
Appears in the17th International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems

A Methodology for Extracting Performance Parameters
in Solid State Disks (SSDs)

Jae-Hong Kim, Dawoon Jung
Computer Science Department

Korea Advanced Institute of Science and
Technology (KAIST), South Korea

{jaehong, dwjung}@camars.kaist.ac.kr

Jin-Soo Kim
School of Information and

Communication Engineering
Sungkyunkwan University, South Korea

jinsookim@skku.edu

Jaehyuk Huh
Computer Science Department

Korea Advanced Institute of Science and
Technology (KAIST), South Korea

jhuh@cs.kaist.ac.kr

Abstract—Solid state disks (SSDs) consisting of NAND flash
memory are being widely used in laptops, desktops, and even
enterprise servers. SSDs have many advantages over hard disk
drives (HDDs) in terms of reliability, performance, durabi lity, and
power efficiency. Typically, the internal hardware and software
organization varies significantly from SSD to SSD and thus each
SSD exhibits different parameters which influence the overall
performance.

In this paper, we propose a methodology which can extract
several essential parameters affecting the performance ofSSDs.
The target parameters of SSDs considered in this paper are (1)
the size of read/write unit, (2) the size of erase unit, (3) the type
of NAND flash memory used, (4) the size of read buffer, and (5)
the size of write buffer. Obtaining these parameters will allow us
to understand the internal architecture of the target SSD better
and to get the most performance out of SSD by performing SSD-
specific optimizations.1

I. I NTRODUCTION

A solid state disk (SSD) is a data storage device that uses
solid state memory to store persistent data. In particular,we
use the term SSDs to denote SSDs consisting of NAND
flash memory, as this type of SSDs is being widely used
in laptop, desktop, and enterprise server markets. Compared
with conventional hard disk drives (HDDs), SSDs offer several
favorable features. Most notably, the read/write bandwidth
of SSDs is higher than that of HDDs, and SSDs have no
seek time since they have no moving parts such as arms
and spinning platters. The absence of mechanical components
also provide higher durability against shock, vibration, and
operating temperatures. In addition, SSDs consume less power
than HDDs [24].

During the past few decades, the storage subsystem has
been one of the main targets for performance optimization
in computing systems. To improve the performance of the
storage system, numerous studies have been conducted which
use the knowledge of internal performance parameters of hard
disks such as sector size, seek time, rotational delay, and
geometry information. In particular, many researchers have
suggested advanced optimization techniques using variousdisk
parameters such as track boundaries, zone information, and
the position of disk head [17], [26], [28]. Understanding these
parameters also helps to model and analyze disk performance
more accurately [15].

1This work was supported by the Korea Science and EngineeringFounda-
tion(KOSEF) grant funded by the Korea government(MEST) (No. R01-2007-
000-11832-0).

However, SSDs have different performance parameters com-
pared with HDDs due to the difference in the characteristics
of underlying storage media. For example, the unit size of
read/write operations in SSDs, which we callthe clustered
page size, is usually greater than the traditional sector size used
in HDDs. Therefore, if the size of write requests is smaller than
the clustered page size, the rest of the data should be read from
the original data, incurring additional overhead [1]. To avoid
this overhead, it is helpful to issue read/write requests ina
multiple of the clustered page size. The problem is that the
actual value of such a parameter varies depending on the type
of NAND flash memory employed and the internal architecture
of SSDs.

In this paper, we propose a methodology which can ex-
tract several essential parameters affecting the performance
of SSDs. The parameters considered in this paper include
the size of read/write unit, the size of erase unit, the type
of NAND flash memory used, the size of read buffer, and
the size of write buffer. To extract these parameters, we
have developed a set of microbenchmarks which issue a
sequence of read or write requests and measure the access
latency. By varying the request size and the access pattern,
important performance parameters of a commercial SSD can
be successfully estimated.

The rest of the paper is organized as follows. Section II
overviews the characteristics of NAND flash memory, and
SSDs, and describes some related work. In Section III, the
detailed methodology for extracting several performance pa-
rameters of SSDs is described. We present experimental results
in Section IV to show the effectiveness of our approach. In
Section V, we discuss future work and conclude the paper.

II. BACKGROUND

A. NAND Flash Memory

NAND flash memory is a non-volatile semiconductor de-
vice. A NAND flash memory chip consists of a number of
erase units, calledblocks, and a block is usually comprised of
64 or 128 pages. Apageis a unit of read and write operations.
Each page in turn consists of data area and spare area. The
data area accommodates user or application contents, whilethe
spare area contains management information such as ECCs
(error correction codes) and bad block indicators. The data
area size is usually 2 KB or 4 KB, and the spare size is 64 B
(for 2 KB data) or 128 B (for 4 KB data). Figure 1 illustrates
the organization of NAND flash where a block contains 128
4 KB-pages.

page 0

(4 KB)

page 127

NAND flash

Memory chip (MLC)

128 B

block

block 0

512 KB

block 1

512 KB

page 126
128 B
128 B

(a)

SSD Controller

Host

Interface

Buffer

Manager

Processor

Flash

Memory

Controller

RAM

..

.

..

.

..

.

..

.

...

...

NAND

Flash

Memory

(b)

Fig. 1. NAND flash memory internals (a) and the block diagram of an SSD
(b)

NAND flash memory is different from DRAMs and HDDs
in a number of aspects. First, the latency of read and write
operations is asymmetric as shown in Table I. Second, NAND
flash memory does not allow in-place update; once a page
is filled with data, the block containing the page should be
erased before new data is written to the page. Moreover, the
lifetime of NAND flash memory is limited by 10,000-100,000
program/erase cycles [22].

According to the manufacturing technology, NAND flash
memory can be classified into two types, SLC (Single-Level
Cell) and MLC (Multi-Level Cell). In SLC NAND flash
memory, a memory cell only represents one-bit data like
conventional memory devices. On the contrary, the voltage
level of a cell in MLC NAND flash memory is minutely
divided into four or more levels, and this allows a cell to
express two or more bits. As a result, MLC NAND flash
memory provides higher density and larger capacity than SLC
NAND. Currently, two-bit MLC NAND flash memory where
a cell represents two bits is commercialized.

Although MLC NAND flash memory significantly reduces
cost per bit, its operational characteristics are worse than
those of SLC NAND. First of all, the programming latency
is increased by three or four times, and the read performance
is slightly degraded. In addition, the programming latency
of MLC NAND fluctuates in a relatively wide range. For
example, two-bit MLC NAND flash memory typically exhibits
two notable ranges of programming latency. This is due to
the device characteristics of MLC NAND where two different
pages (calledpair pages) within a block are internally linked
together; programming the first pages can be done quickly,
but programming the second pages require more time to fin-
ish [10]. Another disadvantage is that the bit error rate of MLC
NAND flash memory is higher than that of SLC NAND [14].
This enforces the use of stronger ECCs. Finally, the lifetime of
MLC NAND is reduced to 5,000-15,000 program/erase cycles.
Table I compares the characteristics of contemporary SLC and
MLC NAND flash memory [20], [21]2.

