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Design Goal & Challenges
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Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches
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Naïve Solution: On-chip Cache Extension
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Naïve Solution: On-chip Cache Extension
• Additional storages to store multiple write-sets

• E.g., to store all physical address, scan the entire cache hierarchy
• Cache replacement policy to be aware of transactions

• E.g., evict non-transactional cache blocks first
• Has to discard the cache block if overflow
 Need to search log area for read access
 Need indirect data update
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Redo log with Direct Update (ReDU)
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Redo log with Direct Update (ReDU)
• Our approach: use DRAM for handling direct-update

• Synchronous update to the FAST DRAM
• Asynchronous update to the SLOW NVM
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Redo log with Direct Update (ReDU)
• Our approach: use DRAM for handling direct-update
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• Asynchronous update to the SLOW NVM
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ReDU – Direct-Update
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ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache
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ReDU – Direct-Update
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ReDU – Direct-Update
• Update to NVM done asynchronously
• Only flush cachelines that belong to the committed 

transaction
• DRAM cache maintains the committed transaction IDs

• Various write-back policies are possible
• E.g., Eager or LRU
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More in the paper…
• Full design space exploration of HW logging

• Log optimization #1: coalescing
• Log optimization #2: packing

• Details of DRAM cache organization
• Transaction Table and Offset Table

• Bloom filter-based HW-filter to reduce DRAM accesses
• Evaluation of LRU write-back policy of the DRAM cache
• Log management
• …
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Methodology
• Gem5 simulator

• Comparing schemes
• All equally include log optimizations (e.g., coalescing and packing)
• UndoSync: undo log with synchronous commit
• RedoIndirect: redo log with asynchronous but indirect update
• Undo+Redo: undo+redo log with asynchronous & direct update
• ReDU: our approach

Processor OoO, 2GHz, x86
L1 I/D cache Private, 32KB, 8-way
L2 cache Private, 256KB, 8-way
L3 cache Shared, 8MB, 16-way
DRAM cache 40MB (8MB meta + 32MB data)
NVM Read: 50ns, write: 150ns
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Micro-bench Vector, Swap
NVML HashMap, B-Tree, RB-Tree

Macro-bench YCSB, TPCC, ECHO

• Benchmarks



Evaluation – Transaction Throughput
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Evaluation – Transaction Throughput
• Large & sequential workloads

• Undo and ReDU perform similarly
(same data path and NVM bandwidth saturated)

• Redo suffers from indirect update
• UndoRedo requires double NVM writes 

for logs

• Small & Random workloads
• On average
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Evaluation – Transaction Throughput
• Large & Sequential workloads
• Small & Random workloads

• Undo waits synchronous commit
• Redo suffers from indirect update
• UndoRedo requires double NVM writes 

for logs

• On average
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• Redo suffers from indirect update
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Evaluation – Transaction Throughput
• Large & Sequential workloads
• Small & Random workloads
• On average

• Asynchronous update  9%
• Direct update  16%
• Small log size  30%
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Summary
• Problem: crash-consistency in storage-class memory

• Atomicity and durability support for NVM writes
• Existing hardware solutions exhibit trade-offs

• Solution: Redo log with Direct Updates (ReDU)
• Redo-based log with optimizations
• Synchronous update to the fast DRAM
• Asynchronous update to the slow NVM

• Results: ReDU outperforms existing solutions in various 
workloads

• Bringing DRAM into the atomicity and durability
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