
Hybrid TLB Coalescing: Improving TLB 
Translation Coverage under Diverse 

Fragmented Memory Allocations
Chang Hyun Park, Taekyung Heo, Jungi Jeong,

and Jaehyuk Huh



Introduction
• Virtual memory provides rich features

• Requires an address translation

• Workloads have grown in size pressuring TLB

• Contiguous memory allocations to the rescue!
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Past Proposals: Large pages
• Large pages represent larger mappings (2MB)

• Strict alignment required
• Exact size match required
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Past Proposals: Cluster TLB
• HW oriented clustering[5]

• Cluster TLB represents flexible mapping within cluster
• Provides flexible mapping within cluster block
• However cluster size is fixed at design time
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Past Proposals: Direct Segments
• Segment based translation[1]

• Three values represent contiguous translation of any size
• Fully assoc. lookup for multiple segments (limits size of TLB)

• Redundant Memory Mappings (RMM) [6] -> 32 Fully-associative TLB
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Past Proposals: Summary
• Large pages

• Affinity for large pages (2MB)

• Cluster TLB
• Affinity for clustering of mapping of up to 8 pages

• Segment translations
• Affinity for small number of large chunks (32 entry TLB)
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Large Contiguity vs. 
Memory Non-Uniformity
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Memory Non-Uniformity
• Conflicting goals of NUMA systems and large pages[2]

• Memory traffic balance vs. efficient address translation
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Can we make a TLB scheme that 
works well for diverse scenarios?



Hybrid TLB Coalescing 

84

TLB
Hardware

Operating System

Page Table
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• HW-SW Joint Effort
• HW offers adjustable TLB 

coverage
• Number of TLB entries fixed
• Coverage of entry adjustable

• OS decides best TLB coverage
• Adjusts TLB coverage per process
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• Marks onto process page table

85

TLB
Hardware

Operating System

Page Table

We propose a TLB with 
adjustable coverage



Hybrid TLB Coalescing 

• HW-SW Joint Effort
• HW offers adjustable TLB 

coverage
• Number of TLB entries fixed
• Coverage of entry adjustable

• OS decides best TLB coverage
• Adjusts TLB coverage per process

• OS identifies contiguous chunks
• Marks onto process page table

86

TLBTLB
Hardware

Operating System

Page Table

We propose a TLB with 
adjustable coverage



Hybrid TLB Coalescing 

• HW-SW Joint Effort
• HW offers adjustable TLB 

coverage
• Number of TLB entries fixed
• Coverage of entry adjustable

• OS decides best TLB coverage
• Adjusts TLB coverage per process

• OS identifies contiguous chunks
• Marks onto process page table

87

TLBTLB
Hardware

Operating System

Page Table

We propose a TLB with 
adjustable coverage



Hybrid TLB Coalescing 

• HW-SW Joint Effort
• HW offers adjustable TLB 

coverage
• Number of TLB entries fixed
• Coverage of entry adjustable

• OS decides best TLB coverage
• Adjusts TLB coverage per process

• OS identifies contiguous chunks
• Marks onto process page table

88

TLBTLB
Hardware

Operating System

Page Table

We propose a TLB with 
adjustable coverage



Hybrid TLB Coalescing 

• HW-SW Joint Effort
• HW offers adjustable TLB 

coverage
• Number of TLB entries fixed
• Coverage of entry adjustable

• OS decides best TLB coverage
• Adjusts TLB coverage per process

• OS identifies contiguous chunks
• Marks onto process page table

89

TLBTLB
Hardware

Operating System

Page Table

We propose a TLB with 
adjustable coverage



Hybrid TLB Coalescing 

• HW-SW Joint Effort
• HW offers adjustable TLB 

coverage
• Number of TLB entries fixed
• Coverage of entry adjustable

• OS decides best TLB coverage
• Adjusts TLB coverage per process

• OS identifies contiguous chunks
• Marks onto process page table

90

TLBTLB
Hardware

Operating System

Page Table

We propose a TLB with 
adjustable coverage



Hybrid TLB Coalescing 

• HW-SW Joint Effort
• HW offers adjustable TLB 

coverage
• Number of TLB entries fixed
• Coverage of entry adjustable

• OS decides best TLB coverage
• Adjusts TLB coverage per process

• OS identifies contiguous chunks
• Marks onto process page table

91

TLBTLB
Hardware

Operating System

Page Table

We propose a TLB with 
adjustable coverage



Anchor
• Anchors are special entries in the page table

• Placed at every alignments of anchor distance
• Anchor distance is a power of 2 (for encoding efficiency)
• Anchor distance configurable by OS
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Anchor Page Table
• Uses the Page Table
• Anchor covers up to distance(4) contiguous pages

• Each anchor represents contiguity that begins at anchor

• OS marks contiguity onto the anchor page table
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Anchor TLB
• Integrated into the L2 TLB

• L1 keeps regular entries

• Caches both regular and anchor page table entries
• Regular and anchor indexed differently
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2 3 4 0 4Virtual Pages

Anchor TLB
(4 sets)

0 | 2 0 | 3 0 | 4 1 | 4TLB Entries

3 | X
3 | X
3 | X

Anchor Entry

Regular Entry
Tag | Contiguity



Anchor TLB Lookup
• On L1 TLB Miss Anchor TLB looks up

• Regular TLB first
• Anchor TLB next
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Operating System Responsibilities
• OS periodically selects process anchor distance

• Heuristic algorithm to minimize TLB entry count

• OS adjusts anchor distance
• Anchor distance based on selection algorithm

• OS marks mapping contiguity
• Memory mapping contiguity in anchor page table entry
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Simulation Methodology
• Trace based TLB simulator (Based on Intel Haswell)
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TLB Configuration
Common L1 4KB: 64 entry, 4 way

2MB: 32 entry, 4 way

Baseline L2 / THP 4KB/2MB: 1024 entry, 8 way

Cluster Regular (4KB/2MB): 768 entry, 6 way
Cluster-8: 320 entry, 5 way

RMM (Multiple segments) Baseline L2 TLB +
RMM: 32 entry, fully-assoc.

Anchor (Selected/Static 
Ideal)

4KB/2MB/anchor: 1024 entry, 8 way



Memory Mapping Scenarios
• Two class of memory mapping scenarios

• Two real system memory mappings
• Four synthetic memory mappings
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Name Trace information
demand Default Linux memory mapping

eager ‘Eager’ allocation

low 1– 16 pages (4KB – 64KB)

medium 1 – 512 pages (4KB – 2MB)

high 512 – 64K pages (2MB – 256MB)

max Maximum contiguity



Evaluation –
TLB Misses of demand mapping
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Anchor TLB adjusted to satisfy small contiguities



Evaluation –
TLB Misses of medium mapping
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Evaluation –
TLB Misses of medium mapping
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Anchor adjusted coverage to provide best TLB reduction



Evaluation –
TLB Misses of all mapping
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Anchor TLB performs well for diverse mapping scenarios



Evaluation –
TLB Misses of all mapping
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Anchor TLB performs well for diverse mapping scenarios



Conclusion
• Hybrid TLB Coalescing is a HW-SW joint effort
• Anchor TLB provides adjustable coverage

• TLB entry coverage grows and shrinks dynamically

• OS provides contiguity hint using the page table
• OS picks adequate contiguity per-process

• Hybrid TLB Coalesce performs:
• Best for Small-Intermediate contiguities
• Similar to best prior scheme for Large contiguities
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