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How about Shortening Time Slice?

ime slice Waiting time
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Shortening time slice is very simple and powerful, but
the overhead of frequent context switches is significant
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Challenges in Serving Critical OS
Services on Micro-sliced Cores

1. Precise detection of urgent tasks

2. Guest OS transparency

3. Dynamic adjustment of micro-sliced
cores
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Profiling Virtual CPU Scheduling Logs

 Investigating frequently preempted regions

vCPU scheduling trace
(w/ Inst. Pointer)

3. ssh

Critical Guest OS Components

System.map-4.4.0-104-generic
ffEFFfff811045c0 t hotplug_cfd

fFFffff81104680 t generic_exec_single
fEFFFfff811047a0 T smp_call_function_single
fEFFffff811048d0 T smp_call_function_single_async
FEFFFFff81104940 T smp_call_function_any
JFffffff81104a10 T smp_call_function_many
fFFFFFff81104c70 T smp_call_function
fRFFffff81104ca@ T kick_all_cpus_sync
FEFFFFFf81104cdd T wake_up_all_idle_cpus
fEFFFff81104d20 T on_each_cpu
fEFFFFff81104d80 T on_each_cpu_mask
fFFffff81104de® T on_each_cpu_cond
<em.map-4.4.0-104-generic  CWD: /boot

Kernel symbol tables

Module Operation
scheduler_ipi()
sched resched_curr()

mm

flush_tlb_all()
get_page_from_ freelist()

irg

irg_enter()
irg_ exit(Q

Line: 6108

spinlock

__raw_spin_unlock(Q)
__raw_spin_unlock_irq()

In our paper, you can find the table in details




Profiling Virtual CPU Scheduling Logs

 Investigating frequently preempted regions

(w/ Inst. Pointer) Module Operation

scheduler_ipi()

% vCPU scheduling trace Critical Guest OS Components

Instruction pointer and kernel symbols enable
to precisely detect vCPUs preempted while
executing critical OS services without guest
OS modification

In our paper, you can find the table in details
Kernel symbol tables
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Experimental Environments

e Testbed
e 12 HW threads (Intel Xeon) App App
e 2 VMs with 12 vCPUs for each 0s 0s
 Xen hypervisor 4.7 2vital__w [T | | T

Xen hypervisor

* Benchmarking workloads
e dedup and vips from PARSEC
« exim and gmake from MOSBENCH

12 physical threads

2-to-1 consolidation ratio

* Pool configuration
 Normal: 30ms (Xen default)
e Micro-sliced: 0.1ms
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Conclusions

* We introduced a new approach to mitigate the
virtual time discontinuity problem

e Three distinct contributions
* Precise detection of urgent tasks
e Guest OS transparency
e Dynamic adjustment of the micro-sliced cores

e Overhead is very low for applications which do
not frequently use OS services
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