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• Stream prefetcher
– Stream: a sequence of consecutive memory blocks
– If any demand request accesses a block in a stream(from A to 

A+P), generate prefetch request A+P, A+P+1, … , A+P+N

• Parameters
– Distance (P): how far future the prefetcher predicts
– Degree (N): how many prefetch requests are generated
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Diverse Memory Architecture

• Traditional memory architecture
– DDR: one dominant memory type
– Relatively predictable bandwidth
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Prefetcher should consider various memory characteristics



Prior Work
• Feedback-directed prefetching [4]

– Use stream prefetcher: distance &
degree

– Choose one of five aggressive levels
– Consider application’s memory 

bandwidth requirement

• Limitation
– Five levels of pre-selected prefetch

configurations
– Consider DDR memory only

4

[4] Srinath et al. HPCA 2007
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Dynamic Prefetcher
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Outline
• Motivation : the effect of available memory bandwidth 

on prefetcher designs
– Effect on the aggressiveness of prefetcher
– Dominant factor: distance vs degree
– Cache pollution by prefetcher

• Contributions
– Propose a prefetcher reconfiguration mechanism
– Propose a pollution mitigation mechanism
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The Effect of Bandwidth on Prefetcher(1/2) 
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The Effect of Bandwidth on Prefetcher(1/2) 
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The Effect of Bandwidth on Prefetcher(2/2) 
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The Effect of Bandwidth on Prefetcher(2/2) 
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• Distance vs. degree
– Performance variation is higher  
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– Modest performance benefits 
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The Effect of Bandwidth on Prefetcher(2/2) 
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Observation 3: 
Mitigating pollution should still be needed and be simple



Dynamic Prefetcher Reconfiguration

• Search by Random Profiling(RP)
– Execute trial runs with randomly selected parameters
– Adopt hill climbing algorithm
– Direct performance metric (IPC: Instruction Per Cycles)
– Profiling phase : Execution phase  = 1 : 4 

• Optimizations
– Two-step profiling (decision order: distance  degree)
– Start profiling phase with previously used best parameters

9
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Hill Climbing Algorithm

• The performance curve has common form
• The curve rarely exhibits multiple local maximums
• Average trial runs is 3.77
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Mitigation of Cache Pollutions
• Insertion-only (Prior work [4])

– Adjust insertion location of prefetch data
– Promote to MRU directly

11
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– Insight: prefetch data are often not 

reused after the initial demand hit 
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Evaluation
• Full system OoO simulation on McSim + Gems + 

DRAMSim2;  8 cores, 128 ROB, 4 ways
• Three Level Cache hierarchy 
• Memory Configuration

• Stream prefetchers with 8 streams
• Benchmarks: SPECCPU, Mixed workloads

12

Parameter Values

DDR 2channels, DDR3-1600(800Mhz)

HBM 16channels, HBM-1600(800Mhz)

fast HBM HBM with x2 frequency : 1600MHz

half HBM HBM with /2 channels : 8 channels

Parameter Values

hybrid 1 HBM + DDR

hybrid 2 fast HBM + DDR

hybrid 3 half HBM + DDR
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Performance on diverse memory types

13
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Average 10.0% performance improvement (avg. 12.4% on HBM) 
on diverse memory architectures compared to the prior approach
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• Investigate how the differences in memory 
architecture affect the optimal prefetching scheme

• Study how the prefetching parameters can be 
dynamically and effectively adjusted

• Dynamic Prefetcher Reconfiguration
– Effective search by random profiling Prefetcher design on 

hybrid memory
– Simple soft-partition mechanism to mitigate pollution
– Average 10.0% performance improvement (avg. 12.4% on 

HBM) compared to the prior approach



Dynamic Prefetcher Reconfiguration 
for Diverse Memory Architectures

Junghoon Lee*, Taehoon Kim, and Jaehyuk Huh

34th IEEE International 
Conference 

on Computer Design
ICCD 2016 


	Dynamic Prefetcher Reconfiguration �for Diverse Memory Architectures
	Prefetching
	Prefetching
	Prefetching
	Prefetching
	Prefetching
	Prefetching
	Prefetching
	Diverse Memory Architecture
	Diverse Memory Architecture
	Diverse Memory Architecture
	Diverse Memory Architecture
	Prior Work
	Prior Work
	Prior Work
	Dynamic Prefetcher
	Dynamic Prefetcher
	Dynamic Prefetcher
	Outline
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	The Effect of Bandwidth on Prefetcher(2/2) 
	The Effect of Bandwidth on Prefetcher(2/2) 
	The Effect of Bandwidth on Prefetcher(2/2) 
	The Effect of Bandwidth on Prefetcher(2/2) 
	The Effect of Bandwidth on Prefetcher(2/2) 
	Dynamic Prefetcher Reconfiguration
	Dynamic Prefetcher Reconfiguration
	Dynamic Prefetcher Reconfiguration
	Hill Climbing Algorithm
	Hill Climbing Algorithm
	Hill Climbing Algorithm
	Hill Climbing Algorithm
	Hill Climbing Algorithm
	Mitigation of Cache Pollutions
	Mitigation of Cache Pollutions
	Mitigation of Cache Pollutions
	Mitigation of Cache Pollutions
	Mitigation of Cache Pollutions
	Mitigation of Cache Pollutions
	Mitigation of Cache Pollutions
	Evaluation
	Evaluation
	Performance on diverse memory types
	Performance on diverse memory types
	Performance on diverse memory types
	Performance on diverse memory types
	Performance on diverse memory types
	Performance on diverse memory types
	Performance on diverse memory types
	Performance on diverse memory types
	Summary
	Summary
	Dynamic Prefetcher Reconfiguration �for Diverse Memory Architectures
	Backup slides
	Performance with Single Type Memory
	Performance with Hybrid memory
	Prefetcher on Hybrid Memory 
	슬라이드 번호 60
	Hardware Cost
	Evaluation

