Accelerating Critical OS Services In
Virtualized Systems with Flexible
Micro-sliced Cores

Jeongseob Ahn*, Chang Hyun Parki, Taekyung Heoi, Jaehyuk Huh?

TKAIST




Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization

Consolidation improves system utilization



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization

) Consolidation improves system utilization



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization

) Consolidation improves system utilization



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization

) Consolidation improves system utilization
However, resources are contended



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization

) Consolidation improves system utilization
A However, resources are contended



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization

) Consolidation improves system utilization
A However, resources are contended



Challenge of Server Consolidation

Fraction of time

0 0.5 1

Utilization

) Consolidation improves system utilization
A However, resources are contended



Challenge of Server Consolidation

'juﬂ Consolidation improves system utilization
‘@ However, resources are contended



So, What Can Happen?

e Virtual time discontinuity

VMEXIT / VMENTER

Runnin Waliti ) ]
vCPU O |—g'\ S / Virtual Time

vCPU 1 x—> —

pCPU 0 > Physical Time

Time shared



So, What Can Happen?

e Virtual time discontinuity

vCPU O

IRunningl Waiting 1 |

Virtual Time




So, What Can Happen?

e Virtual time discontinuity

VCPU 0 M.‘ Waiting —

Virtual Time

@ Spinlock waiting time(gmake)

Kernel Avg. waiting time (psec)
Component solo co-run™
Page reclaim 1.03 420.13
Page allocator 3.42 1,053.26
Dentry 2.93 1,298.87
Runqueue 1.22 256.07

* Concurrently running with Swaptions of PARSEC

Processing time is amplified




So, What Can Happen?

e Virtual time discontinuity

vCPU O

IRunningl Waiting 1 |

Virtual Time

@ Spinlock waiting time(gmake)

Avg. Min. Max.
solo 28 5 1927
dedup
co-run* 6,354 7 74915
_ solo 55 5 2052
vips
co-run* | 14,928 17| 121548

Kernel Avg. waiting time (psec)
Component solo co-run™
Page reclaim 1.03 420.13
Page allocator 3.42 1,053.26
Dentry 2.93 1,298.87
Runqueue 1.22 256.07

* Concurrently running with Swaptions of PARSEC

Processing time is amplified




So, What Can Happen?

e Virtual time discontinuity

vCPU O Virtual Time

IRLning" Waiting 1 |

@ Spinlock waiting time(gmake) @ TLB synchronization latency (psec)

* Concurrently running with Swaptions of PARSEC

Processing time is amplified

Kernel Avg. waiting time (Jsec) Avg. | Min. | Max.
Component solo co-run* solo 28 5 1927
Page reclaim 1.03 420.13 dedup co-run* | 6,354 7 74915
Page allocator 3.42 1,053.26 vips solo 55 2052
Dentry 293 1,298.87 co-run* | 14,928 17| 121548
Runqueue 1.22 256.07




So, What Can Happen?

e Virtual time discontinuity

vCPU O

Virtual Time

IRunningl Waiting 1 |

@ Spinlock waiting time(gmake) @ TLB synchronization latency (psec)

Kernel Avg. waiting time (usec) Avg. | Min. | Max.
Component solo co-run* ded solo 28 5 1927
edu
Page reclaim 1.03 420.13 g co-run* | 6,354 7 74915
Page allocator 3.42 1,053.26 vips solo 95 2052
Dentry 293 1,298.87 co-run* | 14,928 17 121548
Runqueue 1.22 256.07
* Concurrently running with Swaptions of PARSEC
Jitters Throughput
Processing time is amplified (ms) (Mbits/sec)
solo 0.0043 936.3
mixed co-run* 9.2507 435.6




So, What Can Happen?

e Virtual time discontinuity

vCPU O

IRunningl Waiting 1 |

Virtual Time

@ Spinlock waiting time(gmake) @ TLB synchronization latency (psec)

Kernel Avg. waiting time (psec)
Component solo co-run™
Page reclaim 1.03 420.13
Page allocator 3.42 1,053.26
Dentry 2.93 1,298.87
Runqueue 1.22 256.07

