseek, R x 16 x 1024 x 1024, SEEK_SET) [* set the file pointer 9: write_file(EF", SW) /* write SW KB of data to F' */
randomly (We assume the size of read buffer is smaller thamBp */ 10: End < gettimeofday()
10: read file(F', SR) /* read SR KB of data from F" */ 11: print the elapsed time by usin§tart and End
11: Iseek, R x 16 x 1024 x 1024, SEEK_SET) 12: end for
12: Start < gettimeo fday() 13: end while

13: read file(F', SR)
14: End < gettimeofday()
15: print the elapsed time by usin§tart and End

16: end while

Procedure 7 ProbeNANDWriteLatency

Input: F, /* file descriptor for the raw disk device opened with MRECT */
TSW, I* the total size to write (in KB, e.g., 1024 KB) */
ISW, I* the increment in size (in KB, e.g., 1 KB) */
Procedure 5 PrObeNANDReadLatenCy N [* the number of iteration for outer loop (e.g., 30) */
Input:  F, /* file descriptor for the raw disk device opened with MRECT */ 1: SW <« 0 /* the size of write request (in KB) */
TSR, I* the total size to read (in KB, e.g., 1024 KB) */ 2: write_init(F") /* initialize the target SSD */
ISR [* the increment in size (in KB, e.g., 1 KB) */ 3: while SW < TSW do

1: SR <« 0 /* the size of read request (in KB) */ 4. SW < SW + ISW

2: write_init( F") /* initialize the target SSD */ 5: for i =1to NI do

3: while SR < TSR do 6: ATA_FLUSH_CACHE() /* flush the write buffer */

4: SR« SR+ ISR 7: Iseek, 16 x 1024 x 1024, SEEK_SET)

5: R <= rand()%1024 /* choose R randomly */ [* We assume that the size of write buffer is smaller than 16 VB

6: Iseek, 1024 x 1024 x 1024 + R x 16 x 1024 x 1024, SEEK_SET) 8: write_file(F', 16 x 1024) /* write 16 MB of data toF' */

/* set the file pointer randomly */ 9: Iseek, 0, SEEK_SET) I* set the file pointer to the offset 0 */

7: read file(F, 16 x 1024) /* read 16 MB of data fromF" */ 10: Start < gettimeofday()

8: R < rand()%63 11: write_file(F', SW) /* write SW KB of data to F' */

9: Iseek, R x 16 x 1024 x 1024, SEEK_SET) /* set the file pointer 12: End < gettimeo fday()

randomly (We assume that the size of read buffer is smalken &6 MB) */ 13: print the elapsed time by usin§tart and End
10: Start < gettimeo fday() 14: end for
11: read file(F, SR) /* read SR KB of data from F" */ . .
15: end while

12: End < gettimeofday()
13: print the elapsed time by usin§tart and End

14: end while

misses all the times.

To differentiate the read request served from the read buffe Measuring the Write Buffer Capacity
from that served from NAND flash memory, we have de- as discussed in Section IlI-A, the main role of the write
veloped two microbenchmarks, PlrobeReadBuffer() and Probgiffer in SSDs is to enhance the write performance by
NANDReadLatency(), as shown in Procedure 4 and 5. temporarily storing the updated data into the DRAM buffer.

The microbenchmark ProbeReadBuffer() is used to meastfigis implies that when the size of write requests exceeds the
the latency of read requests served from the read buffemyif ayrite buffer size, some of data should be flushed into NAND
The microbenchmark repeatedly issues two read requests, &fash memory. This additional flush operation results inaxtr
of which reads data from the same |Oca'['(@i"l It measures the flash write operationS, |mpa|r|ng the write |atency_
latency of the second request, hoping that a read hit ocours i Tg determine whether the write request is handled by the
the read buffer for the request. Before reading any data frgQjite puffer or NAND flash memory, we have developed
O, the benchmark fills the read buffer with the garbage Ry, microbenchmarks, ProbeWriteBuffer() and ProbeNAND-
reading large data from the random location far framin \yriteLatency(), as shown in Procedure 6 and 7. The former
each iteration, the size of read request is increased by 1 KReasures the time taken to write data into the write buffer, i
by default. If the size of read request becomes larger than i,y while the latter is intended to measure the time to write
read buffer size, the whole data cannot be served from t}pg requested data to NAND flash memory.
read buffer and the request will force flash re_ad Opera_tiO”SProbeWriteBuffer() repeatedly measures the write latency
to occur. Thus, we expect to observe a sharp increase in figreasing the request size by 1 KB. Before the actual mea-
average read latency Whenever the request size is increag@@ment, the benchmark makes the write buffer empty by
beyond the read buffer size. , _issuing the flush operation supported by the ATA command.

