

34th IEEE International Conference on Computer Design *ICCD 2016*

Dynamic Prefetcher Reconfiguration for Diverse Memory Architectures

Junghoon Lee*, Taehoon Kim, and Jaehyuk Huh

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

- Stream prefetcher
 - Stream: a sequence of consecutive memory blocks
 - If any demand request accesses a block in a *stream*(from A to A+P), generate prefetch request A+P, A+P+1, ..., A+P+N
- Parameters
 - Distance (P): how far future the prefetcher predicts
 - Degree (N): how many prefetch requests are generated

- Stream prefetcher
 - Stream: a sequence of consecutive memory blocks
 - If any demand request accesses a block in a *stream*(from A to A+P), generate prefetch request A+P, A+P+1, ..., A+P+N
- Parameters
 - Distance (P): how far future the prefetcher predicts
 - Degree (N): how many prefetch requests are generated

- Stream prefetcher
 - Stream: a sequence of consecutive memory blocks
 - If any demand request accesses a block in a *stream*(from A to A+P), generate prefetch request A+P, A+P+1, ..., A+P+N
- Parameters
 - Distance (P): how far future the prefetcher predicts
 - Degree (N): how many prefetch requests are generated

- Stream prefetcher
 - Stream: a sequence of consecutive memory blocks
 - If any demand request accesses a block in a *stream*(from A to A+P), generate prefetch request A+P, A+P+1, ..., A+P+N
- Parameters
 - Distance (P): how far future the prefetcher predicts
 - Degree (N): how many prefetch requests are generated

- Stream prefetcher
 - Stream: a sequence of consecutive memory blocks
 - If any demand request accesses a block in a *stream*(from A to A+P), generate prefetch request A+P, A+P+1, ..., A+P+N
- Parameters
 - Distance (P): how far future the prefetcher predicts
 - Degree (N): how many prefetch requests are generated

KAIST

- Stream prefetcher
 - Stream: a sequence of consecutive memory blocks
 - If any demand request accesses a block in a *stream*(from A to A+P), generate prefetch request A+P, A+P+1, ..., A+P+N
- Parameters

Distance (P): how far future the prefetcher predicts

Degree (N): how many prefetch requests are generated

- Stream prefetcher
 - Stream: a sequence of consecutive memory blocks
 - If any demand request accesses a block in a *stream*(from A to A+P), generate prefetch request A+P, A+P+1, ..., A+P+N
- Parameters
 - Distance (P): how far future the prefetcher predicts
 - Degree (N): how many prefetch requests are generated

- Traditional memory architecture
 - DDR: one dominant memory type
 - Relatively predictable bandwidth

[1] Loh et al. ISCA 2008[2] Qureshi et al. ISCA 2009[3] Chou et al. MICRO 2014

- Traditional memory architecture
 - DDR: one dominant memory type
 - Relatively predictable bandwidth
 - Memory heterogeneity
 - DDR, HBM^[1], non-volatile memory^[2], hybrid memory^[3]
 - Wide range of bandwidth/latency

[1] Loh et al. ISCA 2008[2] Qureshi et al. ISCA 2009[3] Chou et al. MICRO 2014

[1] Loh et al. ISCA 2008[2] Qureshi et al. ISCA 2009[3] Chou et al. MICRO 2014

- Traditional memory architecture
 - DDR: one dominant memory type
 - Relatively predictable bandwidth
 - Memory heterogeneity
 - DDR, HBM^[1], non-volatile memory^[2], hybrid memory^[3]
 - Wide range of bandwidth/latency

- Traditional memory architecture
 - DDR: one dominant memory type
 - Relatively predictable bandwidth
 - Memory heterogeneity
 - DDR, HBM^[1], non-volatile memory^[2], hybrid memory^[3]
 - Wide range of bandwidth/latency

Prefetcher should consider various memory characteristics

[3] Chou et al. MICRO 2014

Prior Work

KΛ	IST

(dist., degree)	
(4, 1)	
(8, 1)	
(16, 2)	
(32, 4)	
(64, 4)	

- Feedback-directed prefetching [4]
 - Use stream prefetcher: distance & degree
 - Choose one of five aggressive levels
 - Consider application's memory bandwidth requirement
- Limitation
 - Five levels of pre-selected prefetch configurations
 - Consider DDR memory only