* Concurrently running with Swaptions of PARSEC

Processing time is amplified

Avg. Min. Max.
solo 28 5 1927
dedup co-run* | 6,354 7 74915
_ solo 55 2052
vIpS co-run* | 14,928 17| 121548

® 1/0 latency & throughput (1PerT)

Jitters Throughput

(ms) (Mbits/sec)
solo 0.0043 936.3
mixed co-run* 9.2507 435.6




How about Shortening Time Slice?

vCPU O

vCPU 2

oCPU 0

Time slice Waiting time

=

. > T
Time shared

Waiting time = (# active vCPUs — 1) = time slice



How about Shortening Time Slice?

Time slice Waiting time
VCPUO |p——tfe= — = = = = = =
vCPU 2 —_—
oCPU 0 > T

Time shared

vePU 0 |4-& f—R—E_d(%?& LR P — 1) x tipne slice
| verut |
vCPU 2
> T

pCPU O

Time shared



How about Shortening Time Slice?

ime slice Waiting time
VCPUO |H———fe= — = = = = = =
vCPU 2 —_—
oCPU 0 > T

Time shared

vCPU 0 Q-R—E_d(%?& LR P — 1) x tipne slice
| verut |
vCPU 2
> T

pCPU O

Time shared



How about Shortening Time Slice?

ime slice Waiting time

vCPU O

Shortening time slice is very simple and powerful, but
the overhead of frequent context switches is significant

: g_R—B_Ct"#f?& BEREBIE — 1)  time slice
| veput |
vCPU 2

pCPUO , > T
Time shared




Approach: Dividing CPUs into Two Pools

VM-1 VM-2 D running
waiting
o2l 3 On11:2i3

Hypervisor

Po| [P1]| [P2| |P3




Approach: Dividing CPUs into Two Pools

VM-1 VM-2 D running
waiting
oninz21: 3 Ount11213

Hypervisor
\ I
@ Normal pool |[Po] [P1][P2] [|; [P3] 1
P |

Time slice Waiting time
VCPUOD (P — — = = = = =

& /
vCPU 2 —

pCPU O




Approach: Dividing CPUs into Two Pools

©® Normal pool |[[PO]|[P1]|P2

vCPU O

vCPU 2

pCPU O

Time slice

VM-1 VM-2
olf 1]l2]:3:||:0::i1::2]3
Hypervisor
F----
0 0
|y [P3] 1
L—-—-—-l

Waiting time

—_]

[J running
waiting

® Micro-sliced pool



Approach: Dividing CPUs into Two Pools

©® Normal pool |[Po

vCPU O

vCPU 2

pCPU O

Time slice

VM-1 VM-2 D running
SRR [ |1 waiting
ofil2)isiyioiizisl -
Hypervisor
|
P1] [P2] [|i [P2] | @ Micro-sliced pool
L—-—-—-l
Shortened time slice
Waiting time
——————— vCPU O
&—> vCPU 2
pCPU 3




Approach: Dividing CPUs into Two Pools

©® Normal pool |[Po

vCPU O

vCPU 2

pCPU O

Time slice

VM-1 VM-2 D running
S | P r—— |1 waiting
ojttL2yis 023l
Hypervisor
|
' . .
P1] [P2] [|; [P3] 1 @ Micro-sliced pool
P - quickly but briefly schedule vCPUs
Shortened time slice
Waiting time
——————— vCPU O
&—> vCPU 2
pCPU 3




Approach: Dividing CPUs into Two Pools

©® Normal pool |[Po

vCPU O

vCPU 2

pCPU O

Time slice

VM-1 VM-2 D running
S | P r—— |1 waiting
ojttL2yis 023l
Hypervisor
|
' . .
P1] [P2] [|; [P3] 1 @ Micro-sliced pool
P - quickly but briefly schedule vCPUs
Shortened time slice
Waiting time
——————— vCPU O
&—> vCPU 2
pCPU 3