B. Solid State Disks (SSDs)

A typical SSD is composed of a host interface control
logic, an array of NAND flash memory, a RAM, and an SSD
controller, as shown in Figure 1-(b). The host interface control
logic transfers command and data from/to the host via USB,
PATA, or SATA protocol. The main role of the SSD controller

2Note that the actual page size or the block size may vary depending on
the flash memory chip model and the manufacturer. For example, some SLC
NAND flash memory has 4KB page size [23].

TABLE I
CHARACTERISTICS OFSLC [21] AND MLC [20] NAND FLASH MEMORY

SLC NAND MLC NAND
page size (2048+64) B (4096+128) B
block size (128+4) KB (512+16) KB
pages/block 64 128
read latency 77.8µs (2 KB) 165.6µs (4 KB)
write latency 252.8µs (2 KB) 905.8µs (4 KB)
erase latency 1500µs (128 KB) 1500µs (512 KB)

NAND A0

Channel A

NAND A1

NAND A2

NAND A3

Time

Data Loading Time

Data Programming Time

Fig. 2. 4-way interleaving on the same bus

is to translate read/write requests into flash memory operations.
During handling read/write requests, the controller exploits
RAM to temporarily buffer the write requests or accessed
data. The entire operations are governed by a firmware, usually
called a flash translation layer (FTL) [9], [11], run by the SSD
controller.

Recently, developing a high-performance SSD has been
a key design goal. To increase the read/write bandwidth of
SSDs, many SSDs make use of the interleaving technique in
the hardware logic and the firmware. For example, a write
(or program) operation is accomplished by the following two
steps: (1) loading data to the internal page register of a
NAND chip, and (2) programming the loaded data into the
appropriate NAND flash cells. Because the data programming
time is longer than the data loading time, data can be loaded
to another NAND chip during the data programming time.
Figure 2 illustrates a situation where 4-way interleaving is
performed on the channel (orbus) to hide the latency of page
programming in NAND flash memory. If there are multiple
independent channels, the read/write bandwidth of SSDs can
be accelerated further by exploiting inter-channel and intra-
channel parallelism [18], [12].

C. Flash Translation Layer (FTL)

FTL is the main control software in SSDs that gives an
illusion of general hard disks, hiding the unique characteristics
of NAND flash memory from the host. One primary technique
of FTL to achieve this is to map Logical Block Addresses
(LBA) from the host to physical addresses in flash memory.
When a write request arrives, FTL writes the arrived data to a
page in an erased state and updates the mapping information to
point to the location of the up-to-date physical page. The old
page that has the original copy of data becomes unreachable
and obsolete. A read request is served by reading the page
indicated by the mapping information.

Another important function of FTL isgarbage collection.
Garbage collection is a process that erasesdirty blocks which
have obsolete pages and recycles these pages. If a block
selected to be erased has valid pages, those pages are migrated
to other blocks before erasing the block.

According to the granularity of mapping information, FTLs
are classified into page-mapping FTLs [6] and block-mapping
FTLs. In page-mapping FTLs, the granularity of mapping
information is a page, while that of block-mapping FTLs is
a block. As the size of a block is much larger than that of a
page, block-mapping FTL usually requires less memory space
than page-mapping FTL to keep the mapping information in
memory. Recently, several hybrid-mapping FTLs have been
proposed. These hybrid-mapping FTLs aim to improve the
performance by offering more flexible mapping, while keeping
the amount of mapping information low [8], [16].

D. Related Work

Extracting performance-critical parameters for HDDs has
been widely studied for designing sophisticated disk schedul-
ing algorithms [30], [27], [29] and characterizing the per-
formance of HDDs to build the detailed disk simulator [5],
[13], [19], [25]. However, as SSDs have completely different
architecture compared to HDDs, the methodology for extract-
ing performance parameters in HDDs is different from that
of SSDs. Our work introduces a methodology for extracting
performance parameters of SSDs and show the results of four
commercial SSDs. To the best of our knowledge, our work
is among the first to examine the performance parameters
obtained from commercial SSDs.

Agrawal et al. provide a good overview of the SSD archi-
tecture and present various tradeoffs in designing SSDs [1].
In order to obtain several tradeoffs for SSDs, they developed
a modified version of the DiskSim simulator. Using this
simulator, they explore the benefits and potential drawbacks of
various design techniques by varying performance parameters
such as the page size, the degree of overprovisioning, the
amount of ganging, the range of striping, etc. Their study
indicates that such parameters play important roles in the
performance of SSDs.

Recently, Adrian et al. have developed Gordon, a flash
memory-based cluster architecture for large-scale data-
intensive applications [3]. The architecture of Gordon is sim-
ilar to that of SSDs in that it uses NAND flash memory
and flash memory controller. The controller supports the FTL
functionality and multi-channel structure that can exploit par-
allelism. To acquire the high I/O performance of data-intensive
work, they tune some performance parameters such as the
clustered page size that will be introduced in Section III-A.
They also found that the performance of NAND flash-based
storage is affected by a number of parameters.

Our methodology for extracting performance parameters
is similar to the gray-box approach [2], [7]. The gray-box
approach is a methodology that acquires information which
is unavailable or cumbersome to maintain. This approach
is different from the white-box approach or the black-box
approach, which has the full knowledge or no knowledge on
the target system, respectively. Instead, the gray-box approach
assumes some knowledge of the algorithms used in the system.
Yotov et al. have applied the gray-box approach to the memory
hierarchy [31]. They introduce a methodology which extracts
several memory hierarchy parameters in order to optimize the
system performance under a given platform. Timothy et al.
have also characterized RAID storage array using the gray-box
approach [4]. They employ several algorithms to determine the

Channel 0

Block0

Page0

Flash

Memory

Chip 0

Block1

Page1

Flash

Memory

Chip 1

Block2

Page2

Flash

Memory

Chip 2

Block3

Page3

Flash

Memory

Chip 3
Channel 1

Block4

Page4

Flash

Memory

Chip 4

Block5

Page5

Flash

Memory

Chip 5

Block6

Page6

Flash

Memory

Chip 6

Block7

Page7

Flash

Memory

Chip 7

Page0 Page1 Page6 Page7 Clustered Page

Block0 Block1 Block6 Block7 Clustered Block

Fig. 3. An example of a clustered page (block), which is interleaved in eight
flash memory chips on two channels

critical parameters of a RAID system, including the number
of disks, chunk size, level of redundancy, and layout scheme.
Similarly, based on the existing knowledge on SSDs, we can
devise a methodology for extracting essential performance
parameters of SSDs.

III. M ETHODOLOGY

A. Parameters in SSDs

The performance parameters of SSDs are different from
those of HDDs as described in Section I. We now describe
some of important performance parameters of SSDs before
we present our methodology in detail.

