
Accelerating Critical OS Services in 
Virtualized Systems with Flexible 

Micro-sliced Cores 

Jeongseob Ahn*, Chang Hyun Park‡, Taekyung Heo‡, Jaehyuk Huh‡

‡*



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5

Consolidation improves system utilization



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5

Consolidation improves system utilization



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5

Consolidation improves system utilization



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5

Consolidation improves system utilization
However, resources are contended 



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5

Consolidation improves system utilization
However, resources are contended 



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5

Consolidation improves system utilization
However, resources are contended 



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5

Consolidation improves system utilization
However, resources are contended 



Challenge of Server Consolidation

Utilization

Fr
ac

tio
n 

of
 ti

m
e

0 10.5

Consolidation improves system utilization
However, resources are contended 



So, What Can Happen?

• Virtual time discontinuity

vCPU 1

pCPU 0

vCPU 0

Physical Time

Virtual TimeRunning

VMEXIT / VMENTER

Time shared

Waiting



So, What Can Happen?

• Virtual time discontinuity

vCPU 1

pCPU 0

vCPU 0

Physical Time

Virtual TimeRunning

VMEXIT / VMENTER

Time shared

Waiting



So, What Can Happen?

• Virtual time discontinuity

vCPU 1

pCPU 0

vCPU 0

Physical Time

Virtual TimeRunning

VMEXIT / VMENTER

Time shared

Waiting

Kernel
Component

Avg. waiting time (μsec)
solo co-run*

Page reclaim 1.03 420.13
Page allocator 3.42 1,053.26
Dentry 2.93 1,298.87
Runqueue 1.22 256.07

➊ Spinlock waiting time(gmake)

Processing time is amplified 
* Concurrently running with Swaptions of PARSEC



So, What Can Happen?

• Virtual time discontinuity

vCPU 1

pCPU 0

vCPU 0

Physical Time

Virtual TimeRunning

VMEXIT / VMENTER

Time shared

Waiting

Kernel
Component

Avg. waiting time (μsec)
solo co-run*

Page reclaim 1.03 420.13
Page allocator 3.42 1,053.26
Dentry 2.93 1,298.87
Runqueue 1.22 256.07

➊ Spinlock waiting time(gmake)
Avg. Min. Max.

dedup
solo 28 5 1927
co-run* 6,354 7 74915

vips
solo 55 5 2052
co-run* 14,928 17 121548

Processing time is amplified 
* Concurrently running with Swaptions of PARSEC



So, What Can Happen?

• Virtual time discontinuity

vCPU 1

pCPU 0

vCPU 0

Physical Time

Virtual TimeRunning

VMEXIT / VMENTER

Time shared

Waiting

Kernel
Component

Avg. waiting time (μsec)
solo co-run*

Page reclaim 1.03 420.13
Page allocator 3.42 1,053.26
Dentry 2.93 1,298.87
Runqueue 1.22 256.07

➊ Spinlock waiting time(gmake)
Avg. Min. Max.

dedup
solo 28 5 1927
co-run* 6,354 7 74915

vips
solo 55 5 2052
co-run* 14,928 17 121548

➋ TLB synchronization latency (μsec) 

Processing time is amplified 
* Concurrently running with Swaptions of PARSEC



So, What Can Happen?

• Virtual time discontinuity

vCPU 1

pCPU 0

vCPU 0

Physical Time

Virtual TimeRunning

VMEXIT / VMENTER

Time shared

Waiting

Kernel
Component

Avg. waiting time (μsec)
solo co-run*

Page reclaim 1.03 420.13
Page allocator 3.42 1,053.26
Dentry 2.93 1,298.87
Runqueue 1.22 256.07

➊ Spinlock waiting time(gmake)
Avg. Min. Max.

dedup
solo 28 5 1927
co-run* 6,354 7 74915

vips
solo 55 5 2052
co-run* 14,928 17 121548

➋ TLB synchronization latency (μsec) 

Jitters
(ms)

Throughput
(Mbits/sec)

solo 0.0043 936.3
mixed co-run* 9.2507 435.6

Processing time is amplified 
* Concurrently running with Swaptions of PARSEC



So, What Can Happen?

