
Fairness-oriented Scheduling Support

for Multicore Systems

Changdae Kim and Jaehyuk Huh

KAIST

Multicores have Uneven Capabilities

2

Asymmetric Multicores Within-die Process Variation

DVFS

fr
eq

ue
nc

y

• Max-perf: maximize the overall throughput
[Kumar’03], [Koufaty’10], [Kwon‘11], [Saez‘10], [Shelepov’09], [Craeynest‘12]

App2
Speedup: 1.5

App2
Speedup: 2.9

1) Estimate fast core speedup

=
perf on fast core
perf on slow core

2) Assign fast core
to highest speedup app

Throughput-maximizing Scheduling

3

Fast core Slow core

App1
Speedup: 3.0 2.9

Unfair

• Max-fair: maximize the fairness [Kwon’11]

App2
Speedup: 2.9

1) Equal share of fast core
to all apps

2) Equal share of slow core
to all apps

Fairness-Maximizing Scheduling

4

Fast core Slow core

App1
Speedup: 3.0

No
throughput↑

Max-Fair vs. Max-Perf

5

Fairness Throughput

Throughput
(average)

+15%

MinFairness
(minimum)

-20%

Uniformity
(variance)

-43%

1 −
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

[Craeynest’13]

Max-Fair vs. Max-Perf

6

Throughput
(average)

+1%

MinFairness
(minimum)

-49%

Uniformity
(variance)

-69%

Fairness Throughput

2.9 2.9

Fairness maximizing  No throughput↑

Throughput maximizing  Significantly Unfair

Fairness-oriented Scheduling

7

Policies
Min-fair: Guarantee MinFairness, then Throughput↑

Similar-min-fair: Min-fair + Improve Uniformity

Fairness Throughput
First, Fairness,

Then, Throughput

Implementation issues
Estimate accurate value of fast core speedup

Schedule as core share

• Guarantee minimum performance as users want

Min-Fair Scheduling

8

1) Administrator set target of MinFairness

2) Required fast core to all apps  MinFairness > target

3) Remaining fast core to high speedup app  throughput↑

4) Distribute slow core to all apps

App2
Speedup: 2.9

Fast core Slow core

App1
Speedup: 3.0

App3
Speedup: 1.5

Slow core

Required fast core

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 1

(Details in the paper)

Similar-Min-Fair Scheduling

• Similar speedup apps  same throughput↑

9

1) Administrator sets similarity and target of MinFairness

2) Min-fair scheduling with target

3) Group similar apps (speedup difference < similarity)

4) Even fast core share out among apps in a group

App2
Speedup: 2.9

Fast core Slow core

App1
Speedup: 3.0

App3
Speedup: 1.5

Slow core

Sampling-based Speedup Estimation

• Force to run on both types of cores for each interval
– Similar to [Kumar ‘03]

• Measure performance using PMU (PerformanceMonitoringUnits)

– Performance metric: Instruction Per Seconds (IPS)

10

speedup =
moving average of IPS on fast core

moving average of IPS on slow core

Architecture independent mechanism

Low error rate: avg. 2.70%, at worst 9.92%

Must run on both types

Incur frequent thread migration
 Little impact on cores sharing a LLC [Craeynest ‘12]
 Less than 1.8% at worst

 min-fair already does

• Add fast_round and slow_round on thread context
– +1 when run on fast/slow core for fast/slow_core_share*30ms
– Progress together schedule as core share ratio

• Swap threads to balance fast_round and slow_round

• Measure IPS on each type of cores

• Core share update interval: 2 seconds

Fast core

Implementation on Linux Kernel

11

Slow core

Thread2
fast_round < slow_round

Thread1
fast_round > slow_round

• Emulate uneven multicores using DVFS
– AMD Phenom II: 2 fast cores and 4 slow cores

• Big.LITTLE architecture
– Odroid-XU3 Lite: 4 big cores and 4 little cores
– PMU not available  use offline speedup value

• Workloads: mix of SPECCPU2006
– Run repeatedly until all apps finish at least once
– Performance: execution time of the first run

0.8GHz 0.8GHz 0.8GHz2.8GHz2.8GHz 0.8GHz

Evaluation Methodology

12

Shared LLC

• Guarantee MinFairness and then improve throughput

Result: Diverse Applications

13

Throughput: 107% 106% 104%

MinFairness: 62% 85% 85%

Uniformity: 43% 72% 78%

Pe
rf

no
rm

. t
o
 M

ax
-f

ai
r

Max-perf Min-fair(85%) Similar-min-fair(0.2, 85%)

• Improve fairness without effect on throughput

Result: Similar Applications

14

Throughput: 100% 100% 100%

MinFairness: 56% 85% 87%

Uniformity: 33% 72% 90%

Pe
rf

no
rm

. t
o
 M

ax
-f

ai
r

Max-perf Min-fair(85%) Similar-min-fair(0.2, 85%)

Throughput
Achieve 51% of Max-perf

Result: All Mixes

15

MinFairness
-3% -1% -1% -1%

Uniformity
Avg. 24%↑

Conclusion

• Fairness-oriented scheduling for uneven multicores
– First, Fairness, Then, Throughput

• Architecture independent speedup estimation
– High accuracy and little overhead

• Implemented on linux kernel 3.7.3

• Real machine results
– MinFairness: mostly guaranteed (missed less than 3%)
– Uniformity: avg. 24%↑
– Throughput: achieve 51% of Max-perf

16

	Fairness-oriented Scheduling Support�for Multicore Systems
	Multicores have Uneven Capabilities
	Throughput-maximizing Scheduling
	Fairness-Maximizing Scheduling
	Max-Fair vs. Max-Perf
	Max-Fair vs. Max-Perf
	Fairness-oriented Scheduling
	Min-Fair Scheduling
	Similar-Min-Fair Scheduling
	Sampling-based Speedup Estimation
	Implementation on Linux Kernel
	Evaluation Methodology
	Result: Diverse Applications
	Result: Similar Applications
	Result: All Mixes
	Conclusion
	ASK YOU WHEN YOU ASK ME
	슬라이드 번호 18
	For More Core Types
	Effect of Shared Cache
	Related Work: scaled load balancing
	Related Work: R%-fair
	Related Work: Guaranteed fairness
	Related Work: Comparisons
	Required Fast Core Share for Min-Fair
	Multi-threaded Applications
	2 Second (Long) Interval
	What is Fair in Uneven Multicores?
	Why is Fairness Important
	Get Fairness  Lose Energy Efficiency
	Accuracy of Speedup Estimation
	Overhead: CPU time
	Overhead: Throughput degradation
	Fairness Analysis of max-perf