Clustered Page: We define aclustered pageas an internal
unit of read or write operation used in SSDs. As discussed
in Section II-B, SSD manufacturers typically employ the
interleaving technique to exploit inherent parallelism among
read or write operations. One way to achieve this is to enlarge
the unit size of read or write operations by combining several
physical pages, each of which comes from a different NAND
flash chip. Figure 3 shows an example configuration where a
clustered page is interleaved in eight flash memory chips on
two channels. Note that, depending on FTLs used in SSDs, it
is also possible to form a clustered page with just four physical
pages on the same channel in Figure 3, allowing two channels
to operate independently.

The clustered page size is the same or a multiple of the
physical page size of NAND flash memory. The clustered
page size is a very critical parameter for application-level I/O
performance as shown in Gordon [3]. If we adjust the size
of data transfer to the clustered page size, we can enhance
the I/O performance more effectively, since FTL does not
need to read or write more data than requested. In addition to
enhancing the performance, the use of the clustered page can
reduce the memory footprint required to maintain the mapping
information inside SSDs.

Clustered Block: We define aclustered blockas an internal
unit of erase operation used in SSDs. Similar to the clustered

Write Request

Clustered Page

Unchanged Region
Changed Region

Read-Modify-Write Region

(1) The size of a write request

= The size of a clustered page

Clustered Page

Write Request

Clustered Page

(2) The size of a write request

< The size of a clustered page

Clustered Page

Write Request

Clustered Page

(3) The size of a write request

> The size of a clustered page

Clustered Page

(a)

Valid Space

Invalid Space

SB

Initial State

SW: The size of a write request

SB: The clustered block size

(1) SW < SB : Sequential (above)

and Random (below) Writes

(2) SW = SB : Sequential (above)

and Random (below) Writes

(3) SW > SB; SW = 2 x SB : Sequential

(above) and Random (below) Writes

(b)

Fig. 4. (a): A write request that is aligned (1) and unaligned(2, 3) to the
clustered page boundary (b): Sequential vs. random writes when the request
size is smaller than (1), equal to (2), or larger than (3) the clustered block
size

page, SSDs often combine several blocks coming from differ-
ent NAND flash chips into a single clustered block. Figure 3
shows an example of a clustered block which consists of
eight physical blocks. The use of the clustered block improves
the garbage collection performance by performing several
erase operations in parallel. Using the clustered block is also
effective in reducing the amount of mapping information,
especially in block-mapping FTLs, since a clustered block,
instead of an individual physical NAND block, now takes up
one mapping entry.

Type of NAND Flash: Because of the contrasting char-
acteristics of SLC NAND and MLC NAND, SLC SSDs and
MLC SSDs are currently aiming at different market segments.
SLC SSDs are typically used for servers and high-performance
storage due to higher reliability and higher performance of-
fered by SLC NAND. On the other hand, MLC SSDs are
preferred for laptops and desktop PCs because of their lower
price.

For end-users, it is sometimes useful to find out which type
of NAND flash memory has been employed in their SSDs. In
this paper, we suggest a methodology to identify the type of
NAND flash without cracking in to the hardware.

Read/Write Buffer: Many SSD controllers use a part of
DRAM as read buffer or write buffer to improve the access
performance by temporarily storing the requested data intothe
DRAM buffer. Although users can obtain the DRAM buffer
size via ATA IDENTIFY DRIVE command, it just displays the
total DRAM size, not the size of read/write buffer. Thus, we
present methodologies that can estimate the accurate sizesof
these buffers in Section III-E and Section III-F.

The read buffer size or the write buffer size can be a
valuable hint to buffer cache or I/O scheduler in the host
operating system. For example, if we know the maximum size
of write buffer, the I/O scheduler in the host system can merge
incoming write requests in such a way that the request size
does not go beyond the write buffer size. Similarly, the read
buffer size can be used to determine the amount of data to be
prefetched from SSDs.

Procedure 1ProbeClusteredPage
Input: F , /* file descriptor for the raw disk device opened with ODIRECT */

TSW , /* the total size to write (in KB, e.g., 1024 KB) */
ISW , /* the increment in size (in KB, e.g., 2 KB) */
NI /* the number of iteration (e.g., 64) */

1: SW ⇐ 0 /* the size of write request (in KB) */
2: write init(F) /* initialize the target SSD by sequentially updating all the available

sectors to minimize the effect of garbage collection */
3: while SW ≤ TSW do
4: SW ⇐ SW + ISW
5: lseek(F , 0, SEEK SET) /* set the file pointer to the offset 0 */
6: Start ⇐ gettimeofday()
7: for i = 1 to NI do
8: write file(F , SW) /* write SW KB of data toF */
9: ATA FLUSH CACHE() /* flush the write buffer */

10: end for
11: End ⇐ gettimeofday()
12: print the elapsed time by usingStart andEnd

13: end while

There are many possible architectural organizations and
tradeoffs in SSDs as discussed in [1]. As a result, the specifics
of internal hardware architecture and software algorithm used
in SSDs differ greatly from vendor to vendor. In spite of
this, our methodology is successful in extracting the aforemen-
tioned parameters from four commercial SSDs. This is because
our methodology does not require any detailed knowledge on
the target SSDs such as the number of channels, the number of
NAND flash memory chips, the address mapping and garbage
collection policies, etc. We develop a generic methodology
based on the common overheads and characteristics found in
all target SSDs, which are independent of the specific model
details. The proposed methodology is applicable to many SSDs
as long as they use the interleaving technique to enhance the
I/O bandwidth and employ a variant of block-mapping or page-
mapping FTLs.

B. Measuring the Clustered Page Size

As described in the previous subsection, the clustered page
is treated as the unit of read and write operations inside SSDs
in order to enhance the performance using channel-level and
chip-level interleaving. This suggests that when only a part of
a clustered page is updated, the SSD controller should first
read the rest of the original clustered page that is not being
updated, and combine it with the updated data, and write the
new clustered page into flash memory. This read-modify-write
operation [1] incurs extra flash read operations, increasing the
write latency.

Consider a case (1) in Figure 4(a), where all the write
requests are aligned to the clustered page boundary. In this
case, no extra operations are necessary other than normal write
operations. However, cases (2) and (3) illustrated in Figure 4(a)
necessitate read-modify-write operations as the first (in case
(2)) or the second (in case (3)) page is partially updated.

To measure the clustered page size, we have developed
a microbenchmark which exploits the difference in write
latency depending on whether the write request is aligned
to the clustered page boundary or not. The microbenchmark
repeatedly writes data sequentially setting the request size as
an integer multiple of physical NAND page size (e.g., 2 KB).
Owing to the extra overhead associated with unaligned write
requests, we expect to observe a sharp drop in the average
write latency whenever the request size becomes a multiple of
the clustered page size. Procedure 1 describes the pseudocode
of our microbenchmark.