Approach: Dividing CPUs into Two Pools

©® Normal pool |[Po

vCPU O

vCPU 2

pCPU O

Time slice

VM-1 VM-2 D running
S | P r—— |1 waiting
ojttL2yis 023l
Hypervisor
|
' . .
P1] [P2] [|; [P3] 1 @ Micro-sliced pool
P - quickly but briefly schedule vCPUs
Shortened time slice
Waiting time
——————— vCPU O
&—> vCPU 2
pCPU 3




Approach: Dividing CPUs into Two Pools

©® Normal pool |[Po

vCPU O

vCPU 2

pCPU O

Time slice

Serving the main work of applications

VM-1 VM-2 D running
S | P r—— |1 waiting
ofil2)isiyioiizisl -
Hypervisor
!
) . .
P1][P2] [l;[P3] 1| @ Micro-sliced pool
Pompm——. - quickly but briefly schedule vCPUs
Shortened time slice
Waiting time
——————— vCPU O
&—V vCPU 2
pCPU 3
Serving critical OS services to
minimize the waiting time




Approach: Dividing CPUs into Two Pools

©® Normal pool |[Po

vCPU O

vCPU 2

pCPU O

Time slice

Serving the main work of applications

VM-1 VM-2 D running
S | P r—— |1 waiting
ofil2)isiyioiizisl -
Hypervisor
!
) . .
P1][P2] [l;[P3] 1| @ Micro-sliced pool
Pompm——. - quickly but briefly schedule vCPUs
Shortened time slice
Waiting time
——————— vCPU O
&—V vCPU 2
pCPU 3
Serving critical OS services to
minimize the waiting time




Approach: Dividing CPUs into Two Pools

©® Normal pool |[Po

vCPU O

vCPU 2

pCPU O

Time slice

Serving the main work of applications

VM-1 VM-2 D running
S | P r—— |1 waiting
ofil2)isiyioiizisl -
Hypervisor
!
) . .
P1][P2] [l;[P3] 1| @ Micro-sliced pool
Pompm——. - quickly but briefly schedule vCPUs
Shortened time slice
Waiting time
——————— vCPU O
&—V vCPU 2
pCPU 3
Serving critical OS services to
minimize the waiting time




Challenges in Serving Critical OS
Services on Micro-sliced Cores



Challenges in Serving Critical OS
Services on Micro-sliced Cores

1. Precise detection of urgent tasks



Challenges in Serving Critical OS
Services on Micro-sliced Cores

1. Precise detection of urgent tasks

2. Guest OS transparency




Challenges in Serving Critical OS
Services on Micro-sliced Cores

1. Precise detection of urgent tasks

2. Guest OS transparency

3. Dynamic adjustment of micro-sliced
cores




Detecting Critical OS Services

VM-1 VM-2

[o][1][2] 3i|| 0 i1ii2i[3]

Hypervisor €D




Detecting Critical OS Services

VM-1 VM-2
[0 13 ) R :
Hypervisor “\(‘

Examining the instruction pointer (a.k.a PC)

whenever a vCPU vyields its pCPU

Symbol table of Linux kernel

8106ec60 flush_tlb_current_task
81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()



Detecting Critical OS Services

Instruction pointer

VM-1 VM-2
@OE |0 E
X
—
Hypervisor “(‘

Symbol table of Linux kernel

Examining the instruction pointer (a.k.a PC) | 8106ec60 flush_tlb_current_task

whenever a vCPU vyields its pCPU

81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()




Detecting Critical OS Services

Instruction pointer

VM-1 VM-2
ool ) U A
X
—
Hypervisor “(‘

Symbol table of Linux kernel

Examining the instruction pointer (a.k.a PC) | 8106ec60 flush_tlb_current_task

whenever a vCPU vyields its pCPU

81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()




Detecting Critical OS Services

Instruction pointer

VM-1 VM-2
ool ) U A
X
—
Hypervisor “(‘

Symbol table of Linux kernel

Examining the instruction pointer (a.k.a PC) | 8106ec60 flush_tlb_current_task

whenever a vCPU@its pCPU

81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()




Detecting Critical OS Services

VM-1

[el[E2]