• Virtual time discontinuity

vCPU 1

pCPU 0

vCPU 0

Physical Time

Virtual TimeRunning

VMEXIT / VMENTER

Time shared

Waiting

Kernel
Component

Avg. waiting time (μsec)
solo co-run*

Page reclaim 1.03 420.13
Page allocator 3.42 1,053.26
Dentry 2.93 1,298.87
Runqueue 1.22 256.07

➊ Spinlock waiting time(gmake)
Avg. Min. Max.

dedup
solo 28 5 1927
co-run* 6,354 7 74915

vips
solo 55 5 2052
co-run* 14,928 17 121548

➋ TLB synchronization latency (μsec) 

Jitters
(ms)

Throughput
(Mbits/sec)

solo 0.0043 936.3
mixed co-run* 9.2507 435.6

➌ I/O latency & throughput (iPerf)

Processing time is amplified 
* Concurrently running with Swaptions of PARSEC



How about Shortening Time Slice?

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡 = (# 𝑊𝑊𝑎𝑎𝑊𝑊𝑊𝑊𝑎𝑎𝑡𝑡 𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 1) ∗ 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡 𝑣𝑣𝑠𝑠𝑊𝑊𝑎𝑎𝑡𝑡

Waiting time

vCPU 1

pCPU 0

vCPU 0

vCPU 2

Time slice

TTime shared



How about Shortening Time Slice?

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡 = (# 𝑊𝑊𝑎𝑎𝑊𝑊𝑊𝑊𝑎𝑎𝑡𝑡 𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 1) ∗ 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡 𝑣𝑣𝑠𝑠𝑊𝑊𝑎𝑎𝑡𝑡

Waiting time

vCPU 1

pCPU 0

vCPU 0

vCPU 2

Time slice

TTime shared

vCPU 1

pCPU 0

vCPU 0

vCPU 2

Reduced waiting time

TTime shared



How about Shortening Time Slice?

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡 = (# 𝑊𝑊𝑎𝑎𝑊𝑊𝑊𝑊𝑎𝑎𝑡𝑡 𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 1) ∗ 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡 𝑣𝑣𝑠𝑠𝑊𝑊𝑎𝑎𝑡𝑡

Waiting time

vCPU 1

pCPU 0

vCPU 0

vCPU 2

Time slice

TTime shared

vCPU 1

pCPU 0

vCPU 0

vCPU 2

Reduced waiting time

TTime shared



How about Shortening Time Slice?

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡 = (# 𝑊𝑊𝑎𝑎𝑊𝑊𝑊𝑊𝑎𝑎𝑡𝑡 𝑎𝑎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 1) ∗ 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡 𝑣𝑣𝑠𝑠𝑊𝑊𝑎𝑎𝑡𝑡

Waiting time

vCPU 1

pCPU 0

vCPU 0

vCPU 2

Time slice

TTime shared

vCPU 1

pCPU 0

vCPU 0

vCPU 2

Reduced waiting time

TTime shared

Shortening time slice is very simple and powerful, but 
the overhead of frequent context switches is significant



