Efficient Hardware-assisted Logging
with Asynchronous and Direct Update
for Persistent Memory

Jungi Jeong, Chang Hyun Park,
Jaehyuk Huh, and Seungryoul Maeng

School of
KAIST Computing

Storage-Class Memory

[Application : User
Space
Load/Store

NVM-aware Memory- : | Kernel
File System | mapped : | Space

lllll wlllll’

Devices

[NVDIMMs

2018-10-23 22

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[aBEledlion F, l]sﬁ;

Load/Store

File System | mapped : | Space

lllllllllll

[NVM-aware Memory- E]Keme/

Devices

[NVDIMMSs

2018-10-23 23

Storage-Class Memory

 Directly attached to the app’s virtual address space

» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[Applcation ; :)

Load/Store

File System

Memory- :
mapped :

{ NVM-aware

srewqeeees

[NVDIMMSs

Kerne/

Space

Devices

2018-10-23

24

Storage-Class Memory

 Directly attached to the app’s virtual address space

» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[Applcation ; :)

Load/Store

®

File System

Memory- :
mapped :

{ NVM-aware

srewqeeees

[NVDIMMSs

Kerne/

Space

Devices

2018-10-23

25

Storage-Class Memory

 Directly attached to the app’s virtual address space

» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[Applcation ; :)

Load/Store

® ©

File System

Memory- :
mapped :

{ NVM-aware

srewqeeees

[NVDIMMSs

Kerne/

Space

Devices

2018-10-23

26

Storage-Class Memory

 Directly attached to the app’s virtual address space

» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[Applcation ; :)

Load/Store

® ©O—

Memory- :
mapped :

NVM-aware
File System

srewqeeees

[NVDIMMSs

Kerne/

Space

Devices

2018-10-23

27

Storage-Class Memory

 Directly attached to the app’s virtual address space

» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[Applcation ; :)

Load/Store

.® ©.

Memory- :
mapped :

NVM-aware
File System

srewqeeees

[NVDIMMSs

Kerne/

Space

Devices

2018-10-23

28

Storage-Class Memory

 Directly attached to the app’s virtual address space

» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[Applcation ; :)

Load/Store

—®) O—

Memory- :
mapped :

NVM-aware
File System

srewqeeees

[NVDIMMSs

Kerne/

Space

Devices

2018-10-23

29

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

+ EX) Doubly linked-list insertion | (_Application £ %] | vser

Load/Store

NVM-aware Memory- : | Kernel
File System | mapped : | Space

srewqeeees

store B->next=C
store B->prev=A
store A->next=B T
store C->prev=B [NVDIMMs Devices

2018-10-23 30

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

» Ex) Doubly linked-list insertion

[Application '

Load/Store

©O—

—@®)

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

NVM-aware Memory
File System | mapped :
preqneansd
<
[NVDIMMs

Kernel
Space

Devices

2018-10-23

31

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

+ Ex) Doubly linked-list insertion | (_ABplication %] | user

Load/Store

©O—

—@®)

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

File System | mapped : | Space
rnarqereesd

[NVM-aware Memory- E]Keme/

—

[NVDIMMSs Devices

2018-10-23

32

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

. Ex) Doubly linked-list insertion | _Application £ %] | user

Load/Store
p
<

store B->next=C
store B->prev=A
store A->next=B T
store C->prev=B [NVDIMMs Devices

File System | mapped : | Space
rnarqereesd

[NVM-aware Memory- E]Keme/

2018-10-23 33

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

» Ex) Doubly linked-list insertion

[Application '

Load/Store

AO—

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

NVM-aware Memory
File System _rpgr;Q?_q
: [NVDIMMs

Kernel
Space

Devices

2018-10-23

34

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

» Ex) Doubly linked-list insertion

[Application '

Load/Store

AO—

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

NVM-aware Memory
File System _rpgr;Q?_q
: [NVDIMMs

Kernel
Space

Devices

2018-10-23

35

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

» Ex) Doubly linked-list insertion

[Application '

Load/Store

AO—

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

NVM-aware Memory
File System _rpgr;Q?_q
: [NVDIMMs

Kernel
Space

Devices

2018-10-23

36

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

» Ex) Doubly linked-list insertion

[Application '