0

VM-2

12
e —

L

S

Hypervisor \‘\(‘

Examining the instruction pointer (a.k.a PC)

whenever a vCPU@itS pCPU

# of yields
workloads
solo co-run*
gmake 79,440| 295,262,662
exim 157,023| 24,102,495
dedup 290,406 | 164,578,839
Vips 644,643| 57,650,538

Instruction pointer

Symbol table of Linux kernel

8106ec60 flush_tlb_current_task
81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()



Detecting Critical OS Services

VM-1

[el[E2]

0

12
e —

VM-2

L

S

Hypervisor \‘\(‘

Examining the instruction pointer (a.k.a PC)

whenever a vCPU@itS pCPU

# of yields
workloads
solo co-run*
gmake 79,440| 295,262,662
exim 157,023| 24,102,495
dedup 290,406 | 164,578,839
Vips 644,643| 57,650,538

* Concurrently running with Swaptions of PARSEC

Instruction pointer

Symbol table of Linux kernel

8106ec60 flush_tlb_current_task
81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()



Detecting Critical OS Services

VM-1

[el[E2]

0

VM-2

12
e —

L

S

Hypervisor \‘\(‘

Examining the instruction pointer (a.k.a PC) | 8106ec60 flush_tlb_current_task

whenever a vCPU@its pCPU

# of yields
workloads
solo co-run*
gmake 79,440| 295,262,662
exim 157,023| 24,102,495
dedup 290,406 | 164,578,839
Vips 644,643| 57,650,538

* Concurrently running with Swaptions of PARSEC

Instruction pointer
0x8106ed62

Symbol table of Linux kernel

81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()

May need to inspect vCPU siblings



Detecting Critical OS Services

VM-1

[el[E2]

0

VM-2

12
e —

L

S

Hypervisor \‘\(‘

Examining the instruction pointer (a.k.a PC) | 8106ec60 flush_tlb_current_task

whenever a vCPU@its pCPU

# of yields
workloads
solo co-run*
gmake 79,440| 295,262,662
exim 157,023| 24,102,495
dedup 290,406 | 164,578,839
Vips 644,643| 57,650,538

* Concurrently running with Swaptions of PARSEC

Instruction pointer
0x8106ed62

Symbol table of Linux kernel

81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()

May need to inspect vCPU siblings



Detecting Critical OS Services

VM-1

[el[E2]

0

VM-2

12
e —

L

S

Hypervisor \‘\(‘

Examining the instruction pointer (a.k.a PC) | 8106ec60 flush_tlb_current_task

whenever a vCPU@its pCPU

# of yields
workloads
solo co-run*
gmake 79,440| 295,262,662
exim 157,023| 24,102,495
dedup 290,406 | 164,578,839
Vips 644,643| 57,650,538

* Concurrently running with Swaptions of PARSEC

Instruction pointer
0x8106ed62

Symbol table of Linux kernel

81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()

May need to inspect vCPU siblings



Detecting Critical OS Services

VM-1

[el[E2]

0

VM-2

12
e —

L

S

Hypervisor \‘\(‘

Examining the instruction pointer (a.k.a PC) | 8106ec60 flush_tlb_current_task

whenever a vCPU@its pCPU

# of yields
workloads
solo co-run*
gmake 79,440| 295,262,662
exim 157,023| 24,102,495
dedup 290,406 | 164,578,839
Vips 644,643| 57,650,538

* Concurrently running with Swaptions of PARSEC

Instruction pointer
0x8106ed62

Symbol table of Linux kernel

81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()

May need to inspect vCPU siblings



Detecting Critical OS Services

VM-1

[el[E2]

0

VM-2

12
e —

L

S

Hypervisor \‘\(‘

Examining the instruction pointer (a.k.a PC) | 8106ec60 flush_tlb_current_task

whenever a vCPU@its pCPU

# of yields
workloads
solo co-run*
gmake 79,440| 295,262,662
exim 157,023| 24,102,495
dedup 290,406 | 164,578,839
Vips 644,643| 57,650,538