Prior Work

- Feedback-directed prefetching [4]
 - Use stream prefetcher: distance & degree
 - Choose one of five aggressive levels
 - Consider application's memory bandwidth requirement
- Limitation
 - Five levels of pre-selected prefetch configurations
 - Consider DDR memory only

Prior Work

- Feedback-directed prefetching [4]
 - Use stream prefetcher: distance & degree
 - Choose one of five aggressive levels
 - Consider application's memory bandwidth requirement
- Limitation
 - Five levels of pre-selected prefetch configurations

Only a small number of pre-selected configurations are not enough to cover the diversity of memory architectures

[4] Srinath et al. HPCA 2007

Dynamic Prefetcher

Dynamic Prefetcher

Outline

- Motivation : the effect of available memory bandwidth on prefetcher designs
 - Effect on the aggressiveness of prefetcher
 - Dominant factor: distance vs degree
 - Cache pollution by prefetcher
- Contributions
 - Propose a prefetcher reconfiguration mechanism
 - Propose a pollution mitigation mechanism

* conservative (8,1) and aggressive (8,64)

* conservative (8,1) and aggressive (8,64)

	Conservative	Aggressive
DDR	10%	-1%
HBM	20%	28%

* conservative (8,1) and aggressive (8,64)

Observation 1: The best prefetcher aggressiveness differs for each memory type

- Distance vs. degree
 - Performance variation is higher on degree

- Distance vs. degree
 - Performance variation is higher on degree

Dynamic Prefetcher Reconfiguration

- Search by Random Profiling(RP)
 - Execute trial runs with randomly selected parameters
 - Adopt hill climbing algorithm
 - Direct performance metric (IPC: Instruction Per Cycles)
 - Profiling phase : Execution phase = 1 : 4
- Optimizations
 - Two-step profiling (decision order: distance \rightarrow degree)
 - Start profiling phase with previously used best parameters

Dynamic Prefetcher Reconfiguration

4	N Intorval		>
Profiling		Execution	

- Search by Random Profiling(RP)
 - Execute trial runs with randomly selected parameters
 - Adopt hill climbing algorithm
 - Direct performance metric (IPC: Instruction Per Cycles)
 - Profiling phase : Execution phase = 1 : 4
- Optimizations
 - Two-step profiling (decision order: distance \rightarrow degree)
 - Start profiling phase with previously used best parameters

Dynamic Prefetcher Reconfiguration

		Ninterval	
Profiling		Execution	
Distance	Degree		

- Search by Random Profiling(RP)
 - Execute trial runs with randomly selected parameters
 - Adopt hill climbing algorithm
 - Direct performance metric (IPC: Instruction Per Cycles)
 - Profiling phase : Execution phase = 1 : 4
- Optimizations
 - Two-step profiling (decision order: distance \rightarrow degree)
 - Start profiling phase with previously used best parameters

- The performance curve has common form
- The curve rarely exhibits multiple local maximums
- Average trial runs is 3.77

- The performance curve has common form
- The curve rarely exhibits multiple local maximums
- Average trial runs is 3.77

- The performance curve has common form
- The curve rarely exhibits multiple local maximums
- Average trial runs is 3.77

- The performance curve has common form
- The curve rarely exhibits multiple local maximums
- Average trial runs is 3.77

- The performance curve has common form
- The curve rarely exhibits multiple local maximums
- Average trial runs is 3.77

LRU

- Demand Prefetch Insertion-only (Prior work ^[4])
 - Adjust insertion location of prefetch data
 - Promote to MRU directly

MRU

[4] Srinath et al. HPCA 2007[5] Xie et al. ISCA 2009

KVI21

- Demand Prefetch Insertion-only (Prior work ^[4])
 - Adjust insertion location of prefetch data
 - Promote to MRU directly

[4] Srinath et al. HPCA 2007[5] Xie et al. ISCA 2009

LRU

- Demand Prefetch Insertion-only (Prior work ^[4])
 - Adjust insertion location of prefetch data
 - Promote to MRU directly