Approach: Dividing CPUs into Two Pools



Approach: Dividing CPUs into Two Pools

vCPU 1

vCPU 0

vCPU 2

Waiting timeTime slice

pCPU 0

➊ Normal pool



Approach: Dividing CPUs into Two Pools

vCPU 1

vCPU 0

vCPU 2

Waiting timeTime slice

pCPU 0

➊ Normal pool ➋ Micro-sliced pool



Approach: Dividing CPUs into Two Pools

vCPU 1

vCPU 0

vCPU 2

Waiting timeTime slice

pCPU 0

Shortened time slice

pCPU 3

vCPU 1

vCPU 0

vCPU 2

➊ Normal pool ➋ Micro-sliced pool



Approach: Dividing CPUs into Two Pools

vCPU 1

vCPU 0

vCPU 2

Waiting timeTime slice

pCPU 0

Shortened time slice

pCPU 3

vCPU 1

vCPU 0

vCPU 2

➊ Normal pool ➋ Micro-sliced pool
- quickly but briefly schedule vCPUs 



Approach: Dividing CPUs into Two Pools

vCPU 1

vCPU 0

vCPU 2

Waiting timeTime slice

pCPU 0

Shortened time slice

pCPU 3

vCPU 1

vCPU 0

vCPU 2

➊ Normal pool ➋ Micro-sliced pool
- quickly but briefly schedule vCPUs 



Approach: Dividing CPUs into Two Pools

vCPU 1

vCPU 0

vCPU 2

Waiting timeTime slice

pCPU 0

Shortened time slice

pCPU 3

vCPU 1

vCPU 0

vCPU 2

➊ Normal pool ➋ Micro-sliced pool
- quickly but briefly schedule vCPUs 



Approach: Dividing CPUs into Two Pools

vCPU 1

vCPU 0

vCPU 2

Waiting timeTime slice

pCPU 0

Shortened time slice

pCPU 3

vCPU 1

vCPU 0

vCPU 2

➊ Normal pool ➋ Micro-sliced pool

Serving critical OS services to 
minimize the waiting time

- quickly but briefly schedule vCPUs 

Serving the main work of applications



Approach: Dividing CPUs into Two Pools

vCPU 1

vCPU 0

vCPU 2

Waiting timeTime slice

pCPU 0

Shortened time slice

pCPU 3

vCPU 1

vCPU 0

vCPU 2

➊ Normal pool ➋ Micro-sliced pool

Serving critical OS services to 
minimize the waiting time

- quickly but briefly schedule vCPUs 

Serving the main work of applications



Approach: Dividing CPUs into Two Pools

vCPU 1

vCPU 0

vCPU 2

Waiting timeTime slice

pCPU 0

Shortened time slice

pCPU 3

vCPU 1

vCPU 0

vCPU 2

➊ Normal pool ➋ Micro-sliced pool

Serving critical OS services to 
minimize the waiting time

- quickly but briefly schedule vCPUs 

Serving the main work of applications



Challenges in Serving Critical OS 
Services on Micro-sliced Cores



Challenges in Serving Critical OS 
Services on Micro-sliced Cores

1. Precise detection of urgent tasks



Challenges in Serving Critical OS 
Services on Micro-sliced Cores

1. Precise detection of urgent tasks

2. Guest OS transparency



Challenges in Serving Critical OS 
Services on Micro-sliced Cores

1. Precise detection of urgent tasks

2. Guest OS transparency

3. Dynamic adjustment of micro-sliced 
cores



Detecting Critical OS Services

➊



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer

workloads
# of yields

solo co-run*
gmake 79,440 295,262,662
exim 157,023 24,102,495
dedup 290,406 164,578,839
vips 644,643 57,650,538



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer

workloads
# of yields

solo co-run*
gmake 79,440 295,262,662
exim 157,023 24,102,495
dedup 290,406 164,578,839
vips 644,643 57,650,538

* Concurrently running with Swaptions of PARSEC



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer

May need to inspect vCPU siblings 

workloads
# of yields

solo co-run*
gmake 79,440 295,262,662
exim 157,023 24,102,495
dedup 290,406 164,578,839
vips 644,643 57,650,538

* Concurrently running with Swaptions of PARSEC

0x8106ed62



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer

May need to inspect vCPU siblings 

workloads
# of yields

solo co-run*
gmake 79,440 295,262,662
exim 157,023 24,102,495
dedup 290,406 164,578,839
vips 644,643 57,650,538

* Concurrently running with Swaptions of PARSEC

0x8106ed62



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer

May need to inspect vCPU siblings 

workloads
# of yields

solo co-run*
gmake 79,440 295,262,662
exim 157,023 24,102,495
dedup 290,406 164,578,839
vips 644,643 57,650,538

* Concurrently running with Swaptions of PARSEC

0x8106ed62



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer

May need to inspect vCPU siblings 

workloads
# of yields

solo co-run*
gmake 79,440 295,262,662
exim 157,023 24,102,495
dedup 290,406 164,578,839
vips 644,643 57,650,538

* Concurrently running with Swaptions of PARSEC

0x8106ed62



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer

May need to inspect vCPU siblings 

workloads
# of yields

solo co-run*
gmake 79,440 295,262,662
exim 157,023 24,102,495
dedup 290,406 164,578,839
vips 644,643 57,650,538

* Concurrently running with Swaptions of PARSEC

0x8106ed62



Detecting Critical OS Services

➊
Examining the instruction pointer (a.k.a PC)
whenever a vCPU yields its pCPU

Instruction pointer

May need to inspect vCPU siblings 

workloads
# of yields

solo co-run*
gmake 79,440 295,262,662
exim 157,023 24,102,495
dedup 290,406 164,578,839
vips 644,643 57,650,538