Load/Store

AO—

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

NVM-aware Memory
File System _rpgr;Q?_q
: [NVDIMMs

Kernel
Space

Devices

2018-10-23

37

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

» Ex) Doubly linked-list insertion

[Application '

Load/Store

AO—

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

NVM-aware Memory
File System _rpgr;Q?_q
: [NVDIMMs

Kernel
Space

Devices

2018-10-23

38

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

» Ex) Doubly linked-list insertion

[Application '

Load/Store

AO—

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

NVM-aware Memory
File System _rpgr;Q?_q
: [NVDIMMs

Kernel
Space

Devices

2018-10-23

39

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[aBEledlion F‘ l]sﬁi;

Load/Store

9 NVM-aware Memory- : | Kernel
File System | mapped : | Space
L B 1 IIIIII

store B->next=C
store B->prev=A

store next=B
store C rev=B

—
—

[NVDIMMSs Devices

2018-10-23 40

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[aBEledlion F‘ l]sﬁi;

Load/Store

File System | mapped : | Space
rnarqereesd

[NVM-aware Memory- E]Kerne/

store B->next=C
store B->prev=A

store next=B
store C rev=B

[NVDIMMSs Devices

2018-10-23 41

Storage-Class Memory

 Directly attached to the app’s virtual address space
» Accessible through load/store instructions
* In-memory data persistency

e Ex) Doubly linked-list insertion [[aBEledlion F‘ l]sﬁi;

Load/Store

lllllllllll

NVM-aware Memory- : | Kernel
File System :

lllllllllll

New requirement:

Supporting Crash-Consistency of NVM stores
store CQprev=B NVDIMMs M Devices

2018-10-23 42

Atomic Durability through Logging

2018-10-23

43

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e ExX) Atomic durability in software

Durability with
cache-flush

store B->next=C I:>
store B->prev=A
store A->next=B
store C->prev=B

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Durability with Atomicity and ordering with
cache-flush write-ahead logging

store B->next=C I:>
store B->prev=A
store A->next=B
store C->prev=B

2018-10-23

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Durability with Atomicity and ordering with
cache-flush write-ahead logging

store B->next=C I:> I:>

store B->prev=A
store A->next=B
store C->prev=B

2018-10-23

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Durability with Atomicity and ordering with
cache-flush write-ahead logging
store B->next=C I:> store B->next=C I:>
store B->prev=A store B->prev=A
store A->next=B store A->next=B
store C->prev=B store C->prev=B
cache-flush

2018-10-23

Atomic Durability through Logging

e Transaction

 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

2018-10-23

—

Durability with
cache-flush

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

—

Atomicity and ordering with
write-ahead logging

Log
Write

49

Atomic Durability through Logging

e Transaction

 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

2018-10-23

—

Durability with
cache-flush

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

—

Atomicity and ordering with
write-ahead logging

Log
Write

Data
Update

50

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Durability with Atomicity and ordering with
cache-flush write-ahead logging
store B->next=C I:> store B->next=C I:> store log[0O]=A->next
store B->prev=A store B->prev=A store log[1]=C->prev Log
store A->next=B store A->next=B cache-flush Write
store C->prev=B store C->prev=B sfence
cache-flush store B->next=C
store B->prev=A
store A->next=B Data
store C->prev=B Update
cache-flush
sfence

2018-10-23

51

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Durability with Atomicity and ordering with
cache-flush write-ahead logging
store B->next=C I:> store B->next=C I:> store log[0O]=A->next
store B->prev=A store B->prev=A store log[1]=C->prev Log
store A->next=B store A->next=B cache-flush Write
store C->prev=B store C->prev=B sfence J
cache-flush store B->next=C
store B->prev=A
store A->next=B _ Data
store C->prev=B Update
cache-flush
sfence _

2018-10-23

52

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Durability with Atomicity and ordering with
cache-flush write-ahead logging
store B->next=C I::} store B->next=C I:> store log[0O]=A->next
store B->prev=A store B->prev=A store log[1]=C->prev Log
store A->next=B store A->next=B cache-flush Write
store C->prev=B store C->prev=B sfence J
cache-flush store B->next=C
store B->prev=A
store A->next=B _ Data
store C->prev=B Update
cache-flush
sfence _