Procedure 2ProbeClusteredBlock
Input: F , /* file descriptor for the raw disk device opened with ODIRECT */

SP , /* the clustered page size obtained in Section III-B (in KB,e.g., 16 KB) */
TNP , /* the total number of cluster pages (e.g., 1024) */
TSW , /* the total size to write (in KB, e.g., (8 × 1024 × 1024 KB)) */
NP /* the initial number of clustered pages (e.g., 2).NP × SP is the actual
size of write requests */

1: NI ⇐ 0 /* the number of iteration */
2: while NP ≤ TNP do
3: NP ⇐ NP × 2 /* We assume the clustered block size is a power of 2

multiple of the clustered page size */
4: write init(F) /* initialize the target SSD */
5: Start ⇐ gettimeofday()
6: lseek(F , 0, SEEK SET) /* set the file pointer to the offset 0 */
7: NI ⇐ TSW/(NP × SP)
8: for i = 1 to NI do
9: write file(F , NP × SP) /* write (NP × SP) KB of data toF */

10: ATA FLUSH CACHE() /* flush the write buffer */
11: end for
12: End ⇐ gettimeofday()
13: print the elapsed time of sequential writes by usingStart andEnd
14: write init(F)
15: Start ⇐ gettimeofday()
16: for i = 1 to NI do
17: R ⇐ rand()%NI /* chooseR randomly */
18: R ⇐ R × (NP × SP) × 1024
19: lseek(F , R, SEEK SET)
20: write file(F , NP × SP)
21: ATA FLUSH CACHE()
22: end for
23: End ⇐ gettimeofday()
24: print the elapsed time of random writes by usingStart andEnd

25: end while

There are some implementation details worth mentioning
in Procedure 1. First, we open the raw disk device with
O DIRECT flag to avoid any influence from buffer cache in
the host operating system. Second, before the actual measure-
ment, we initialize the target SSD by sequentially updating
all the available sectors to minimize the effect of garbage
collection during the experiment [11]. Third, we make the
first write request during each iteration always begin at the
offset 0 using lseek(). Finally, all experiments are performed
with the write buffer in SSDs enabled. To reduce the effect
of the write buffer, we immediately flush data to NAND flash
memory by issuing ATA FLUSH CACHE command, after
writing data to the target SSD. Most of these implementation
strategies are also applied to other microbenchmarks presented
in the following subsections.

C. Measuring the Clustered Block Size

The clustered block is the unit of an erase operation in SSDs
to improve the write performance associated with garbage
collection. This indicates that if only a part of a clusteredblock
is updated when garbage collection is triggered, live pages
in the original clustered block should be copied into another
free space in SSDs. This valid copy overhead affects the
write performance of SSDs, decreasing the write bandwidth
noticeably.

Consider a case (1) illustrated in Figure 4(b) where the size
of write requests is smaller than that of the clustered block.
Assume that the leftmost clustered block has been selected as
a victim by the garbage collection process. When a series of
blocks are updated sequentially, there is no overhead otherthan
erasing the victim block during garbage collection. However,
if there are many random writes whose sizes are smaller than
the clustered block size, the write bandwidth will suffer from
the overheads of copying valid pages. As shown in cases (2)
and (3) of Figure 4(b), the additional overhead disappears only

Procedure 3ProbeNANDType
Input: F , /* file descriptor for the raw disk device opened with ODIRECT */

SP , /* the clustered page size obtained in Section III-B (in KB,e.g., 16 KB) */
SB, /* the clustered block size obtained in Section III-C (in KB, e.g.,4× 1024
KB)*/
NB /* the number of clustered blocks (e.g., 16) */

1: AW ⇐ 0 /* the amount of written data so far (in KB) */
2: write init(F) /* initialize the target SSD */
3: lseek(F , 0, SEEK SET) /* set the file pointer to the offset 0 */
4: while AW ≤ NB × SB do
5: AW ⇐ AW + SP
6: Start ⇐ gettimeofday()
7: write file(F , SP) /* write SP KB of data toF */
8: ATA FLUSH CACHE() /* flush the write buffer */
9: End ⇐ gettimeofday()

10: print the elapsed time by usingStart andEnd

11: end while

when the size of random write requests becomes a multiple
of the clustered block size.

To retrieve the clustered block size, our microbenchmark
exploits the difference in write bandwidth between sequential
and random writes. Initially, the size of write request is set to
the clustered page size. And then, for the given request size,
we issue a number of sequential and random writes which
are aligned to the clustered page boundary, and measure the
bandwidth. We repeat the same experiment, but each time
the request size is doubled. As the request size approaches
to the clustered block size, the gap between the bandwidth
of sequential writes and that of random writes will become
smaller. Eventually, they will show the similar bandwidth once
the request size is equal to or larger than the clustered block
size. Procedure 2 briefly shows how our microbenchmark
works to probe the clustered block size.

D. Identifying the Type of NAND flash

As explained in Section II-A, NAND flash memory used in
SSDs can be classified into two types, SLC and MLC, accord-
ing to the manufacturing technology. Because of distinctive
device characteristics between SLC and MLC, the distribution
of write latencies in SLC NAND is different from that of write
latencies in MLC NAND.

While SLC NAND shows a relatively consistent write la-
tency, the write latency in MLC NAND fluctuates severely de-
pending on the location of the page written (cf. Section II-A).
Therefore, the latency of each write request falls into a narrow
range in SLC NAND, but that is grouped into two or more
clusters in MLC NAND.

To identify the type of NAND flash memory, our mi-
crobenchmark issues a number of write requests that can fill
the entire clustered block, and measures the elapsed time
of each request. All the write requests are aligned to the
boundary of clustered page, and the request size is equal to
the clustered page size. Procedure 3 shows the pseudocode of
the benchmark.

E. Measuring the Read Buffer Capacity

The read buffer in SSDs is used to improve the read perfor-
mance by temporarily storing the requested and/or prefetched
data. If the requested data cannot be found in the read buffer,
or if the size of the read request is larger than the size of the
read buffer, then the data has to be read directly from NAND
flash memory, which results in larger read latencies.

Procedure 4ProbeReadBuffer
Input: F , /* file descriptor for the raw disk device opened with ODIRECT */

TSR, /* the total size to read (in KB, e.g., 1024 KB) */
ISR /* the increment in size (in KB, e.g., 1 KB) */

1: SR ⇐ 0 /* the size of read request (in KB) */
2: write init(F) /* initialize the target SSD */
3: while SR ≤ TSR do
4: SR ⇐ SR + ISR
5: R ⇐ rand()%1024 /* chooseR randomly */
6: lseek(F , 1024× 1024× 1024 + R× 16× 1024× 1024, SEEK SET)

/* set the file pointer randomly */
7: read file(F , 16 × 1024) /* read 16 MB of data fromF */
8: R ⇐ rand()%63
9: lseek(F , R × 16 × 1024 × 1024, SEEK SET) /* set the file pointer

randomly (We assume the size of read buffer is smaller than 16MB) */
10: read file(F , SR) /* readSR KB of data fromF */
11: lseek(F , R × 16 × 1024 × 1024, SEEK SET)
12: Start ⇐ gettimeofday()
13: read file(F , SR)
14: End ⇐ gettimeofday()
15: print the elapsed time by usingStart andEnd