* Concurrently running with Swaptions of PARSEC

0x8106ed62



Profiling Virtual CPU Scheduling Logs

• Investigating frequently preempted regions

Kernel symbol tables

Module Operation

sched
scheduler_ipi()
resched_curr()
…

mm
flush_tlb_all()
get_page_from_freelist()
…

irq
irq_enter()
irq_exit()
…

spinlock
__raw_spin_unlock()
__raw_spin_unlock_irq()
…

In our paper, you can find the table in details

Critical Guest OS ComponentsvCPU scheduling trace 
(w/ Inst. Pointer)



Profiling Virtual CPU Scheduling Logs

• Investigating frequently preempted regions

Kernel symbol tables

Module Operation

sched
scheduler_ipi()
resched_curr()
…

mm
flush_tlb_all()
get_page_from_freelist()
…

irq
irq_enter()
irq_exit()
…

spinlock
__raw_spin_unlock()
__raw_spin_unlock_irq()
…

In our paper, you can find the table in details

Critical Guest OS ComponentsvCPU scheduling trace 
(w/ Inst. Pointer)

Instruction pointer and kernel symbols enable 
to precisely detect vCPUs preempted while 
executing critical OS services without guest 
OS modification



Accelerating Critical Sections

P3P2P1P0



Accelerating Critical Sections

➊

P3P2P1P0



Accelerating Critical Sections

➋

➊

P3P2P1P0



Accelerating Critical Sections

➋

➊

➊ Yield occurring

P3P2P1P0



Accelerating Critical Sections

➋

➊

➊ Yield occurring

P3P2P1P0



Accelerating Critical Sections

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs

P3P2P1P0



Accelerating Critical Sections

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs

P3P2P1P0



Accelerating Critical Sections

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs

P3P2P1P0



Accelerating Critical Sections

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool

P3P2P1P0
➌



Accelerating Critical Sections

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool

P3P2P1P0
➌



Accelerating Critical Sections

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool

P3P2P1P0
➌



Accelerating Critical Sections

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool

P3P2P1P0
➌



Accelerating Critical Sections

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool

P3P2P1P0
➌



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs

P3P2P1P0



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs

P3P2P1P0



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool

P3P2P1P0
➌



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool

P3P2P1P0
➌



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Accelerating Critical TLB Synchronizations

➋

➊

➊ Yield occurring
➋ Investigating the preempted vCPUs
➌ Scheduling the selected vCPU on the micro-sliced pool
➍ Dynamically adjusting micro-sliced cores based on profiling

P3P2P1P0
➌

➍



Detecting Critical I/O Events

I/O handling consists of a chain of operations involving 
potentially multiple vCPUs 



Detecting Critical I/O Events

I/O handling consists of a chain of operations involving 
potentially multiple vCPUs 

➊pIRQ



Detecting Critical I/O Events

I/O handling consists of a chain of operations involving 
potentially multiple vCPUs 

➋
➊pIRQ



Detecting Critical I/O Events

I/O handling consists of a chain of operations involving 
potentially multiple vCPUs 

➋
➊pIRQ



Detecting Critical I/O Events

I/O handling consists of a chain of operations involving 
potentially multiple vCPUs 

➋
vIRQ

➊pIRQ



Detecting Critical I/O Events

I/O handling consists of a chain of operations involving 
potentially multiple vCPUs 

➋
vIRQ

➊pIRQ



Detecting Critical I/O Events

I/O handling consists of a chain of operations involving 
potentially multiple vCPUs 

➋
vIRQ➌

➊pIRQ



Detecting Critical I/O Events

I/O handling consists of a chain of operations involving 
potentially multiple vCPUs 

➋
vIRQ➌vIPI

➊pIRQ



Detecting Critical I/O Events

I/O handling consists of a chain of operations involving 
potentially multiple vCPUs 

➋
vIRQ➌vIPI

➊pIRQ



Experimental Environments

• Testbed
• 12 HW threads (Intel Xeon)
• 2 VMs with 12 vCPUs for each
• Xen hypervisor 4.7

• Benchmarking workloads
• dedup and vips from PARSEC
• exim and gmake from MOSBENCH

• Pool configuration
• Normal: 30ms (Xen default)
• Micro-sliced: 0.1ms

Xen hypervisor

OS

App

OS

App

12 physical threads

12 virtual
CPUs

2-to-1 consolidation ratio



Performance of Micro-sliced Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6

No
rm

. e
xe

cu
tio

n 
tim

e 
(%

) 계열2 계열3 계열4

3

3

3
3

1

1

[Our schemes]



