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Multicores have Uneven Capabilities

~ ~
@ ©

~J
~J

delay (ns)
o
S A —

-~
(2]

10

vertical location ° 5 _
00 horizontal location

Asymmetric Multicores Within-die Process Variation

frequency

DVFS




Throughput-maximizing Scheduling WAIST

« Max-perf: maximize the overall throughput
[Kumar’'03], [Koufaty'10], [Kwon'11], [Saez'10], [Shelepov'09], [Craeynest'12]

App1 App2
Speedup: 3.0 Speedup: 2‘,9
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1) Estimate fast core speedup

_ perfon fast core
~ perfon slow core

2) Assign fast core
to highest speedup app
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Fairness-Maximizing Scheduling WAIST

« Max-fair: maximize the fairness [kwon'11]

App1 App2
Speedup: 3.0 Speedup: 2.9

: T“;r 1]r L e i"ﬁ :.:.:
£ il g

Ei] S

1) Equal share of fast core
to all apps

2) Equal share of slow core
to all apps




Max-Fair vs. Max-Perf

Fairness

Max-fair Scheduling

Appl
speedup: 3.0

App2
speedup: 1.5

Throughput
(average)

+15%

MinFairness
(minimum)

-20%

Uniformity
(variance)

-43%
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Max-perf Scheduling
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Appl
speedup: 3.0

[Craeynest'13

App2
speedup: 1.5




Max-Fair vs. Max-Perf Kot

Fairness maximizing = No throughput 1

Throughput maximizing = Significantly Unfair
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Fairness-oriented Scheduling

First, Fairness,
Then, Throughput

Policies
Min-fair: Guarantee MinFairness, then Throughput t

Similar-min-fair: Min-fair + Improve Uniformity

Implementation issues
Estimate accurate value of fast core speedup
Schedule as core share




Min-Fair Scheduling oot

« Guarantee minimum performance as users want

App1 App2 App3
Speedup: 2.9 Speedup: 1.5

]
4

target X perfmax—fair — 1
speedup — 1
(Detalils in the paper)
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Fast core

1) Administrator set f. MinFairness

2) Required fast core to all apps = MinFairness > target

3) Remaining fast core to high speedup app = throughput 1
4) Distribute slow core to all apps




Similar-Min-Fair Scheduling WAIST

« Similar speedup apps = same throughput 1

App1 App2 App3
Speedup: 3.0

peedup: 2.9 Speedup: 1.5
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Slow core

Slow core

Fast core

1) Administrator sets similarity and target of MinFairness
2) Min-fair scheduling with farget

3) Group similar apps (speedup difference < similarity)
4) Even fast core share out among apps in a group




Sampling-based Speedup Estimation KAIST

« Force to run on both types of cores for each interval
— Similar to [Kumar ‘03]

« Measure performance using PMU (Performance Monitoring Units)
— Performance metric: Instruction Per Seconds (IPS)

moving average of IPS on fast core

dup =
Speeaup moving average of IPS on slow core

)
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Architecture independent mechanism

)
J

Low error rate: avg. 2.70%, at worst 9.92%

Must run on both types = min-fair already does

¢ ¢

Incur frequent thread migration

=> Little impact on cores sharing a LLC [Craeynest '12]
=> Less than 1.8% at worst
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Implementation on Linux Kernel

« Add fast round and s/low round on thread context
— +1 when run on fast/slow core for fast/slow core share*30ms
— Progress together = schedule as core share ratio

« Swap threads to balance fast_round and slow_round

Thread1 Thread?2
fast_round > slow_round fast_round < slow round

Fast core

- Measure IPS on each type of cores

« Core share update interval: 2 seconds

11




Evaluation Methodology KAIST

« Emulate uneven multicores using DVFS
— AMD Phenom ll; 2 fast cores and 4 slow cores

2.8GHz | 2.8GHz § 0.8GHz § 0.8GHz | 0.8GHz § 0.8GHz

Shared LLC

* Big.LITTLE architecture
— Odroid-XU3 Lite: 4 big cores and 4 little cores
— PMU not available = use offline speedup value

« Workloads: mix of SPECCPU2006

— Run repeatedly until all apps finish at least once
— Performance: execution time of the first run
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Result: Diverse Applications

« Guarantee MinFairness and then improve throughput

Max-perf v Min-fair(85%)
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Throughput: 107% 104%
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Result: Similar Applications

KAIST

« Improve fairness without effect on throughput

/ Max-perf v Min-fair(85%)
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100%
MinFairness: 56%
\Uniformity: 33%

Throughput:

Similar-min-fair(0.2, 85%)
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Result: All Mixes

Fairness Throughput
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Throughput
Achieve 51% of Max-perf
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Conclusion *

 Fairness-oriented scheduling for uneven multicores
— First, Fairness, Then, Throughput

* Architecture independent speedup estimation
— High accuracy and little overhead

* Implemented on linux kernel 3.7.3

« Real machine results
— MinFairness: mostly guaranteed (missed less than 3%)
— Uniformity: avg. 24% 1
— Throughput: achieve 51% of Max-perf
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