* Concurrently running with Swaptions of PARSEC

Instruction pointer
0x8106ed62

Symbol table of Linux kernel

81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()

May need to inspect vCPU siblings



Detecting Critical OS Services

VM-1

[el[E2]

0

VM-2

12
e —

L

S

Hypervisor \‘\(‘

Examining the instruction pointer (a.k.a PC) | 8106ec60 flush_tlb_current_task

whenever a vCPU@its pCPU

# of yields
workloads
solo co-run*
gmake 79,440| 295,262,662
exim 157,023| 24,102,495
dedup 290,406 | 164,578,839
Vips 644,643| 57,650,538

* Concurrently running with Swaptions of PARSEC

Instruction pointer
0x8106ed62

Symbol table of Linux kernel

81062d20 flush_tlbo_mm_range
8106ee80 flush_tlb_page

flush tlb mm range ()

May need to inspect vCPU siblings



Profiling Virtual CPU Scheduling Logs

 Investigating frequently preempted regions

vCPU scheduling trace
(w/ Inst. Pointer)

3. ssh

Critical Guest OS Components

System.map-4.4.0-104-generic
ffEFFfff811045c0 t hotplug_cfd

fFFffff81104680 t generic_exec_single
fEFFFfff811047a0 T smp_call_function_single
fEFFffff811048d0 T smp_call_function_single_async
FEFFFFff81104940 T smp_call_function_any
JFffffff81104a10 T smp_call_function_many
fFFFFFff81104c70 T smp_call_function
fRFFffff81104ca@ T kick_all_cpus_sync
FEFFFFFf81104cdd T wake_up_all_idle_cpus
fEFFFff81104d20 T on_each_cpu
fEFFFFff81104d80 T on_each_cpu_mask
fFFffff81104de® T on_each_cpu_cond
<em.map-4.4.0-104-generic  CWD: /boot

Kernel symbol tables

Module Operation
scheduler_ipi()
sched resched_curr()

mm

flush_tlb_all()
get_page_from_ freelist()

irg

irg_enter()
irg_ exit(Q

Line: 6108

spinlock

__raw_spin_unlock(Q)
__raw_spin_unlock_irq()

In our paper, you can find the table in details




Profiling Virtual CPU Scheduling Logs

 Investigating frequently preempted regions

(w/ Inst. Pointer) Module Operation

scheduler_ipi()

% vCPU scheduling trace Critical Guest OS Components

Instruction pointer and kernel symbols enable
to precisely detect vCPUs preempted while
executing critical OS services without guest
OS modification

In our paper, you can find the table in details
Kernel symbol tables



Accelerating Critical Sections

VM-1

[el[E2]

VM-2

0 1121[3]

Hypervisor

PO

P1

P2

-
[
IP3
=

[] running
waiting



Accelerating Critical Sections

VM-1 VM-2
[oJal[2] s ]| o2
Hypervisor
r--—l
PO | | P1]||P2 : P3| |
| I

[] running
waiting




Accelerating Critical Sections

VM-1 VM-2
[o][1[2]:3 1ii2
Hypervisor @
I--—I
PO||P1]| |P2 : P31 ]
H---I

[] running
waiting



Accelerating Critical Sections

VM-1

[el[E2]

PO

P1

P2

@ Yield occurring

[] running
waiting



Accelerating Critical Sections

VM-1

[el[E2]

PO

P1

P2

@ Yield occurring

[] running
waiting



Accelerating Critical Sections

VM-1

[oJli[2] 5!

PO[|P1]|P2

@ Yield occurring
® Investigating the preempted vCPUs

[] running

=i

.+ waiting



Accelerating Critical Sections

VM-1

[oJli[2] 5!

PO[|P1]|P2

@ Yield occurring
® Investigating the preempted vCPUs

[] running

=i

.+ waiting



Accelerating Critical Sections

VM-1

[oJli[2] 5!

PO[|P1]|P2

@ Yield occurring
® Investigating the preempted vCPUs

[] running

=i

.+ waiting



Accelerating Critical Sections

VM-1

[oJli[=]: 5 || Ok

PO | [P1]||P2

@ Yield occurring
® Investigating the preempted vCPUs

©® Scheduling the selected vCPU on the micro-sliced pool



Accelerating Critical Sections

VM-1

[oJli[2] 5!