16: end while

Procedure 5ProbeNANDReadLatency
Input: F , /* file descriptor for the raw disk device opened with ODIRECT */

TSR, /* the total size to read (in KB, e.g., 1024 KB) */
ISR /* the increment in size (in KB, e.g., 1 KB) */

1: SR ⇐ 0 /* the size of read request (in KB) */
2: write init(F) /* initialize the target SSD */
3: while SR ≤ TSR do
4: SR ⇐ SR + ISR
5: R ⇐ rand()%1024 /* chooseR randomly */
6: lseek(F , 1024× 1024× 1024 + R× 16× 1024× 1024, SEEK SET)

/* set the file pointer randomly */
7: read file(F , 16 × 1024) /* read 16 MB of data fromF */
8: R ⇐ rand()%63
9: lseek(F , R × 16 × 1024 × 1024, SEEK SET) /* set the file pointer

randomly (We assume that the size of read buffer is smaller than 16 MB) */
10: Start ⇐ gettimeofday()
11: read file(F , SR) /* readSR KB of data fromF */
12: End ⇐ gettimeofday()
13: print the elapsed time by usingStart andEnd

14: end while

To differentiate the read request served from the read buffer
from that served from NAND flash memory, we have de-
veloped two microbenchmarks, ProbeReadBuffer() and Probe-
NANDReadLatency(), as shown in Procedure 4 and 5.

The microbenchmark ProbeReadBuffer() is used to measure
the latency of read requests served from the read buffer, if any.
The microbenchmark repeatedly issues two read requests, each
of which reads data from the same locationO3. It measures the
latency of the second request, hoping that a read hit occurs in
the read buffer for the request. Before reading any data from
O, the benchmark fills the read buffer with the garbage by
reading large data from the random location far fromO. In
each iteration, the size of read request is increased by 1 KB,
by default. If the size of read request becomes larger than the
read buffer size, the whole data cannot be served from the
read buffer and the request will force flash read operations
to occur. Thus, we expect to observe a sharp increase in the
average read latency whenever the request size is increased
beyond the read buffer size.

On the other hand, ProbeNANDReadLatency() is designed
to obtain the latency of read requests which are served from
NAND flash memory directly. The benchmark is similar to
ProbeReadBuffer() except that the first read request (lines7–
8) in ProbeReadBuffer() has been eliminated to generate read

3In each iteration, this location is set randomly based on theR value, which
eliminates the read-ahead effect, if any, in target SSDs. Inthe tested SSDs,
however, we could not observe any read-ahead mechanism.

Procedure 6ProbeWriteBuffer
Input: F , /* file descriptor for the raw disk device opened with ODIRECT */

TSW , /* the total size to write (in KB, e.g., 1024 KB) */
ISW , /* the increment in size (in KB, e.g., 1 KB) */
NI /* the number of iteration (e.g., 30) */

1: SW ⇐ 0 /* the size of write request (in KB) */
2: write init(F) /* initialize the target SSD */
3: while SW ≤ TSW do
4: SW ⇐ SW + ISW
5: for i = 1 to NI do
6: ATA FLUSH CACHE() /* flush the write buffer */
7: lseek(F , 0, SEEK SET) /* set the file pointer to the offset 0 */
8: Start ⇐ gettimeofday()
9: write file(F , SW) /* write SW KB of data toF */

10: End ⇐ gettimeofday()
11: print the elapsed time by usingStart andEnd
12: end for

13: end while

Procedure 7ProbeNANDWriteLatency
Input: F , /* file descriptor for the raw disk device opened with ODIRECT */

TSW , /* the total size to write (in KB, e.g., 1024 KB) */
ISW , /* the increment in size (in KB, e.g., 1 KB) */
NI /* the number of iteration for outer loop (e.g., 30) */

1: SW ⇐ 0 /* the size of write request (in KB) */
2: write init(F) /* initialize the target SSD */
3: while SW ≤ TSW do
4: SW ⇐ SW + ISW
5: for i = 1 to NI do
6: ATA FLUSH CACHE() /* flush the write buffer */
7: lseek(F , 16 × 1024 × 1024, SEEK SET)

/* We assume that the size of write buffer is smaller than 16 MB*/
8: write file(F , 16 × 1024) /* write 16 MB of data toF */
9: lseek(F , 0, SEEK SET) /* set the file pointer to the offset 0 */

10: Start ⇐ gettimeofday()
11: write file(F , SW) /* write SW KB of data toF */
12: End ⇐ gettimeofday()
13: print the elapsed time by usingStart andEnd
14: end for

15: end while

misses all the times.

F. Measuring the Write Buffer Capacity

As discussed in Section III-A, the main role of the write
buffer in SSDs is to enhance the write performance by
temporarily storing the updated data into the DRAM buffer.
This implies that when the size of write requests exceeds the
write buffer size, some of data should be flushed into NAND
flash memory. This additional flush operation results in extra
flash write operations, impairing the write latency.

To determine whether the write request is handled by the
write buffer or NAND flash memory, we have developed
two microbenchmarks, ProbeWriteBuffer() and ProbeNAND-
WriteLatency(), as shown in Procedure 6 and 7. The former
measures the time taken to write data into the write buffer, if
any, while the latter is intended to measure the time to write
the requested data to NAND flash memory.

ProbeWriteBuffer() repeatedly measures the write latency,
increasing the request size by 1 KB. Before the actual mea-
surement, the benchmark makes the write buffer empty by
issuing the flush operation supported by the ATA command.
After flushing the write buffer, we expect that the subsequent
write request is handled in the write buffer, if any, as long as
the request size is smaller than the write buffer size. When the
request size is too large to fit into the write buffer, the request
will cause flash write operations, prolonging the average write
latency severely.

ProbeNANDWriteLatency() is analogous to ProbeWrite-
Buffer() except that lines 7–8 are added to fill the entire

TABLE II
THE CHARACTERISTICS OFSSDS USED IN THIS PAPER

SSD-A SSD-B SSD-C SSD-D
Model MCCOE64G5MPP FTM60GK25H SSDSA2MH080G1GN TS64GSSD25S-M

Manufacturer Samsung Super Talent Intel Transcend
Form Factor 2.5 in. 2.5 in. 2.5 in. 2.5 in.

Capacity 64 GB 60 GB 80 GB 64 GB
Interface Serial ATA Serial ATA Serial ATA Serial ATA

Max Sequential Read Throughput(MB/s) 110 117 254 142
Max Sequential Write Throughput(MB/s) 85 81 78 91
Random Read Throughput - 4 KB(MB/s) 10.73 5.68 23.59 9.22
Random Write Throughput - 4 KB(MB/s) 0.28 0.01 11.25 0.01

 0

 500

 1000

 1500

 2000

 2500

 3000

 16 48 80 112 144

A
v
e
r
a
g
e

L
a
t
e
n
c
y

(
u
s
)

Size Of Write Requests (Kbytes)

(a) SSD-A

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 128 256 512 768 896

Size Of Write Requests (Kbytes)

(b) SSD-B

 900

 1000

 1100

 1200

 1300

 1400

 1500

 4 12 20 28 36 44 52 60

Size Of Write Requests (Kbytes)

(c) SSD-C

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 128 256 512 768 896

Size Of Write Requests (Kbytes)

(d) SSD-D

Fig. 5. The average write latency with varying the size of write requests

write buffer with garbage intentionally. Since the write buffer
is already full, some part of data is flushed to NAND flash
memory upon the arrival of the next write request.