On the other hand, ProbeNANDReadLatency() is design@ger flushing the write buffer, we expect that the subsequen
to obtain the latency of_ read requests which are sgrvgd frofite request is handled in the write buffer, if any, as losg a
NAND flash memory directly. The benchmark is similar tqne request size is smaller than the write buffer size. When t
ProbeReadBuffer() except that the first read request (Ifres request size is too large to fit into the write buffer, the sju
8) in ProbeReadBuffer() has been eliminated to generate rgg|| cause flash write operations, prolonging the averagieswr
latency severely.

ProbeNANDWEriteLatency() is analogous to ProbeWrite-
Buffer() except that lines 7-8 are added to fill the entire

3In each iteration, this location is set randomly based orRhalue, which
eliminates the read-ahead effect, if any, in target SSDshéntested SSDs,
however, we could not observe any read-ahead mechanism.



TABLE Il
THE CHARACTERISTICS OFSSDs USED IN THIS PAPER

SSD-A SSD-B SSD-C SSD-D
Model MCCOEG64G5MPP| FTM60GK25H | SSDSA2MH080GIGN| TS64GSSD25S-M
Manufacturer Samsung Super Talent Intel Transcend
Form Factor 2.5in. 2.5in. 2.51n. 2.5in.
Capacity 64 GB 60 GB 80 GB 64 GB
Interface Serial ATA Serial ATA Serial ATA Serial ATA
Max Sequential Read Throughput(MB/s| 110 117 254 142
Max Sequential Write Throughput(MB/s 85 81 78 91
Random Read Throughput - 4 KB(MB/s 10.73 5.68 23.59 9.22
Random Write Throughput - 4 KB(MB/s 0.28 0.01 11.25 0.01
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Fig. 5. The average write latency with varying the size oftevrequests

write buffer with garbage intentionally. Since the writeffen B. The clustered Page Size

is already full, some part of data is flushed to NAND flash 14 estimate the clustered page size, we have measured the
memory upon the arrival of the next write request.  |atency of each write request varying the request size up

Note that, in ProbeWriteBuffer() and ProbeNANDWriteLato 1024 KB (cf. Section 11I-B). Figure 5 plots the results
tency(), we repeatedly measure the write lated¢y times obtained by running Procedure 1 on the tested SSDs. All the
for the given request size. This is because it is not eag¥periments for SSD-A, SSD-B, and SSD-D are performed
to accurately measure the time needed to write data in #h the write buffer enabled. Enabling the write buffer in
presence of asynchronous flush operations. Especiallyn Wiesp-C makes it difficult to measure the latency accurately as
the write buffer has some valid data, the actual timing thehfluthe cost of the internal flush operation highly fluctuatesush
operation is performed and the amount of data flushed from i microbenchmark was run with the write buffer disabled in
write buffer to NAND flash memory can vary from experimen§sp-C so that the measurement is not affected by the activity
to experiment. To minimize the effect of these variabledest of flush operation.

we obtain enough samples by repeating the same experimenh Figure 5, the general trend is that the latency increases

multiple times. in proportion to the request size. However, we can observe
that there are periodic drops in the latency. For example, in
IV. EXPERIMENTAL RESULTS Figure 5(a), the latency drops sharply whenever the request
size is a multiple of 16 KB. As described in Section Il1I-B,ghi
A. Experiment Environment is because the data to be written are aligned to the clustered

page boundary at these points, eliminating the need for-read
We ran the microbenchmarks described in Section Il afodify-write operation. Therefore, we can conclude that th
a Linux-based system (kernel version 2.6.25.10). Our éxpeglustered page size of SSD-A is 16 KB. For the same reason,
mental system is equipped with a 2.0 GHz AMD Athlon 64ve believe that the clustered page size of SSD-B, SSD-C, and
processor 3200+ and 2 GB of RAM. We attached two disBSD-D is 128 KB, 4 KB, and 128 KB, respectively.
drives, one hard disk drive (HDD) and one SSD, both of which unlike other SSDs, the result of SSD-C shows no notable
are connected to the host system via SATA-II (Serial ATAdrop in the write latency. Upon further investigation, itris
Il) interface. HDD is the system disk where the operatingut that SSD-C internally allows the update of only one secto
system is installed. In our experiments, we have evaluat@l 2 B); thus, the additional overhead for read-modifytevri
four different SSDs that are commercially available frore this eliminated. An intriguing observation in Figure 5 is that
market. The full details of each SSD used in this paper afigere are several spikes in the write latency, most notably i
summarized in Table II. Figure 5(b), (c), and (d). We suspect this is due to garbage
Because we measure performance parameters empiricabjlection which should be occasionally invoked to make fre
the results sometimes vary from one execution to the nektocks.
Thus, we obtained all results in several trial runs to improv _
the accuracy. While we ran our microbenchmarks, we turnéd The clustered Block Size
off SATA NCQ (Native Command Queueing) as SSD-C is the To determine the clustered block size, the microbenchmark
only SSD which supports this feature. introduced in Section 11I-C measures the bandwidth of segque
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Fig. 7. The distribution of write latencies