Persist-ordering with
store-fence

2018-10-23

53

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Durability with Atomicity and ordering with
cache-flush write-ahead logging
store B->next=C I::} store B->next=C I:> store log[0O]=A->next
store B->prev=A store B->prev=A store log[1]=C->prev Log
store A->next=B store A->next=B cache-flush Write
store C->prev=B store C->prev=B sfence J
cache-flush store B->next=C
store B->prev=A
store A->next=B _ Data
store C->prev=B Update
cache-flush
sfence _

Persist-ordering with
store-fence

2018-10-23

54

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Durability with Atomicity and ordering with
cache-flush write-ahead logging
store B->next=C I::} store B->next=C I:> store log[0O]=A->next
store B->prev=A store B->prev=A store log[1]=C->prev Log
store A->next=B store A->next=B cache-flush Write
store C->prev=B store C->prev=B sfence J
cache-flush store B->next=C
store B->prev=A
store A->next=B _ Data
store C->prev=B Update
cache-flush
sfence _

Persist-ordering with
store-fence

2018-10-23

55

Atomic Durability through Logging

e Transaction
 All stores in a transaction become durable all together or nothing

e Ex) Atomic durability in software

Durability with Atomicity and ordering with
cache-flush write-ahead logging
store B->next=C I::} store B->next=C I:> store log[0O]=A->next
store B->prev=A store B->prev=A store log[1]=C->prev Log
store A->next=B store A->next=B cache-flush Write
store C->prev=B store C->prev=B sfence J
cache-flush store B->next=C
store B->prev=A
store A->next=B _ Data
store C->prev=B Update
cache-flush
sfence _

Persist-ordering with
store-fence

2018-10-23

56

HW-assisted Logging

2018-10-23

57

HW-assisted Logging

e Simple programming model

 HW is responsible for 1) log-write and 2) data update

» Advantages over software-logging
* Fine-grained ordering & less CPU cycles

HW-assisted Logging

e Simple programming model Transaction_begin()
store B->next=C

store C->prev=B
Transaction_end()

« HW is responsible for 1) log-write and 2) data update

» Advantages over software-logging
* Fine-grained ordering & less CPU cycles

2018-10-23

HW-assisted Logging

e Simple programming model Transaction_begin()
store B->next=C

store B->next=C
store C->prev=B
store C->prev=B Transaction_end()

« HW is responsible for 1) log-write and 2) data update

» Advantages over software-logging
* Fine-grained ordering & less CPU cycles

2018-10-23

HW-assisted Logging

e Simple programming model Transaction_begin()
store B->next=C

store B->next=C

—> | store C->prev=B

store C->prev=B Transaction_end()

« HW is responsible for 1) log-write and 2) data update

» Advantages over software-logging
* Fine-grained ordering & less CPU cycles

2018-10-23

HW-assisted Logging

e Simple programming model Transaction_begin()
store B->next=C

—> |store C->prev=B

store C->prev=B Transaction_end()

store B->next=C

« HW is responsible for 1) log-write and 2) data update

Processor [Caches Log Ctrl.
2) Data-Update 1) Log-Write

\ 4

A 4
NVM Data NVM Log

NVM

» Advantages over software-logging
* Fine-grained ordering & less CPU cycles

2018-10-23 62

HW-assisted Logging

e Simple programming model

Transaction_begin()
store B->next=C

store B->next=C
—> |store C->prev=B
store C->prev=B Transaction_end()

« HW is responsible for 1) log-write and 2) data update

Processor [Caches Log Ctrl.
2) Data-Update 1) Log-Write
A 4 A 4
NVM NVM Data NVM Log

» Advantages over software-logging
* Fine-grained ordering & less CPU cycles

F':_.)?' | Log B || Store B |
Log A = Log A |[Store A]
] (b) Ordering with HW]

(a) Ordering with SW
63

2018-10-23

Past Proposal: Undo-based HW-Logging

Processor [Caches] Log Ctrl.

NVM NVM Data NVM Log

* A. Joshi et al. HPCA 2017.
» S. Shin et al. ISCA 2017.

