
Interference Management
for Distributed Parallel Applications

in Consolidated Clusters

Jaeung Han¹, Seungheun Jeon¹, Young-ri Choi²,
and Jaehyuk Huh¹

¹School of Computing, KAIST
²School of Electrical and Computer Engineering, UNIST

Node

Core Core

Shared
Resource

Interference in Consolidated Systems
• Resource contention causes performance interference

– Last level caches, limited memory bandwidth, etc

• In single-node applications, the effect of intra-node interference is
bounded within the system (node)

2

Node

Core CoreTarget
App

Shared
Resource

Interference in Consolidated Systems
• Resource contention causes performance interference

– Last level caches, limited memory bandwidth, etc

• In single-node applications, the effect of intra-node interference is
bounded within the system (node)

2

Node

Core CoreCo-
runner

Target
App

Shared
Resource

Interference in Consolidated Systems
• Resource contention causes performance interference

– Last level caches, limited memory bandwidth, etc

• In single-node applications, the effect of intra-node interference is
bounded within the system (node)

2

Interference in Consolidated Systems
• Resource contention causes performance interference

– Last level caches, limited memory bandwidth, etc

• In single-node applications, the effect of intra-node interference is
bounded within the system (node)

• In distributed applications, the interference effect from participating
systems can interact with each other

2

Node 4

Core CoreTarget
App

Shared
Resource

Node 3

Core CoreTarget
App

Shared
Resource

Node 2

Core CoreTarget
App

Shared
Resource

Node 1

Core CoreTarget
App

Shared
Resource

Co-
runner

Co-
runner

Co-
runner

Co-
runner

Distributed Parallel Application
execution time under

interference ?

Node 4

Core CoreTarget
App

Shared
Resource

Node 3

Core CoreTarget
App

Shared
Resource

Node 2

Core CoreTarget
App

Shared
Resource

Node 1

Core CoreTarget
App

Shared
Resource

• Execution time increases by interference in participating
nodes vary by application characteristics

Interference in Distributed Applications

6

of Interfering nodes

Co-
runner

Co-
runner

Co-
runner

Co-
runner

Exec.
time

app A
app B
app C

Challenges in Distributed Applications

• Can we estimate performance impact of interference for
distributed parallel applications?

• Two challenges
– Interference in a subset of nodes: interference propagation

– Different levels of interference: interference heterogeneity

• We propose a profiling-based interference estimation
method

7

Quantifying Interference within a Node

• Bubble-Up [MICRO’11, Mars et al.]

– Profiling-based interference model for single-node applications
– Estimate the performance of co-located applications based on

per-application interference profiles

• Per-application interference profile
– Sensitivity profile: performance sensitivity to various levels of

interference from the co-runner
– Pressure score: interference level generated by the application

8

Consolidated system

Performance
Estimation

Interference profile
for app B

Interference profile
for app A app A app B

Sensitivity Profile

Node

Core

Shared
Resource

CoreReporterTarget
App

Bubble-Up Interference Profile
• Interference intensity is quantified to interference pressure score
• Bubble generates tunable amounts of interference pressure
• Reporter measures the pressure score (interference intensity

generated by the application)

9

(pressure score: 4)Score pressure

Bubble’s pressure

Exec.
timeBubble

Sensitivity Profile

Node

Core

Shared
Resource

CoreReporterTarget
App

Bubble-Up Interference Profile
• Interference intensity is quantified to interference pressure score
• Bubble generates tunable amounts of interference pressure
• Reporter: measure the pressure score (interference intensity

generated by the application)

10

(pressure score: 4)Score pressure

Bubble’s pressure

Exec.
timeBubble

Interference Profile for Distributed Applications
1) Pressure Score
2) Interference Propagation Profile
3) Heterogeneity Conversion Policy

Propagation in Distributed Applications

• Interference on a subset of nodes can slow down the
execution progress in non-interfering nodes

• Interference propagation profile
– Execution time changes by the number of interfering nodes
– Each node suffers from the same level of interference

11

of Interfering nodes

Exec.
time

Pressure level 1

Pressure level 2

Pressure level 3

Common Interference Propagation Patterns

• High propagation
– One interfering node affects the exec.

time significantly
– 104.milc, 126.lammps ...

• Proportional propagation
– Exec. time increases proportionally
– 113.GemsFDTD ...

• Low propagation
– Resilient to the interference
– Kmeans(HADOOP), PageRank(SPARK) ...

12

Reducing Profiling Runs

• Binary-optimized
– Shapes of curves are similar, regardless of pressure levels
– Interpolate the exec. time from # of interfering nodes and

pressure levels

0 1 2 3 4 5 6 7 8 9 10
Number of
interfering nodes

Normalized
execution
time

: measure really : estimate

13

Pressure level 4

Pressure level 1

Pressure level 3
Pressure level 2

Interference Propagation

• Binary-optimized
– Shape of curves are similar, regardless of bubble pressures
– Extrapolate the exec. time from # interfering nodes and bubble

pressures

0 1 2 3 4 5 6 7 8 9 10
Number of
interferening nodes

Normalized
Execution
time

: measure really : estimate

14

bubble4

bubble1

bubble3
bubble2

Binary-optimized only need 18.45% of total profiling space
with 3.16% error

• Each node can suffer with different interference intensity

• Too large space for profiling all possible heterogeneous
interferences
– 4 nodes + 9 interference levels : 495
– 8 nodes + 9 interference levels : 12,870
– 32 nodes + 9 interference levels : 76,904,685