tial and random writes, increasing the request size up to 128 The Read Buffer Capacity

MB. Figure 6 compares the results for four tested SSDs. The

value of N P, which represents the initial number of clustered

pages to test, is set to two for SSD-A, SSD-B, and SSD-D.

For SSD-C, we configur& P = 10 as there was no difference To estimate the capacity of the read buffer, we compare

in the bandwidth between sequential and random writes withe latency measured by ProbeReadBuffer() with that obtain

NP =2. by ProbeNANDReadLatency(), varying the size of each read
From Figure 6(a), we find that the bandwidth of sequentiggquest. Figure 8 contrasts the results with respect toethé r

writes is higher than that of random writes when the size é#quest size from 1 KB to 1024 KB (4096 KB for SSD-

write request is smaller than 4096 KB. If the request size §8). In Figure 8, the labels “NAND” and “Buffer” denote the

increased beyond 4096 KB, there is virtually no difference jatency obtained from ProbeNANDReadLatency() and from

the bandwidth. As mentioned in Section IlI-C, the bandwidtRrobeReadBuffer(), respectively. As described in Sedtie,

of random writes converges to that of sequential writes as tRirobeNANDReadLatency() always measures the time taken

request size approaches to the clustered block size. Thigddetrieve data from NAND flash memory, while ProbeRead-

mainly due to that the number of valid pages in a cluster&uffer() approximates the time to get data from the readesuff

block is getting smaller, reducing the overhead of garbagé Iong_as the size of read requests is smaller than the read

collection gradually. This suggests that the clusteredkblobuffer size.

size of SSD-A is 4096 KB. Similarly, we can infer that the In Fi 8 hen the si f read . ller th
clustered block size of SSD-B, SSD-C, and SSD-D is 163 E?Kgurlg ﬁ(a),: w e? the S'zeﬁ rhea relquests IS sma erdt an
KB, 5120 KB, and 16384 KB, respectively. , “Buffer” results in much shorter latency compared to

“NAND”. This is because requests generated by ProbeRead-
Buffer() are fully served from the read buffer. On the other
D. The Type of NAND Flash Memory hand, if the request size exceeds 256 KB, both “Buffer” and

Depending on the type of NAND flash memory used ifNAND” exhibit almost the same latency. Since “NAND”
SSDs, the distribution of each write latency exhibits tweepresents the time to read data from NAND flash memory,
representative patterns; a single cluster for SLC NAND anhlis result means that read requests whose sizes are bigger t
multiple clusters for MLC NAND. Figure 7 displays the256 KB cannot be handled in the read buffer. Therefore, we
distribution of a number of write latencies obtained froncan conclude that the read buffer size of SSD-A is 256 KB.
ProbeNANDType() in Section IlI-D. For SSD-C and SSD-D, the similar behavior is also observed

In Figure 7, we can see that the distribution of the latendgr the request sizes from 512 KB to 3072 KB (SSD-C), or
for writing one clustered page is grouped into a narrow rang@m 16 KB to 64 KB (SSD-D). Therefore, the read buffer size
in SSD-A, but this is not the case for SSD-B, SSD-C, amaf SSD-C and SSD-D is 3072 KB and 64 KB, respectively.
SSD-D. Hence, we can easily identify that the type of NANDBlowever, in case of SSD-B, the results of both “NAND” and
flash memory employed in SSD-A is SLC, while the rest dBuffer” show exactly the same behavior, which implies that
SSDs are composed of MLC NAND flash memaory. SSD-B does not use any read buffer.
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F. The Write Buffer Capacity when the request size is less than the clustered page size,