2018-10-23

Past Proposal: Undo-based HW-Logging

» Store old value in logs
« Update data in NVM before commit
= Synchronous data-update

Processor [Caches } Log Ctrl.

A 4
NVM NVM Data NVM Log

* A. Joshi et al. HPCA 2017.
» S. Shin et al. ISCA 2017.

2018-10-23

Past Proposal: Undo-based HW-Logging

» Store old value in logs

« Update data in NVM before commit
= Synchronous data-update

Processor

NVM

* A. Joshi et al. HPCA 2017.
» S. Shin et al. ISCA 2017.

[Caches] Log Ctrl.
1) Store old value
in NVM logs
A 4
NVM Data NVM Log

2018-10-23

66

Past Proposal: Undo-based HW-Logging

» Store old value in logs

« Update data in NVM before commit
= Synchronous data-update

Processor

NVM

* A. Joshi et al. HPCA 2017.
» S. Shin et al. ISCA 2017.

[Caches] Log Ctrl.
1) Store old value
in NVM logs
A 4
NVM Data NVM Log

2018-10-23

67

Past Proposal: Undo-based HW-Logging

» Store old value in logs Addr
« Update data in NVM before commit
= Synchronous data-update

Processor [Caches] Log Ctrl.

1) Store old value
in NVM logs

A 4

NVM NVM Data NVM Log

* A. Joshi et al. HPCA 2017.
» S. Shin et al. ISCA 2017.

2018-10-23 68

Past Proposal: Undo-based HW-Logging

» Store old value in logs

Addr

Old Value

« Update data in NVM before commit

Processor

NVM

* A. Joshi et al. HPCA 2017.
» S. Shin et al. ISCA 2017.

= Synchronous data-update

[Caches]

Log Ctrl.

2) Update data

in NVM

1) Store old value
in NVM logs

NVM Data

A 4

NVM Log

2018-10-23

69

Past Proposal: Undo-based HW-Logging

» Store old value in logs

Addr

Old Value

« Update data in NVM before commit

Processor

NVM

= Synchronous data-update

[Caches]

Log Ctrl.

2) Update data

in NVM

1) Store old value
in NVM logs

NVM Data

A 4

NVM Log

Long critical path due to synchronous data-update

* A. Joshi et al. HPCA 2017.
» S. Shin et al. ISCA 2017.

2018-10-23

70

Past Proposal: Undo-based HW-Logging

» Store old value in logs

Addr

Old Value

« Update data in NVM before commit

Processor

NVM

= Synchronous data-update

[Caches]

Log Ctrl.

2) Update data

in NVM

1) Store old value
in NVM logs

NVM Data

A 4

NVM Log

Long critical path due to synchronous data-update

* A. Joshi et al. HPCA 2017.
» S. Shin et al. ISCA 2017.

2018-10-23

71

Past Proposal: Undo-based HW-Logging

» Store old value in logs

Addr

Old Value

« Update data in NVM before commit

Processor

NVM

= Synchronous data-update

[Caches]

Log Ctrl.

2) Update data

in NVM

1) Store old value
in NVM logs

NVM Data

A 4

NVM Log

Long critical path due to synchronous data-update

* A. Joshi et al. HPCA 2017.
» S. Shin et al. ISCA 2017.

2018-10-23

12

Past Proposal: Redo-based HW-Logging

Addr | New Value

Processor [Caches] Log Ctrl.

NVM NVM Data NVM Log

+ K. Doshi et al. HPCA 2016.

2018-10-23

Past Proposal: Redo-based HW-Logging

* Store new value in logs [Addr | New Value
o Update data in NVM after commit
=» Asynchronous data-update
 However, update by reading log entries from NVM
= Indirect data-update

Processor [Caches } Log Ctrl.

\ 4
NVM NVM Data NVM Log

+ K. Doshi et al. HPCA 2016.

2018-10-23

Past Proposal: Redo-based HW-Logging

* Store new value in logs [Addr | New Value
o Update data in NVM after commit
=» Asynchronous data-update
 However, update by reading log entries from NVM
= Indirect data-update

Processor [Caches } Log Ctrl.

1) Store new value
in NVM logs

\ 4
NVM NVM Data NVM Log

+ K. Doshi et al. HPCA 2016.

