KAIST

Fairness-oriented Scheduling Support

for Multicore Systems

Changdae Kim and Jaehyuk Huh
KAIST




: pees KAIST
Multicores have Uneven Capabilities

~ ~
@ ©

~J
~J

delay (ns)
o
S A —

-~
(2]

10

vertical location ° 5 _
00 horizontal location

Asymmetric Multicores Within-die Process Variation

frequency

DVFS




Throughput-maximizing Scheduling WAIST

« Max-perf: maximize the overall throughput
[Kumar’'03], [Koufaty'10], [Kwon'11], [Saez'10], [Shelepov'09], [Craeynest'12]

App1 App2
Speedup: 3.0 Speedup: 2‘,9

P

1) Estimate fast core speedup

_ perfon fast core
~ perfon slow core

2) Assign fast core
to highest speedup app

ey e




Fairness-Maximizing Scheduling WAIST

« Max-fair: maximize the fairness [kwon'11]

App1 App2
Speedup: 3.0 Speedup: 2.9

: T“;r 1]r L e i"ﬁ :.:.:
£ il g

Ei] S

1) Equal share of fast core
to all apps

2) Equal share of slow core
to all apps




Max-Fair vs. Max-Perf

Fairness

Max-fair Scheduling

Appl
speedup: 3.0

App2
speedup: 1.5

Throughput
(average)

+15%

MinFairness
(minimum)

-20%

Uniformity
(variance)

-43%

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

KAIST

Throughput

Max-perf Scheduling

1 —

Appl
speedup: 3.0

[Craeynest'13

App2
speedup: 1.5




Max-Fair vs. Max-Perf Kot

Fairness maximizing = No throughput 1

Throughput maximizing = Significantly Unfair




: : : KAIST
Fairness-oriented Scheduling

First, Fairness,
Then, Throughput

Policies
Min-fair: Guarantee MinFairness, then Throughput t

Similar-min-fair: Min-fair + Improve Uniformity

Implementation issues
Estimate accurate value of fast core speedup
Schedule as core share




Min-Fair Scheduling oot

« Guarantee minimum performance as users want

App1 App2 App3
Speedup: 2.9 Speedup: 1.5

]
4

target X perfmax—fair — 1
speedup — 1
(Detalils in the paper)

= -
- [}
- -
- -
- -
- =
L Jrar |
= =

Fast core

1) Administrator set f. MinFairness

2) Required fast core to all apps = MinFairness > target

3) Remaining fast core to high speedup app = throughput 1
4) Distribute slow core to all apps




Similar-Min-Fair Scheduling WAIST

« Similar speedup apps = same throughput 1

App1 App2 App3
Speedup: 3.0

peedup: 2.9 Speedup: 1.5

7

i3

EEEL 1
e Dl
:

g el |
L ; i

FNNRENER
HoEER

INNRENNR
Py i =
EERRERNER

|
B

[E]
n

Slow core

Slow core

Fast core

1) Administrator sets similarity and target of MinFairness
2) Min-fair scheduling with farget

3) Group similar apps (speedup difference < similarity)
4) Even fast core share out among apps in a group




Sampling-based Speedup Estimation KAIST

« Force to run on both types of cores for each interval
— Similar to [Kumar ‘03]

« Measure performance using PMU (Performance Monitoring Units)
— Performance metric: Instruction Per Seconds (IPS)

moving average of IPS on fast core

dup =
Speeaup moving average of IPS on slow core

)
J)

Architecture independent mechanism

)
J

Low error rate: avg. 2.70%, at worst 9.92%

Must run on both types = min-fair already does

¢ ¢

Incur frequent thread migration

=> Little impact on cores sharing a LLC [Craeynest '12]
=> Less than 1.8% at worst




: : KAIST
Implementation on Linux Kernel

« Add fast round and s/low round on thread context
— +1 when run on fast/slow core for fast/slow core share*30ms
— Progress together = schedule as core share ratio

« Swap threads to balance fast_round and slow_round

Thread1 Thread?2
fast_round > slow_round fast_round < slow round

Fast core

- Measure IPS on each type of cores

« Core share update interval: 2 seconds

11




Evaluation Methodology KAIST

« Emulate uneven multicores using DVFS
— AMD Phenom ll; 2 fast cores and 4 slow cores

2.8GHz | 2.8GHz § 0.8GHz § 0.8GHz | 0.8GHz § 0.8GHz

Shared LLC

* Big.LITTLE architecture
— Odroid-XU3 Lite: 4 big cores and 4 little cores
— PMU not available = use offline speedup value

« Workloads: mix of SPECCPU2006

— Run repeatedly until all apps finish at least once
— Performance: execution time of the first run




: .. KAIST
Result: Diverse Applications

« Guarantee MinFairness and then improve throughput

Max-perf v Min-fair(85%)

~

Similar-min-fair(0.2, 85%)

2 2 2
E
Ié 15 15
=
e - - ..
£
S o5 0.5
2
0 0
Applications Applications
Throughput: 107% 104%
MinFairness: 62% 85%

Q8% )

\Uniformity: 43%




Result: Similar Applications

KAIST

« Improve fairness without effect on throughput

/ Max-perf v Min-fair(85%)

2 2

1.5
) I I I I
0

Applications

Perf norm. to Max-fair

100%
MinFairness: 56%
\Uniformity: 33%

Throughput:

Similar-min-fair(0.2, 85%)

2

1.5

[EEY

0]

o

Applications

100%
87%

Qoo




Result: All Mixes

Fairness Throughput

© o O
> o

Min
o O
o N

B Similar-Min-fair(0.2, 85%)

KAIST

Throughput
Achieve 51% of Max-perf

~N

MinFairness

Q@QQQQ@Q@QQ®QQ

PN

Uniformity
Avg. 24% 1

J

HHH MMM LLL SAME MLL MML HMM HHM HML.aHML.b HHL.a HHL.b HLL.a HLL.b

15



: KAIST
Conclusion *

 Fairness-oriented scheduling for uneven multicores
— First, Fairness, Then, Throughput

* Architecture independent speedup estimation
— High accuracy and little overhead

* Implemented on linux kernel 3.7.3

« Real machine results
— MinFairness: mostly guaranteed (missed less than 3%)
— Uniformity: avg. 24% 1
— Throughput: achieve 51% of Max-perf




	Fairness-oriented Scheduling Support�for Multicore Systems
	Multicores have Uneven Capabilities
	Throughput-maximizing Scheduling
	Fairness-Maximizing Scheduling
	Max-Fair vs. Max-Perf
	Max-Fair vs. Max-Perf
	Fairness-oriented Scheduling
	Min-Fair Scheduling
	Similar-Min-Fair Scheduling
	Sampling-based Speedup Estimation
	Implementation on Linux Kernel
	Evaluation Methodology
	Result: Diverse Applications
	Result: Similar Applications
	Result: All Mixes
	Conclusion
	ASK YOU WHEN YOU ASK ME
	슬라이드 번호 18
	For More Core Types
	Effect of Shared Cache
	Related Work: scaled load balancing
	Related Work: R%-fair
	Related Work: Guaranteed fairness
	Related Work: Comparisons
	Required Fast Core Share for Min-Fair
	Multi-threaded Applications
	2 Second (Long) Interval
	What is Fair in Uneven Multicores?
	Why is Fairness Important
	Get Fairness  Lose Energy Efficiency
	Accuracy of Speedup Estimation
	Overhead: CPU time
	Overhead: Throughput degradation
	Fairness Analysis of max-perf