We have introduced two procedures, ProbeWriteBufferfye latency suffers from the read-modify-write overheakisT
and ProbeNANDWriteLatency() in Section IlI-F. ProbeWsiteOverhead becomes smaller as the request size approaches to
Buffer() measures the latency required to store data to tite w the clustered page size, and the amount of data read from the
buffer, while ProbeNANDWriteLatency() estimates the writ Ofiginal clustered page gets smaller.
latency needed to flush data to NAND flash memory. Figure 9In SSD-D, the overall trend looks similar to SSD-B. How-
plots the measured latencies for four commercial SSDs wier, when we compare the write latency of SSD-D with the
various request sizes ranging from 1 KB to 1024 KB. Ifead latency shown in Figure 8(d), we can notice that the
Figure 9, “NAND” and “Buffer” indicate the latencies obtaid former (approximately 150Qisec) is much slower than the
from ProbeNANDWriteLatency() and ProbeWriteBuffer(); relatter (approximately 20Qusec) with 1 KB request size. If
spectively. the data were written to the buffer, there is no reason for the

When the size of write requests is less than or equal to 28%ite request to take a significantly longer time compared to
KB, “Buffer” shows much shorter latencies than “NAND” inthe read request. The only possible explanation is thathter
Figure 9(a). This indicates that such write requests arg fulvrite requests less than or equal to 128 KB, SSD-D bypasses
handled in the write buffer. On the other hand, if the size ¢fie write buffer and stores the data directly to NAND flash
write requests becomes larger than 255 KB, “Buffer” showsmemory. Although it appears that SSD-D does not make use
sharp increase in the write latency probably because the w@f any write buffer, we could not draw any conclusion using
buffer cannot accommodate the requested data and causes fi4§ methodology since the behavior of SSD-D is so different
write operations. In particular, the lowest latency of “Buf from other SSDs.
is similar to that of “NAND” when the request size is 255 KB.
This confirms that the size of write buffer in SSD-A is 255
KB. Any attempt to write data larger than 255 KB incurs extra
flush overhead, although the write buffer is empty. For SSD-C In this paper, we have proposed a new methodology that can
the similar behavior is also observed when the request sizeektract several important parameters affecting the perdioice
112 KB. Thus, we believe that write buffer size of SSD-C ief SSDs. The parameters discussed in this paper include the
112 KB. clustered page size, the clustered block size, the type &fNA

In cases of SSD-B and SSD-D, slightly different behavioiffash memory, and the size of read/write buffer.
have been noted. For SSD-B, we can see that “Buffer” exhibitsThe clustered page size is found by using the overhead
the faster latency compared to “NAND” when the request sizssociated with the read-modify-write operation, whicises
is between 1 KB and 128 KB. For the same reason with SSDw#hen the write request is not aligned to the clustered page
and SSD-C, the size of the write buffer for SSD-B is estimatdgbundary. A clustered page in SSDs is the basic unit of
to 128 KB. An interesting point is that the result of “NAND” isalignment for read/write operations. Thus, the clusteragep
getting improved as the request size is increased from 1 Kize obtained by our methodology can be used when design-
to 128 KB. This phenomenon is related to the fact that thieg and optimizing higher-level software to improve the 1/10
clustered page size of SSD-B is 128 KB (cf. Section IV-Bperformance on SSDs.

V. CONCLUSION



A clustered block is the erase unit in SSDs. The erasp]
operation is occurred when SSDs trigger the garbage cialfect
process to make free blocks by cleaning obsolete pages. This
garbage collection is one of main reasons that cause sigmific[10]
performance degradation in SSDs. Therefore, the clustered
block size can be a useful hint when we update a large amounRy
of data; if we issue write requests so that they are alignéiuto
clustered block boundary, the overhead of garbage callecti
will be minimized.

We have identified the type of NAND flash memory used in
SSDs by investigating the distribution of write latencig¢e 13]
have estimated the size of read/write buffer by comparieg tf\
time to handle the request from the buffer with the time to
handle the same request from NAND flash memory. For thid?!
we have designed our microbenchmarks carefully so that they
can generate both buffer hit or miss scenarios. [15]

For SSD-A, we have confirmed that all the parameter values
we found are correct. From the specification of each SSD
model, we have verified that the type of NAND flash memori6]
identified by our methodology is also correct for all the eelst
SSDs. Unfortunately, however, other parameter valuesdcoul
not be validated due to the absence of enough information[17]

All of these parameters can be used to predict the perfor-
mance of SSDs and to analyze their performance behaviors.
In addition, those parameters will allow us to understared tit8l]
internal architecture of the target SSD better and to aehiey
best performance by performing SSD-specific optimizations
We will extend our methodology to cover other parameterd?]
and refine it further through more case studies on commergci
SSDs. We also plan to optimize 1/0 schedulers or file systems
so they can take maximum advantage of the performar}g%
parameters introduced in this paper.

[12]
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