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Shortening time slice is very simple and powerful, but 
the overhead of frequent context switches is significant
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Challenges in Serving Critical OS 
Services on Micro-sliced Cores

1. Precise detection of urgent tasks

2. Guest OS transparency

3. Dynamic adjustment of micro-sliced 
cores
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…
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Critical Guest OS ComponentsvCPU scheduling trace 
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Instruction pointer and kernel symbols enable 
to precisely detect vCPUs preempted while 
executing critical OS services without guest 
OS modification
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Experimental Environments

• Testbed
• 12 HW threads (Intel Xeon)
• 2 VMs with 12 vCPUs for each
• Xen hypervisor 4.7

• Benchmarking workloads
• dedup and vips from PARSEC
• exim and gmake from MOSBENCH

• Pool configuration
• Normal: 30ms (Xen default)
• Micro-sliced: 0.1ms

Xen hypervisor

OS

App

OS

App

12 physical threads

12 virtual
CPUs

2-to-1 consolidation ratio
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I/O Performance

Workloads
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Conclusions

• We introduced a new approach to mitigate the 
virtual time discontinuity problem

• Three distinct contributions
• Precise detection of urgent tasks
• Guest OS transparency
• Dynamic adjustment of the micro-sliced cores

• Overhead is very low for applications which do 
not frequently use OS services
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