Note that, in ProbeWriteBuffer() and ProbeNANDWriteLa-
tency(), we repeatedly measure the write latencyNI times
for the given request size. This is because it is not easy
to accurately measure the time needed to write data in the
presence of asynchronous flush operations. Especially, when
the write buffer has some valid data, the actual timing the flush
operation is performed and the amount of data flushed from the
write buffer to NAND flash memory can vary from experiment
to experiment. To minimize the effect of these variable factors,
we obtain enough samples by repeating the same experiment
multiple times.

IV. EXPERIMENTAL RESULTS

A. Experiment Environment

We ran the microbenchmarks described in Section III on
a Linux-based system (kernel version 2.6.25.10). Our experi-
mental system is equipped with a 2.0 GHz AMD Athlon 64
processor 3200+ and 2 GB of RAM. We attached two disk
drives, one hard disk drive (HDD) and one SSD, both of which
are connected to the host system via SATA-II (Serial ATA-
II) interface. HDD is the system disk where the operating
system is installed. In our experiments, we have evaluated
four different SSDs that are commercially available from the
market. The full details of each SSD used in this paper are
summarized in Table II.

Because we measure performance parameters empirically,
the results sometimes vary from one execution to the next.
Thus, we obtained all results in several trial runs to improve
the accuracy. While we ran our microbenchmarks, we turned
off SATA NCQ (Native Command Queueing) as SSD-C is the
only SSD which supports this feature.

B. The clustered Page Size

To estimate the clustered page size, we have measured the
latency of each write request varying the request size up
to 1024 KB (cf. Section III-B). Figure 5 plots the results
obtained by running Procedure 1 on the tested SSDs. All the
experiments for SSD-A, SSD-B, and SSD-D are performed
with the write buffer enabled. Enabling the write buffer in
SSD-C makes it difficult to measure the latency accurately as
the cost of the internal flush operation highly fluctuates. Thus,
the microbenchmark was run with the write buffer disabled in
SSD-C so that the measurement is not affected by the activity
of flush operation.

In Figure 5, the general trend is that the latency increases
in proportion to the request size. However, we can observe
that there are periodic drops in the latency. For example, in
Figure 5(a), the latency drops sharply whenever the request
size is a multiple of 16 KB. As described in Section III-B, this
is because the data to be written are aligned to the clustered
page boundary at these points, eliminating the need for read-
modify-write operation. Therefore, we can conclude that the
clustered page size of SSD-A is 16 KB. For the same reason,
we believe that the clustered page size of SSD-B, SSD-C, and
SSD-D is 128 KB, 4 KB, and 128 KB, respectively.

Unlike other SSDs, the result of SSD-C shows no notable
drop in the write latency. Upon further investigation, it turns
out that SSD-C internally allows the update of only one sector
(512 B); thus, the additional overhead for read-modify-write
is eliminated. An intriguing observation in Figure 5 is that
there are several spikes in the write latency, most notably in
Figure 5(b), (c), and (d). We suspect this is due to garbage
collection which should be occasionally invoked to make free
blocks.

C. The clustered Block Size

To determine the clustered block size, the microbenchmark
introduced in Section III-C measures the bandwidth of sequen-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 64 128 256 1024 4096

B
a
n
d
w
i
d
t
h

(
M
b
y
t
e
s
/
s
e
c
)

Size Of Write Requests (Kbytes)

Sequential Write
Random Write

(a) SSD-A

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 512 1024 4096 16384

Size Of Write Requests (Kbytes)

Sequential Write
Random Write

(b) SSD-B

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 80 160 320 640 1280 5120

Size Of Write Requests (Kbytes)

Sequential Write
Random Write

(c) SSD-C

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 512 1024 4096 16384

Size Of Write Requests (Kbytes)

Sequential Write
Random Write

(d) SSD-D

Fig. 6. Sequential vs. random write bandwidth according to the size of write requests

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

T
h
e

N
u
m
b
e
r

O
f

C
o
u
n
t
s

Latency Of Write Requests (us)
 For One Clustered Page

(a) SSD-A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

Latency Of Write Requests (us)
 For One Clustered Page

(b) SSD-B

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

Latency Of Write Requests (us)
 For One Clustered Page

(c) SSD-C

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000

Latency Of Write Requests (us)
 For One Clustered Page

(d) SSD-D

Fig. 7. The distribution of write latencies

tial and random writes, increasing the request size up to 128
MB. Figure 6 compares the results for four tested SSDs. The
value ofNP , which represents the initial number of clustered
pages to test, is set to two for SSD-A, SSD-B, and SSD-D.
For SSD-C, we configureNP = 10 as there was no difference
in the bandwidth between sequential and random writes with
NP = 2.

From Figure 6(a), we find that the bandwidth of sequential
writes is higher than that of random writes when the size of
write request is smaller than 4096 KB. If the request size is
increased beyond 4096 KB, there is virtually no difference in
the bandwidth. As mentioned in Section III-C, the bandwidth
of random writes converges to that of sequential writes as the
request size approaches to the clustered block size. This is
mainly due to that the number of valid pages in a clustered
block is getting smaller, reducing the overhead of garbage
collection gradually. This suggests that the clustered block
size of SSD-A is 4096 KB. Similarly, we can infer that the
clustered block size of SSD-B, SSD-C, and SSD-D is 16384
KB, 5120 KB, and 16384 KB, respectively.

D. The Type of NAND Flash Memory

Depending on the type of NAND flash memory used in
SSDs, the distribution of each write latency exhibits two
representative patterns; a single cluster for SLC NAND and
multiple clusters for MLC NAND. Figure 7 displays the
distribution of a number of write latencies obtained from
ProbeNANDType() in Section III-D.

In Figure 7, we can see that the distribution of the latency
for writing one clustered page is grouped into a narrow range
in SSD-A, but this is not the case for SSD-B, SSD-C, and
SSD-D. Hence, we can easily identify that the type of NAND
flash memory employed in SSD-A is SLC, while the rest of
SSDs are composed of MLC NAND flash memory.

E. The Read Buffer Capacity

To estimate the capacity of the read buffer, we compare
the latency measured by ProbeReadBuffer() with that obtained
by ProbeNANDReadLatency(), varying the size of each read
request. Figure 8 contrasts the results with respect to the read
request size from 1 KB to 1024 KB (4096 KB for SSD-
C). In Figure 8, the labels “NAND” and “Buffer” denote the
latency obtained from ProbeNANDReadLatency() and from
ProbeReadBuffer(), respectively. As described in SectionIII-E,
ProbeNANDReadLatency() always measures the time taken
to retrieve data from NAND flash memory, while ProbeRead-
Buffer() approximates the time to get data from the read buffer
as long as the size of read requests is smaller than the read
buffer size.