2018-10-23

Past Proposal: Redo-based HW-Logging

* Store new value in logs [Addr | New Value
o Update data in NVM after commit
=» Asynchronous data-update
 However, update by reading log entries from NVM
= Indirect data-update

Processor [Caches } Log Ctrl.

1) Store new value
in NVM logs

\ 4
NVM NVM Data NVM Log

+ K. Doshi et al. HPCA 2016.

2018-10-23

Past Proposal: Redo-based HW-Logging

* Store new value in logs [Addr | New Value
o Update data in NVM after commit
=» Asynchronous data-update
 However, update by reading log entries from NVM
= Indirect data-update

Processor [Caches } Log Ctrl.

1) Store new value

2) Update data
in NVM logs

in NVM

\ 4
NVM NVM Data NVM Log

+ K. Doshi et al. HPCA 2016.

2018-10-23

Past Proposal: Redo-based HW-Logging

» Store new value in logs [Addr] New value
o Update data in NVM after commit
=» Asynchronous data-update
 However, update by reading log entries from NVM
= Indirect data-update

Processor | Caches | Log Ctrl.
2) Update datd sssssssssssssssssssssssns =| 1) Store new value
in NVM . =| in NVM logs
V¥ .
NVM NVM Data NVM Log

+ K. Doshi et al. HPCA 2016.

2018-10-23

Past Proposal: Redo-based HW-Logging

» Store new value in logs [Addr] New value
o Update data in NVM after commit
=» Asynchronous data-update
 However, update by reading log entries from NVM
= Indirect data-update

Processor | Caches | Log Ctrl.
2) Update datd sssssssssssssssssssssssns =| 1) Store new value
in NVM . =| in NVM logs
V¥ .
NVM NVM Data NVM Log

Wastes extra NVM bandwidth for reading logs from NVM

+ K. Doshi et al. HPCA 2016.

2018-10-23 79

Past Proposal: Undo-Redo HW-Logging

Addr | Old Value | New Value

Processor [caches | Log Buffer

\ 4
NVM NVM Data NVM Log

e M. Ogleari et al. HPCA 2018.

2018-10-23

Past Proposal: Undo-Redo HW-Logging

« Store both old and new value in logs
Addr | Old Value | New Value | =2 Larger log sizes

o Update data in NVM after commit

Processor [caches | Log Buffer

\ 4
NVM NVM Data NVM Log

e M. Ogleari et al. HPCA 2018.

2018-10-23

Past Proposal: Undo-Redo HW-Logging

« Store both old and new value in logs
Addr | Old Value | New Value | =2 Larger log sizes

o Update data in NVM after commit

Processor [Caches]—| Log Buffer

1) Store both old
and new value
in NVM logs

NVM NVM Data NVM Log

Requires more NVM writes for storing logs in NVM

e M. Ogleari et al. HPCA 2018.

2018-10-23 82

Past Proposal: Undo-Redo HW-Logging

« Store both old and new value in logs

Addr

Old Value

New Value

= Larger log sizes

o Update data in NVM after commit

Processor

NVM

[Caches |l [0g Buffer

2) Update data
in NVM

1) Store both old
and new value
in NVM logs

\ 4

NVM Data

NVM Log

Requires more NVM writes for storing logs in NVM

e M. Ogleari et al. HPCA 2018.

2018-10-23

83

Past Proposal: Undo-Redo HW-Logging

« Store both old and new value in logs

Addr

Old Value

New Value

= Larger log sizes

o Update data in NVM after commit

Processor

NVM

[Caches |l [0g Buffer

2) Update data
in NVM

1) Store both old
and new value
in NVM logs

\ 4

NVM Data

NVM Log

Requires more NVM writes for storing logs in NVM

e M. Ogleari et al. HPCA 2018.

2018-10-23

84

Past Proposal: Undo-Redo HW-Logging

« Store both old and new value in logs

Addr

Old Value

New Value

= Larger log sizes

o Update data in NVM after commit

Processor

NVM

[Caches |l [0g Buffer

2) Update data
in NVM

1) Store both old
and new value
in NVM logs

\ 4

NVM Data

NVM Log

Requires more NVM writes for storing logs in NVM

e M. Ogleari et al. HPCA 2018.