Performance of Micro-sliced Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6

No
rm

. e
xe

cu
tio

n 
tim

e 
(%

) 계열2 계열3 계열4

3

3

3
3

1

1

[Our schemes]



Performance of Micro-sliced Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6

No
rm

. e
xe

cu
tio

n 
tim

e 
(%

) 계열2 계열3 계열4

3

3

3
3

1

1

[Our schemes]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1 2 3

No
rm

al
ize

d 
ex

ec
ut

io
n 

tim
e 

(%
)

Th
ro

ug
ht

pu
t i

m
pr

ov
em

en
t

계열1 계열2



Performance of Micro-sliced Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6

No
rm

. e
xe

cu
tio

n 
tim

e 
(%

) 계열2 계열3 계열4

3

3

3
3

1

1

[Our schemes]

0.00

20,000,000.00

40,000,000.00

60,000,000.00

80,000,000.00

100,000,000.00

120,000,000.00

140,000,000.00

1 2 3
#

 o
f y

ie
ld

 e
xc

ep
tio

ns
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1 2 3

No
rm

al
ize

d 
ex

ec
ut

io
n 

tim
e 

(%
)

Th
ro

ug
ht

pu
t i

m
pr

ov
em

en
t

계열1 계열2



Performance of Micro-sliced Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6

No
rm

. e
xe

cu
tio

n 
tim

e 
(%

) 계열2 계열3 계열4

3

3

3
3

1

1

[Our schemes]

0.00

20,000,000.00

40,000,000.00

60,000,000.00

80,000,000.00

100,000,000.00

120,000,000.00

140,000,000.00

1 2 3
#

 o
f y

ie
ld

 e
xc

ep
tio

ns
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1 2 3

No
rm

al
ize

d 
ex

ec
ut

io
n 

tim
e 

(%
)

Th
ro

ug
ht

pu
t i

m
pr

ov
em

en
t

계열1 계열2



Performance of Micro-sliced Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6

No
rm

. e
xe

cu
tio

n 
tim

e 
(%

) 계열2 계열3 계열4

3

3

3
3

1

1

[Our schemes]

0.00

20,000,000.00

40,000,000.00

60,000,000.00

80,000,000.00

100,000,000.00

120,000,000.00

140,000,000.00

1 2 3
#

 o
f y

ie
ld

 e
xc

ep
tio

ns 8% gap

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1 2 3

No
rm

al
ize

d 
ex

ec
ut

io
n 

tim
e 

(%
)

Th
ro

ug
ht

pu
t i

m
pr

ov
em

en
t

계열1 계열2



I/O Performance

Workloads

VM-1 iPerf
lookbusy

VM-2 lookbusy

0

100

200

300

400

500

600

700

800

1 2

Ba
nd

w
id

th
 (M

bp
s)

계열1 계열2



I/O Performance

Workloads

VM-1 iPerf
lookbusy

VM-2 lookbusy

0

100

200

300

400

500

600

700

800

1 2

Ba
nd

w
id

th
 (M

bp
s)

계열1 계열2

-0.5
0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

jit
te

rs
 (m

s)



Conclusions

• We introduced a new approach to mitigate the 
virtual time discontinuity problem

• Three distinct contributions
• Precise detection of urgent tasks
• Guest OS transparency
• Dynamic adjustment of the micro-sliced cores

• Overhead is very low for applications which do 
not frequently use OS services



Thank You!
jsahn@ajou.ac.kr

Accelerating Critical OS Services in Virtualized 
Systems with Flexible Micro-sliced Cores 

Jeongseob Ahn*, Chang Hyun Park‡, Taekyung Heo‡, Jaehyuk Huh‡

‡*


	Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-sliced Cores 
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	How about Shortening Time Slice?
	How about Shortening Time Slice?
	How about Shortening Time Slice?
	How about Shortening Time Slice?
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Challenges in Serving Critical OS Services on Micro-sliced Cores
	Challenges in Serving Critical OS Services on Micro-sliced Cores
	Challenges in Serving Critical OS Services on Micro-sliced Cores
	Challenges in Serving Critical OS Services on Micro-sliced Cores
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Profiling Virtual CPU Scheduling Logs 
	Profiling Virtual CPU Scheduling Logs 
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Experimental Environments
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	I/O Performance
	I/O Performance
	Conclusions
	Thank You!�jsahn@ajou.ac.kr