In Figure 8(a), when the size of read requests is smaller than
256 KB, “Buffer” results in much shorter latency compared to
“NAND”. This is because requests generated by ProbeRead-
Buffer() are fully served from the read buffer. On the other
hand, if the request size exceeds 256 KB, both “Buffer” and
“NAND” exhibit almost the same latency. Since “NAND”
represents the time to read data from NAND flash memory,
this result means that read requests whose sizes are bigger than
256 KB cannot be handled in the read buffer. Therefore, we
can conclude that the read buffer size of SSD-A is 256 KB.
For SSD-C and SSD-D, the similar behavior is also observed
for the request sizes from 512 KB to 3072 KB (SSD-C), or
from 16 KB to 64 KB (SSD-D). Therefore, the read buffer size
of SSD-C and SSD-D is 3072 KB and 64 KB, respectively.
However, in case of SSD-B, the results of both “NAND” and
“Buffer” show exactly the same behavior, which implies that
SSD-B does not use any read buffer.

 0

 2000

 4000

 6000

 8000

 10000

 1 10 100 256 600

A
v
e
r
a
g
e

L
a
t
e
n
c
y

(
u
s
)

Size Of Read Requests (Kbytes)

NAND
Buffer

(a) SSD-A

 0

 2000

 4000

 6000

 8000

 10000

 1 10 64 128 600

Size Of Read Requests (Kbytes)

NAND
Buffer

(b) SSD-B

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 10 100 512 3072

Size Of Read Requests (Kbytes)

NAND
Buffer

(c) SSD-C

 0

 2000

 4000

 6000

 8000

 10000

 1 10 64 128 600

Size Of Read Requests (Kbytes)

NAND
Buffer

(d) SSD-D

Fig. 8. The latency of read requests with increasing the sizeof read requests

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 4 16 100 255 600

L
a
t
e
n
c
i
e
s

(
u
s
)

Size Of Write Requests (Kbytes)

NAND
Buffer

(a) SSD-A

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 4 16 128 600

Size Of Write Requests (Kbytes)

NAND
Buffer

(b) SSD-B

 0

 2000

 4000

 6000

 8000

 10000

 1 4 16 112 600

Size Of Write Requests (Kbytes)

NAND
Buffer

(c) SSD-C

 0

 2000

 4000

 6000

 8000

 10000

 1 4 16 128 600

Size Of Write Requests (Kbytes)

NAND
Buffer

(d) SSD-D

Fig. 9. The latency of write requests with increasing the size of write requests

F. The Write Buffer Capacity

We have introduced two procedures, ProbeWriteBuffer()
and ProbeNANDWriteLatency() in Section III-F. ProbeWrite-
Buffer() measures the latency required to store data to the write
buffer, while ProbeNANDWriteLatency() estimates the write
latency needed to flush data to NAND flash memory. Figure 9
plots the measured latencies for four commercial SSDs with
various request sizes ranging from 1 KB to 1024 KB. In
Figure 9, “NAND” and “Buffer” indicate the latencies obtained
from ProbeNANDWriteLatency() and ProbeWriteBuffer(), re-
spectively.

When the size of write requests is less than or equal to 255
KB, “Buffer” shows much shorter latencies than “NAND” in
Figure 9(a). This indicates that such write requests are fully
handled in the write buffer. On the other hand, if the size of
write requests becomes larger than 255 KB, “Buffer” shows a
sharp increase in the write latency probably because the write
buffer cannot accommodate the requested data and causes flash
write operations. In particular, the lowest latency of “Buffer”
is similar to that of “NAND” when the request size is 255 KB.
This confirms that the size of write buffer in SSD-A is 255
KB. Any attempt to write data larger than 255 KB incurs extra
flush overhead, although the write buffer is empty. For SSD-C,
the similar behavior is also observed when the request size is
112 KB. Thus, we believe that write buffer size of SSD-C is
112 KB.

In cases of SSD-B and SSD-D, slightly different behaviors
have been noted. For SSD-B, we can see that “Buffer” exhibits
the faster latency compared to “NAND” when the request size
is between 1 KB and 128 KB. For the same reason with SSD-A
and SSD-C, the size of the write buffer for SSD-B is estimated
to 128 KB. An interesting point is that the result of “NAND” is
getting improved as the request size is increased from 1 KB
to 128 KB. This phenomenon is related to the fact that the
clustered page size of SSD-B is 128 KB (cf. Section IV-B);

when the request size is less than the clustered page size,
the latency suffers from the read-modify-write overhead. This
overhead becomes smaller as the request size approaches to
the clustered page size, and the amount of data read from the
original clustered page gets smaller.

In SSD-D, the overall trend looks similar to SSD-B. How-
ever, when we compare the write latency of SSD-D with the
read latency shown in Figure 8(d), we can notice that the
former (approximately 1500µsec) is much slower than the
latter (approximately 200µsec) with 1 KB request size. If
the data were written to the buffer, there is no reason for the
write request to take a significantly longer time compared to
the read request. The only possible explanation is that, forthe
write requests less than or equal to 128 KB, SSD-D bypasses
the write buffer and stores the data directly to NAND flash
memory. Although it appears that SSD-D does not make use
of any write buffer, we could not draw any conclusion using
our methodology since the behavior of SSD-D is so different
from other SSDs.

V. CONCLUSION

In this paper, we have proposed a new methodology that can
extract several important parameters affecting the performance
of SSDs. The parameters discussed in this paper include the
clustered page size, the clustered block size, the type of NAND
flash memory, and the size of read/write buffer.

The clustered page size is found by using the overhead
associated with the read-modify-write operation, which arises
when the write request is not aligned to the clustered page
boundary. A clustered page in SSDs is the basic unit of
alignment for read/write operations. Thus, the clustered page
size obtained by our methodology can be used when design-
ing and optimizing higher-level software to improve the I/O
performance on SSDs.

A clustered block is the erase unit in SSDs. The erase
operation is occurred when SSDs trigger the garbage collection
process to make free blocks by cleaning obsolete pages. This
garbage collection is one of main reasons that cause significant
performance degradation in SSDs. Therefore, the clustered
block size can be a useful hint when we update a large amount
of data; if we issue write requests so that they are aligned tothe
clustered block boundary, the overhead of garbage collection
will be minimized.

We have identified the type of NAND flash memory used in
SSDs by investigating the distribution of write latencies.We
have estimated the size of read/write buffer by comparing the
time to handle the request from the buffer with the time to
handle the same request from NAND flash memory. For this,
we have designed our microbenchmarks carefully so that they
can generate both buffer hit or miss scenarios.

For SSD-A, we have confirmed that all the parameter values
we found are correct. From the specification of each SSD
model, we have verified that the type of NAND flash memory
identified by our methodology is also correct for all the tested
SSDs. Unfortunately, however, other parameter values could
not be validated due to the absence of enough information.