2018-10-23

85

Past Proposal: Undo-Redo HW-Logging

« Store both old and new value in logs

Addr

Old Value

New Value

= Larger log sizes

o Update data in NVM after commit

Processor

NVM

[Caches |l [0g Buffer

2) Update data
in NVM

1) Store both old
and new value
in NVM logs

\ 4

NVM Data

NVM Log

Requires more NVM writes for storing logs in NVM

e M. Ogleari et al. HPCA 2018.

2018-10-23

86

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

2018-10-23 87

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] | UndoRedo Direct Asynchronous More Log Write

1.4

1.2

0.8

0.6

0.4
1

2

3

Large & Sequential

Workloads

1.2

0.8

0.6

0.4

2018-10-23

88

Past Proposals: Summary

Log-Write

Data-Update

Drawback

ATOM [HPCA 2017]

Undo

Direct Synchronous

Proteus [ISCA 2017]

Undo

Direct Synchronous

Long Critical Path

Wrap [HPCA 2016]

Redo

Indirect Asynchronous

Waste NVM Bandwidth

FWB [HPCA 2018]

UndoRedo

Direct Asynchronous

More Log Write

1.4

1.2

0.8

0.6

0.4
1

Cycles per Transaction (CPT)
Lower Is Better

2

3

Large & Sequential

Workloads

1.2

0.8

0.6

0.4

2018-10-23

89

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

1.4

1.2

0.8

0.6

0.4
1

Cycles per Transaction (CPT)
Lower Is Better

2

3

Large & Sequential

Workloads

1.2

0.8

0.6

0.4

1 2 3

Small & Random
Workloads

2018-10-23

90

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Undo-Friendly

1.4

1.2

0.8
0.6
0.4
1

[EnY

Cycles per Transaction (CPT)
Lower Is Better

2

3

Large & Sequential

Workloads

1.2

0.8

0.6

0.4

1 2 3

Small & Random
Workloads

2018-10-23

91

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Undo-Friendly

1.4

1.2

0.8

0.6

0.4
1

H

Cycles per Transaction (CPT)
Lower Is Better

2

3

Large & Sequential
Workloads

1.2

0.8

0.6

0.4

1 2 3

Small & Random
Workloads

2018-10-23

92

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Undo-Friendly

1.4

1.2

0.8

0.6

0.4
1

H

Cycles per Transaction (CPT)
Lower Is Better

2

3

Large & Sequential
Workloads

1.2

0.8

0.6

0.4

1 2 3

Small & Random
Workloads

2018-10-23

93

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Undo-Friendly

1.4

1.2

0.8

0.6

0.4

1

H

Cycles per Transaction (CPT)
Lower Is Better

2

3

Large & Sequential
Workloads

1.2

0.8

0.6

0.4

1 2 3

Small & Random
Workloads

2018-10-23

94

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Undo-Friendly

1.4

1.2

0.8

0.6

0.4

1

H

Cycles per Transaction (CPT)
Lower Is Better

2

3

Large & Sequential
Workloads

1.2

0.8

0.6

0.4

Redo-Friendly

1 2 3

Small & Random
Workloads

2018-10-23

95

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Undo-Friendly

1.4

1.2

0.8

0.6

0.4

1

H

Cycles per Transaction (CPT)
Lower Is Better

2

3

Large & Sequential
Workloads

1.2

0.8

0.6

0.4

Redo-Friendly

1 2 3
—

Small & Random
Workloads

2018-10-23

96

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

1.4

1.2

0.8

0.6

0.4

Cycles per Transaction (CPT)
Lower Is Better

Undo-Friendly

1

H

2 3

Large & Sequential
Workloads

Cycles per Transaction (CPT)
Lower is Better

1.2

0.8

0.6

0.4

Redo-Friendly

1 2 3
—

Small & Random
Workloads

2018-10-23

97

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

1.4

1.2

0.8

0.6

0.4

Cycles per Transaction (CPT)
Lower Is Better

Undo-Friendly

1

H

2 3

Large & Sequential
Workloads

Cycles per Transaction (CPT)
Lower is Better

1.2

0.8

0.6

0.4

Redo-Friendly

1 2 3
—

Small & Random
Workloads

2018-10-23

98

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

1.4

1.2

0.8

0.6

0.4

Cycles per Transaction (CPT)
Lower Is Better

Undo-Friendly

1

H

2 3

Large & Sequential
Workloads

Cycles per Transaction (CPT)
Lower is Better

1.2

0.8

0.6

0.4

Redo-Friendly