MRU

[4] Srinath et al. HPCA 2007[5] Xie et al. ISCA 2009

KVI21

LRU

- Prefetch Insertion-only (Prior work ^[4])
 - Adjust insertion location of prefetch data
 - Promote to MRU directly

Demand

MRU

[4] Srinath et al. HPCA 2007[5] Xie et al. ISCA 2009

- Insertion-only (Prior work ^[4])
 - Adjust insertion location of prefetch data
 - Promote to MRU directly

[4] Srinath et al. HPCA 2007 [5] Xie et al. ISCA 2009

Prefetch Partition(PP)

- Insight: prefetch data are often not reused after the initial demand hit
- Soft-partition: adopt simple pseudopartitioning from PIPP^[5]
- Optimization: using top two policies
 - (MRU:LRU-4), (MRU: LRU)
 - Can reap out most of the benefits

- Insertion-only (Prior work ^[4])
 - Adjust insertion location of prefetch data
 - Promote to MRU directly

[4] Srinath et al. HPCA 2007 [5] Xie et al. ISCA 2009

Prefetch Partition(PP)

- Insight: prefetch data are often not reused after the initial demand hit
- Soft-partition: adopt simple pseudopartitioning from PIPP^[5]
- Optimization: using top two policies
 - (MRU:LRU-4), (MRU: LRU)
 - Can reap out most of the benefits

- Insertion-only (Prior work ^[4])
 - Adjust insertion location of prefetch data
 - Promote to MRU directly

[4] Srinath et al. HPCA 2007 [5] Xie et al. ISCA 2009

Prefetch Partition(PP)

- Insight: prefetch data are often not reused after the initial demand hit
- Soft-partition: adopt simple pseudopartitioning from PIPP^[5]
- Optimization: using top two policies
 - (MRU:LRU-4), (MRU: LRU)
 - Can reap out most of the benefits

Evaluation

- Full system OoO simulation on *McSim + Gems + DRAMSim2*; *8 cores*, 128 ROB, 4 ways
- Three Level Cache hierarchy
- Memory Configuration

Parameter	Values
DDR	2channels, DDR3-1600(800Mhz)
HBM	16channels, HBM-1600(800Mhz)
fast HBM	HBM with x2 frequency : 1600MHz
half HBM	HBM with /2 channels : 8 channels

Parameter	Values
hybrid 1	HBM + DDR
hybrid 2	fast HBM + DDR
hybrid 3	half HBM + DDR

- *Stream prefetchers* with 8 streams
- Benchmarks: SPECCPU, Mixed workloads

Evaluation

- Full system OoO simulation on *McSim + Gems + DRAMSim2*; *8 cores*, 128 ROB, 4 ways
- Three Level Cache hierarchy
- Memory Configuration

Parameter	Values	Parameter	Values
DDR	2channels, DDR3-1600(800Mhz)	hybrid 1	HBM + DDR
HBM	16channels, HBM-1600(800Mhz)	hybrid 2	fast HBM + DDR
fast HBM	HBM with x2 frequency : 1600MHz	hybrid 3	half HBM + DDR
half HBM	HBM with /2 channels : 8 channels		
	·		

- *Stream prefetchers* with 8 streams
- *Benchmarks: SPECCPU, Mixed* workloads

13

Average 10.0% performance improvement (avg. 12.4% on HBM) on diverse memory architectures compared to the prior approach

Summary

- Investigate how the differences in memory architecture affect the optimal prefetching scheme
- Study how the prefetching parameters can be dynamically and effectively adjusted

Summary

- Investigate how the differences in memory architecture affect the optimal prefetching scheme
- Study how the prefetching parameters can be dynamically and effectively adjusted
- Dynamic Prefetcher Reconfiguration
 - Effective search by random profiling Prefetcher design on hybrid memory
 - Simple soft-partition mechanism to mitigate pollution
 - Average 10.0% performance improvement (avg. 12.4% on HBM) compared to the prior approach

34th IEEE International Conference on Computer Design *ICCD 2016*

Dynamic Prefetcher Reconfiguration for Diverse Memory Architectures

Junghoon Lee*, Taehoon Kim, and Jaehyuk Huh

SAMSUNG ADVANCED INSTITUTE OF TECHNOLOGY