PO | | P1

@ Yield occurring
® Investigating the preempted vCPUs

©® Scheduling the selected vCPU on the micro-sliced pool



Accelerating Critical Sections

VM-1

[oJli[2] 5!

PO | | P1

@ Yield occurring
® Investigating the preempted vCPUs

©® Scheduling the selected vCPU on the micro-sliced pool



Accelerating Critical Sections

VM-1

[oJli[2] 5!

PO | | P1

@ Yield occurring
® Investigating the preempted vCPUs

©® Scheduling the selected vCPU on the micro-sliced pool



Accelerating Critical Sections

VM-1

[oJli[2] 5!

PO | | P1

@ Yield occurring
® Investigating the preempted vCPUs

©® Scheduling the selected vCPU on the micro-sliced pool



Accelerating Critical TLB Synchronizations

VM-1

[el[E2]

O

VM-2

1 2
—

Hyperwsor \@

/

\\

7_/—\

vield() @

PO

P1

P2

P3

"'I

@ Yield occurring

® Investigating the preempted vCPUs

\./—

[] running
waiting



Accelerating Critical TLB Synchronizations

VM-1

[el[E2]

F
i
|

0
—

V

M

1
X

2
2
A

Hypervisor ~ @)

g

~

/

\\

7_/—\

vield() @

PO

P1

P2

@ Yield occurring

® Investigating the preempted vCPUs

r--

P3

\./—

[] running
waiting



Accelerating Critical TLB Synchronizations

/

__/—\

vield() @

VM-1 VM-2
— ~\JJOIE] s
#PIs | 1K
#PLEs K . N
#IRQs §.7SK Hypervisor ﬂ
/

PO||P1|]|P2 : P3

@ Yield occurring
® Investigating the preempted vCPUs
©® Scheduling the selected vCPU on the micro-sliced pool

\./‘

[] running

=i

.+ waiting



Accelerating Critical TLB Synchronizations

VM-1
— DOz s
#IPls 1K
#PLEs K
#IRQs (?75K HyperVIS
—

PO

@ Yield occurring

® Investigating the preempted vCPUs

__/—\

vield() @

\./‘

[] running

=i

.+ waiting

©® Scheduling the selected vCPU on the micro-sliced pool



Accelerating Critical TLB Synchronizations

—
VM-1 O
leld
— NLbEsE vieldl)
#IPls 1K '
—
#PLEs | 37K '
#IRQSS 0.5K HyperV|S
— Drunning
PO Pl . 1 waiting

@ Yield occurring

® Investigating the preempted vCPUs

©® Scheduling the selected vCPU on the micro-sliced pool

O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

o
VM-1 VM-2 / . o
Y leld
— NbE) s ey
#Pls_ | 1K '
—_
#PLEs | 37K '
#IRQs [ 0.5K Hypervisgr
— -i [J running
PO Pl : |1 waiting

@ Yield occurring
® Investigating the preempted vCPUs

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-1
— DOz s
#IPls 1K
#PLEs K
#IRQs 375K HyperVIS [
—

PO

@ Yield occurring

® Investigating the preempted vCPUs

__/—\

vield() @

\./_~

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

o
VM-1 VM-2 / : a
— bR s |0 vield(
#IPI 1K ' :
#PLSES 37K ————
#IRQs | 0.5K
— . [] running
PO i .+ waiting
@ Yield occurring =’

® Investigating the preempted vCPUs
©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-2
o0

/

HE)

VM-1
— ~\JIOIE]
#1Pls 1K
#PLEs | 37K
#IRQs | 0.5K
\_/_-

PO

@ Yield occurring

® Investigating the preempted vCPUs

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-2
o0

/

HE)

VM-1
— ~\JIOIE]
#1Pls 1K
#PLEs | 37K
#IRQs | 0.5K
\_/_-

PO

@ Yield occurring

® Investigating the preempted vCPUs

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-2
o0

/

HE)