1 2 3
—

Small & Random
Workloads

2018-10-23

99

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

1.4

1.2

0.8

0.6

0.4

Cycles per Transaction (CPT)
Lower Is Better

Undo-Friendly

1

H

2 3

Large & Sequential
Workloads

Cycles per Transaction (CPT)
Lower is Better

1.2

0.8

0.6

0.4

Redo-Friendly

1 2 3
—

Small & Random
Workloads

2018-10-23

100

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

1.4

1.2

0.8

0.6

0.4

Cycles per Transaction (CPT)
Lower Is Better

Undo-Friendly

1

H

2 3

Large & Sequential
Workloads

Cycles per Transaction (CPT)
Lower is Better

1.2

0.8

0.6

0.4

Redo-Friendly

1 2 3
—

Small & Random
Workloads

2018-10-23

101

Past Proposals: Summary

Log-Write Data-Update Drawback
ATOM [HPCA 2017] Undo Direct Synchronous N
_ Long Critical Path
Proteus [ISCA 2017] Undo Direct Synchronous
Wrap [HPCA 2016] Redo Indirect Asynchronous | Waste NVM Bandwidth
FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

1.4

1.2

0.8

0.6

0.4

Cycles per Transaction (CPT)
Lower iIs Better

Undo-Friendly

Large & Sequential
Workloads

Redo-Friendly

Small & Random
Workloads

2018-10-23

102

Design Goal & Challenges

2018-10-23 103

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Caches

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Processor

Caches

NVM Log

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Caches J

Processor

NVM Log

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Caches J

Processor

NVM Log

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Caches J

NVM Data

Processor

NVM Log

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Caches J

NVM Data

Processor

NVM Log
NVM

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Caches J

NVM Data

Processor

NVM Log
NVM

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1 7
Caches J

NVM Data

Processor

NVM Log
NVM

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TX2

Caches J

NVM Data

Processor

NVM Log
NVM

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TX2

Tx3
Caches J

Processor

NVM Log

NVM NVM Data

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

Tx3
Caches J

Processor

NVM Log
NVM Data Tx1

NVM

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

Tx3
Caches J

Processor

NVM Log

NVM NVM Data Tx1

Tx2

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

Tx3
Caches J

Processor

NVM Log

NVM NVM Data Tx1

Tx2

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

= Tx1
% = TXZW D
£ Caches J
NN Log |
NVM NVM Data X1 Tx2

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

Tx D Transaction #1
Caches J

Processor

NVM Log |
NVM ?V? Data Tx1 Tx2

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

TX D Transaction #1 (committed)
Caches J

Processor

NVM Log |
NVM ?V? Data Tx1 Tx2

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

TX D Transaction #1 (committed)
Caches J

Processor

NVM Log |
NVM ?V? Data Tx1 Tx2

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

TX D Transaction #1 (committed)
Caches J

Processor

NVM Log |
NVM ?V? Data Tx1 Tx2

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

Processor

TX
Caches J

NVM ?V? Data

Tx1

NVM Log |

Tx2

D Transaction #1 (committed)
Transaction #2

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

Processor

TX
Caches J

NVM ?V? Data

Tx1

NVM Log |

Tx2

D Transaction #1 (committed)
Transaction #2 (committed)

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

Tx1
TXZW

Processor

TX
Caches J

NVM ?V? Data

Tx1

NVM Log |

Tx2

D Transaction #1 (committed)
Transaction #2 (committed)

Transaction #3

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

X1 7
TX Tx2 D Transaction #1 (committed)
Caches J Transaction #2 (committed)
Transaction #3 (not committed)