All of these parameters can be used to predict the perfor-
mance of SSDs and to analyze their performance behaviors.
In addition, those parameters will allow us to understand the
internal architecture of the target SSD better and to achieve the
best performance by performing SSD-specific optimizations.
We will extend our methodology to cover other parameters,
and refine it further through more case studies on commercial
SSDs. We also plan to optimize I/O schedulers or file systems
so they can take maximum advantage of the performance
parameters introduced in this paper.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy. Design tradeoffs for ssd performance. InATC’ 08:
USENIX 2008 Annual Technical Conference, pages 57–70, Berkeley,
CA, USA, 2008. USENIX Association.

[2] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and
control in gray-box systems. InSOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles, pages 43–56, New
York, NY, USA, 2001. ACM.

[3] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: using
flash memory to build fast, power-efficient clusters for data-intensive
applications. InASPLOS ’09: Proceeding of the 14th international
conference on Architectural support for programming languages and
operating systems, pages 217–228, New York, NY, USA, 2009. ACM.

[4] T. E. Denehy, J. Bent, F. I. Popovici, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Deconstructing storage arrays.SIGOPS Oper. Syst.
Rev., 38(5):59–71, 2004.

[5] G. R. Ganger, B. L. Worthington, and Y. N. Patt. The disksim
simulation environment. technical report cse-tr-358-98,dept. of electrical
engineering and computer science, univ. of michigan. Technical report,
1998.

[6] A. Gupta, Y. Kim, and B. Urgaonkar. Dftl: a flash translation layer
employing demand-based selective caching of page-level address map-
pings. InASPLOS ’09: Proceeding of the 14th international conference
on Architectural support for programming languages and operating
systems, pages 229–240, New York, NY, USA, 2009. ACM.

[7] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok.Operating
system profiling via latency analysis. InOSDI ’06: Proceedings of the
7th symposium on Operating systems design and implementation, pages
89–102, Berkeley, CA, USA, 2006. USENIX Association.

[8] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee. A superblock-based flash
translation layer for nand flash memory. InEMSOFT ’06: Proceedings
of the 6th ACM & IEEE International conference on Embedded software,
pages 161–170, New York, NY, USA, 2006. ACM.

[9] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory based
file system. InTCON’95: Proceedings of the USENIX 1995 Technical
Conference Proceedings on USENIX 1995 Technical Conference Pro-
ceedings, pages 13–13, Berkeley, CA, USA, 1995. USENIX Association.

[10] D.-H. Kim and Y.-T. Lee. Flash memory device having multi-level cell
and reading and programming method thereof. United States Patent, no.
7,035,144, February 2006.

[11] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. A space-efficient
flash translation layer for CompactFlash systems.IEEE Transactions on
Consumer Electronics, 48(2):366–375, May 2002.

[12] J. H. Kim, S. H. Jung, and Y. H. Song. Cost and performanceanalysis
of nand mapping algorithms in a shared-bus multi-chip configuration.
IWSSPS ’08: The 3rd International Workshop on Software Support for
Portable Storage, 3(3):33–39, Oct 2008.

[13] D. Kotz, S. B. Toh, and S. Radhakishnan. A detailed simulation model of
the hp 97560 disk drive. technical report pcs-tr94-220, dept. of computer
science, darthmouth college. Technical report, 1994.

[14] M. Lasser and K. Yair. Flash memory management method that is
resistant to data corruption by power loss. United States Patent, no.
6,988,175, January 2006.

[15] E. K. Lee and R. H. Katz. An analytic performance model ofdisk arrays.
In SIGMETRICS ’93: Proceedings of the 1993 ACM SIGMETRICS
conference on Measurement and modeling of computer systems, pages
98–109, New York, NY, USA, 1993. ACM.

[16] Y.-G. Lee, D. Jung, D. Kang, and J.-S. Kim.µ-ftl:: a memory-efficient
flash translation layer supporting multiple mapping granularities. In
EMSOFT ’08: Proceedings of the 8th ACM international conference on
Embedded software, pages 21–30, New York, NY, USA, 2008. ACM.

[17] R. V. Meter. Observing the effects of multi-zone disks.In ATEC ’97:
Proceedings of the annual conference on USENIX Annual Technical
Conference, pages 2–2, Berkeley, CA, USA, 1997. USENIX Associa-
tion.

[18] C. Park, P. Talawar, D. Won, M. Jung, J. Im, S. Kim, and Y. Choi. A
high performance controller for nand flash-based solid state disk (nssd).
Non-Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW
2006. 21st, pages 17–20, 2006.

[19] C. Ruemmler and J. Wilkes. An introduction to disk drivemodeling.
pages 462–473, 2000.

[20] Samsung Elec. 2gx8 bit nand flash memory (k9gag08u0m).
http://www.samsung.com/global/business/semiconductor/productInfo.do?
fmly id=672&partnum=K9GAG08U0M, 2009.

[21] Samsung Elec. 2gx8 bit nand flash memory (k9wag08u1a).
http://www.samsung.com/global/business/semiconductor/productInfo.do?
fmly id=159&partnum=K9WAG08U1A, 2009.

[22] Samsung Elec. Nand flash memory. http://www.samsung.com/
global/business/semiconductor/products/flash/Products NANDFlash.html,
2009.

[23] Samsung Elec. Samsung product selection guide.
http://www.samsung.com/global/business/semiconductor/support/
brochures/downloads/memory/psgmemory 200804.pdf, 2009.

[24] Samsung Elec. Samsung ssd. http://www.samsung.com/
global/business/semiconductor/products/flash/ssd/2008/home/home.html,
2009.

[25] J. Schindler and G. R. Ganger. Automated disk drive characterization,
cmu scs technical report cmu-cs-99-176. Technical report,1999.

[26] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-aligned
extents: Matching access patterns to disk drive characteristics. InFAST
’02: Proceedings of the Conference on File and Storage Technologies,
pages 259–274, Berkeley, CA, USA, 2002. USENIX Association.

[27] P. J. Shenoy and H. M. Vin. Cello: A disk scheduling framework for
next generation operating systems. Technical report, Austin, TX, USA,
1998.

[28] R. Y. Wang, T. E. Anderson, and D. A. Patterson. Virtual log based
file systems for a programmable disk. Technical report, Berkeley, CA,
USA, 1999.

[29] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling algorithms
for modern disk drives. InSIGMETRICS ’94: Proceedings of the
1994 ACM SIGMETRICS conference on Measurement and modelingof
computer systems, pages 241–251, New York, NY, USA, 1994. ACM.

[30] B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes. On-line
extraction of scsi disk drive parameters.SIGMETRICS Perform. Eval.
Rev., 23(1):146–156, 1995.

[31] K. Yotov, K. Pingali, and P. Stodghill. Automatic measurement of
memory hierarchy parameters. InSIGMETRICS ’05: Proceedings of the
2005 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 181–192, New York, NY, USA,
2005. ACM.