VM-1
— ~\JIOIE]
#1Pls 1K
#PLEs | 37K
#IRQs | 0.5K
\_/_-

PO

@ Yield occurring

® Investigating the preempted vCPUs

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-2
o0

/

HE)

VM-1
— ~\JIOIE]
#1Pls 1K
#PLEs | 37K
#IRQs | 0.5K
\_/_-

PO

@ Yield occurring

® Investigating the preempted vCPUs

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-2
o0

/

HE)

VM-1
— ~\JIOIE]
#1Pls 1K
#PLEs | 37K
#IRQs | 0.5K
\_/_-

PO

@ Yield occurring

® Investigating the preempted vCPUs

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-2
o0

/

HE)

VM-1
— ~\JIOIE]
#1Pls 1K
#PLEs | 37K
#IRQs | 0.5K
\_/_-

PO

@ Yield occurring

® Investigating the preempted vCPUs

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-2
o0

/

HE)

VM-1
— ~\JIOIE]
#1Pls 1K
#PLEs | 37K
#IRQs | 0.5K
\_/_-

PO

@ Yield occurring

® Investigating the preempted vCPUs

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-2
o0

/

HE)

VM-1
— ~\JIOIE]
#1Pls 1K
#PLEs | 37K
#IRQs | 0.5K
\_/_-

PO

@ Yield occurring

® Investigating the preempted vCPUs

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Accelerating Critical TLB Synchronizations

VM-2
o0

/

HE)

VM-1
— ~\JIOIE]
#1Pls 1K
#PLEs | 37K
#IRQs | 0.5K
\_/_-

PO

@ Yield occurring

® Investigating the preempted vCPUs

[] running

=i

N Waltlng

©® Scheduling the selected vCPU on the micro-sliced pool
O Dynamically adjusting micro-sliced cores based on profiling



Detecting Critical 1/0 Events

[J running
' 1 waiting

Hypervisor

/O

I/0 handling consists of a chain of operations involving
potentially multiple vCPUs



Detecting Critical 1/0 Events

[J running
' 1 waiting

%}lpIRQ

I/0 handling consists of a chain of operations involving
potentially multiple vCPUs

Hypervisor




Detecting Critical 1/0 Events

[J running

R[N -

' 1 waiting

Hypervisor

%}'pIRQ

I/0 handling consists of a chain of operations involving

potentially multiple vCPUs



Detecting Critical 1/0 Events

[J running
' 1 waiting

Hypervisor

/O 1 pIRQ

I/0 handling consists of a chain of operations involving
potentially multiple vCPUs



Detecting Critical 1/0 Events

[J running
' 1 waiting

Hypervisor

I/0 handling consists of a chain of operations involving
potentially multiple vCPUs



Detecting Critical 1/0 Events

[J running
' 1 waiting

PIRQ

I/0 handling consists of a chain of operations involving
potentially multiple vCPUs



Detecting Critical 1/0 Events

[J running
' 1 waiting

PIRQ

I/0 handling consists of a chain of operations involving
potentially multiple vCPUs



Detecting Critical 1/0 Events

[J running
' 1 waiting

PIRQ

I/0 handling consists of a chain of operations involving
potentially multiple vCPUs



Detecting Critical 1/0 Events

[J running
' 1 waiting

PIRQ

I/0 handling consists of a chain of operations involving
potentially multiple vCPUs



Experimental Environments

e Testbed
e 12 HW threads (Intel Xeon) App App
e 2 VMs with 12 vCPUs for each 0s 0s
 Xen hypervisor 4.7 2vital__w [T | | T

Xen hypervisor

* Benchmarking workloads
e dedup and vips from PARSEC
« exim and gmake from MOSBENCH

12 physical threads

2-to-1 consolidation ratio

* Pool configuration
 Normal: 30ms (Xen default)
e Micro-sliced: 0.1ms



Performance of Micro-sliced Cores

— [ 0
_w_ A_.u_._ N NN NN NN NN NN SN NN SN NN NN BN NN R BN BN BN N
e o )
Qo Ny ] <
S m
5 o
O, au
Sy - I
O
2 [ & & N BN BN BN B B | [ & 5 B BN B B B B B B B |
B
T | o E—
_H_ (Q\|