Interference Heterogeneity

15

• Interference Heterogeneity Profile
– Convert heterogeneous interference to an equivalent

hypothetical run with homogeneous interference

Interference Heterogeneity Profile

16

Equivalent run with
Homogeneous interference

Consolidated cluster with
Hetero. Interference

Propagation Profile

Interference
Heterogeneity

Profile

Performance
Estimation

Conversion Policies

• 4 available conversion policies
– N max
– N+1 max
– All max
– Interpolate

• Evaluate all policies during profiling runs, and pick the
best one for each application

• Use random sampling to reduce the number of profiling
runs

17

• 4 available conversion policies
– N max

• Considers only the worst interfering nodes
– N+1 max
– All max
– Interpolate

Conversion Policies

18

Am
ou

nt
 o

f I
nt

er
fe

re
nc

e

Interfering nodes

Am
ou

nt
 o

f I
nt

er
fe

re
nc

e

Interfering nodes

Convert Policies

• 4 available conversion policy
– N max
– N+1 max

• Augments N max policy
• The rest of interfering nodes are merged to the same worst pressure

– All max
– Interpolate

19

Am
ou

nt
 o

f I
nt

er
fe

re
nc

e

Interfering nodes

Am
ou

nt
 o

f I
nt

er
fe

re
nc

e

Interfering nodes

Convert Policies

• 4 available convert policies
– N max
– N+1 max
– All max

• The worst pressure propagates directly to all nodes
– Interpolate

20

Am
ou

nt
 o

f I
nt

er
fe

re
nc

e

Interfering nodes

Am
ou

nt
 o

f I
nt

er
fe

re
nc

e

Interfering nodes

Convert Policies

• 4 available convert policies
– N max
– N+1 max
– All max
– Interpolate

• Average interference from all nodes

21

Am
ou

nt
 o

f I
nt

er
fe

re
nc

es

Interfering nodes

Am
ou

nt
 o

f I
nt

er
fe

re
nc

es

Interfering nodes

Selecting Optimal Conversion Policy

22

3.50%

• Evaluate 4 policies for each application

• Select the best policy for each application
• Achieve less than 9% average error

2.20%

7.34%

1.91% 1.11%
4.01% 3.37%

8.62%
4.55% 4.15%

6.60%
3.69%

Performance Estimation Steps

• Building interference profile for each application

• Estimating application execution time in a consolidated
cluster

23

1. Build interference propagation profile (binary-optimized profiling)
2. Measure interference intensity generated from the application

(pressure score)
3. Find the best heterogeneity conversion policy (random sampling)

1. For each node, find the interference intensity from the co-runner
2. Apply the heterogeneity conversion policy, and find a hypothetical

run with homogeneous interference
3. Use the propagation profile to estimate the final execution time

Validation Results

• All possible pairwise combinations of workloads in consolidated runs
• The average error for each application against all the other

applications as the co-runner
• Most of the workloads have less than 10% errors

24

Two Case Studies

• Placement for performance
– Maximize the overall cluster throughput
– Selected 10 workload combinations
– Use simulated annealing(SA) as placement algorithm

• QoS-Aware placement
– 1 target workload + 3 different co-runners
– Provide QoS guarantee for the target workload

• Compare to zero interference run
– Use SA under the QoS Constraints as placement algorithm

25

Two Case Studies

• Placement for performance
– Maximize the overall cluster throughput
– Selected 10 workload combinations
– Use simulated annealing(SA) as placement algorithm

• QoS-Aware placement
– 1 target workload + 3 different co-runner
– Provide QoS guarantee for the target workload

• Compare to zero interference run
– Use SA under the QoS Constraints as placement algorithm

26

Placement Results

• Best : the best placement based on performance estimation
• Random : Average result of 5 random placements
• Worst : the worst placement based on performance estimation

27

Results from Amazon EC2

• Validation for larger systems

28

Workload Best Policy Avg. error(%) Std. dev.
M.milc N+1 max 12.01 7.27
M.Gems N+1 max 11.49 6.28
M.zeus ALL max 6.40 4.52
M.lu N max 5.28 4.36

Conclusion
• Proposed a profiling-based interference estimation for distributed

applications
– Extended the Bubble-Up technique

• Per-application interference profile
– Pressure score + propagation profile + heterogeneity conversion

• Limitation 1: Static profiling
– Assume a priori knowledge of each application
– Cannot reflect dynamic changes

• Limitation 2: Pairwise interaction
– Up-to two applications can be co-located on each node

29

	Interference Management �for Distributed Parallel Applications �in Consolidated Clusters
	Interference in Consolidated Systems
	Interference in Consolidated Systems
	Interference in Consolidated Systems
	Interference in Consolidated Systems
	Interference in Distributed Applications
	Challenges in Distributed Applications
	Quantifying Interference within a Node
	Bubble-Up Interference Profile
	Bubble-Up Interference Profile
	Propagation in Distributed Applications
	Common Interference Propagation Patterns
	Reducing Profiling Runs
	Interference Propagation
	Interference Heterogeneity
	Interference Heterogeneity Profile
	Conversion Policies
	Conversion Policies
	Convert Policies
	Convert Policies
	Convert Policies
	Selecting Optimal Conversion Policy
	Performance Estimation Steps
	Validation Results
	Two Case Studies
	Two Case Studies
	Placement Results
	Results from Amazon EC2
	Conclusion