3
1

¥ N 4 o © 8 N o
— o o o o

(9%) swi UOINIAX3 "WION



Performance of Micro-sliced Cores

2
s =
S m
5 o
O, gl
iy
O
(Q\|
ol
iy
0

N N 4 o © ¥
— o o o

o

N
o
AQov 9Wll] uoIilNdaxXa "WION



Performance of Micro-sliced Cores

A g1 -=AH g2

(9%) @wI1 UonNJIBXa PazifewloN

NHOooM~OWY ONAQ
e NelcNeNoNoNoNoNoNoNa)

Q
To)

n QW Qo W|oWwaowQ
< < 0O M N AN Hd 4 O O

Juawanoidwi Indiybnoay L




Performance of Micro-sliced Cores

Throughtput improvement

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

A g1 -=AH g2

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Normalized execution time (%)

# of yield exceptions

140,000,000.00

120,000,000.00

100,000,000.00

80,000,000.00

60,000,000.00

40,000,000.00

20,000,000.00

0.00

1 2 3




Performance of Micro-sliced Cores

Throughtput improvement

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

A g1 -=AH g2

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Normalized execution time (%)

# of yield exceptions

140,000,000.00

120,000,000.00

100,000,000.00

80,000,000.00

60,000,000.00

40,000,000.00

20,000,000.00

0.00

1 2 3

J—




Performance of Micro-sliced Cores

Throughtput improvement

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

A g1 -=AH g2

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Normalized execution time (%)

# of yield exceptions

140,000,000.00

120,000,000.00

100,000,000.00

80,000,000.00

60,000,000.00

40,000,000.00

20,000,000.00

0.00

8% gap




/0O Performance

800

700
-~ 600
500
400
300
200
100

Bandwidth (Mbps

A g1 oA g2

Workloads
IPerf
VM-1 lookbusy
VM-2 | lookbusy




/0O Performance

800

700
-~ 600
500
400
300
200
100

Bandwidth (Mbps

A g1 oA g2

9.5
8.5
7.5
6.5
5.5
4.5
3.5
2.5
1.5
0.5
-0.5

jitters (ms)

Workloads
IPerf
VM-1 lookbusy
VM-2 | lookbusy




Conclusions

* We introduced a new approach to mitigate the
virtual time discontinuity problem

e Three distinct contributions
* Precise detection of urgent tasks
e Guest OS transparency
e Dynamic adjustment of the micro-sliced cores

e Overhead is very low for applications which do
not frequently use OS services



Thank You!

Jjsahn@ajou.ac.kr

Accelerating Critical OS Services In Virtualized
Systems with Flexible Micro-sliced Cores

Jeongseob Ahn*, Chang Hyun Parki, Taekyung Heoi, Jaehyuk Huh¥

+
‘@) AJIOU UNIVERSITY KAIST




	Accelerating Critical OS Services in Virtualized Systems with Flexible Micro-sliced Cores 
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	Challenge of Server Consolidation
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	So, What Can Happen?
	How about Shortening Time Slice?
	How about Shortening Time Slice?
	How about Shortening Time Slice?
	How about Shortening Time Slice?
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Approach: Dividing CPUs into Two Pools
	Challenges in Serving Critical OS Services on Micro-sliced Cores
	Challenges in Serving Critical OS Services on Micro-sliced Cores
	Challenges in Serving Critical OS Services on Micro-sliced Cores
	Challenges in Serving Critical OS Services on Micro-sliced Cores
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Detecting Critical OS Services
	Profiling Virtual CPU Scheduling Logs 
	Profiling Virtual CPU Scheduling Logs 
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical Sections
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Accelerating Critical TLB Synchronizations
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Detecting Critical I/O Events
	Experimental Environments
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	Performance of Micro-sliced Cores
	I/O Performance
	I/O Performance
	Conclusions
	Thank You!�jsahn@ajou.ac.kr