Processor

NVM Log |
NVM ?V? Data Tx1 Tx2

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

§ Tx TXZW i
% Tx D Transaction #1 (deleted)
g Caches J Transaction #2 (committed)
Transaction #3 (not committed)
VM Log |
NVM w pata Bl T - Logs removed
— since data-update

completed

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

§ Tx TXZW i
% Tx D Transaction #1 (deleted)
g Caches J Transaction #2 (committed)
Transaction #3 (not committed)
VM Log |
NVM w pata Bl T - Logs removed
— since data-update

completed

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

§ Tx TXZW i
% Tx D Transaction #1 (deleted)
g Caches J Transaction #2 (committed)
Transaction #3 (not committed)
VM Log |
NVM w pata Bl T - Logs removed
— since data-update

completed

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

§ Tx TXZW i
% Tx D Transaction #1 (deleted)
g Caches J Transaction #2 (committed)
Transaction #3 (not committed)
VM Log |
NVM w pata Bl T - Logs removed
— since data-update

completed

Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches

S Tx1 T2 Uncommitted data
% Tx must not be D Transaction #1 (deleted)
(&
o ' Tl tion #2 itted
g Caches written to NVM ransaction (committed)
[Transaction #3 (not committed)
4
NVM Log |
% a Tx1 e
NVM m Logs removed
— since data-update

completed

Naive Solution: On-chip Cache Extension

\
Processor@Caches } Log Buffer

Redo-logs

;ASYNCHRONOUSLmdMEtONVM

v

\ 4
NVM NVM Data NVM Log

2018-10-23 132

Naive Solution: On-chip Cache Extension

« Additional storages to store multiple write-sets
« E.g., to store all physical address, scan the entire cache hierarchy

« Cache replacement policy to be aware of transactions
e E.g., evict non-transactional cache blocks first

« Has to discard the cache block if overflow
=» Need to search log area for read access
=» Need indirect data update

0 \
Processor@CaCheS } Log Buffer

Redo-logs

} ASYNCHRONOUS update to NVM
v

\ 4
NVM NVM Data NVM Log

Naive Solution: On-chip Cache Extension

« Additional storages to store multiple write-sets
« E.g., to store all physical address, scan the entire cache hierarchy

« Cache replacement policy to be aware of transactions
e E.g., evict non-transactional cache blocks first

« Has to discard the cache block if overflow
=» Need to search log area for read access
=» Need indirect data update

TR
Processor Caches } Log Buffer

Redo-logs

} ASYNCHRONOUS update to NVM
v

\ 4
NVM NVM Data NVM Log

Naive Solution: On-chip Cache Extension

« Additional storages to store multiple write-sets
« E.g., to store all physical address, scan the entire cache hierarchy

« Cache replacement policy to be aware of transactions
e E.g., evict non-transactional cache blocks first

« Has to discard the cache block if overflow
=» Need to search log area for read access
=» Need indirect data update

TR
Processor Caches } Log Buffer

x Redo-logs

} ASYNCHRONOUS update to NVM
v

\ 4
NVM NVM Data NVM Log

Redo log with Direct Update (ReDU)

Processor [Caches } Log Buffer

Redo-logs

} ASYNCHRONOUS update to NVM

v

\ 4
NVM NVM Data NVM Log

2018-10-23 136

Redo log with Direct Update (ReDU)

e Our approach: use DRAM for handling direct-update
« Synchronous update to the FAST DRAM
« Asynchronous update to the SLOW NVM

Processor [Caches } Log Buffer

Redo-logs

} ASYNCHRONOUS update to NVM
v

\ 4
NVM NVM Data NVM Log

Redo log with Direct Update (ReDU)

e Our approach: use DRAM for handling direct-update
« Synchronous update to the FAST DRAM
« Asynchronous update to the SLOW NVM

Processor [Caches } Log Buffer

DRAM Redo-logs
} ASYNCHRONOUS update to NVM

v

\ 4
NVM NVM Data NVM Log

Redo log with Direct Update (ReDU)

e Our approach: use DRAM for handling direct-update
« Synchronous update to the FAST DRAM
« Asynchronous update to the SLOW NVM

Processor [Caches } Log Buffer

} SYNCHRONOUS update to fast DRAM
DRAM Redo-logs

} ASYNCHRONOUS update to NVM
v

\ 4
NVM NVM Data NVM Log

Redo log with Direct Update (ReDU)

e Our approach: use DRAM for handling direct-update
« Synchronous update to the FAST DRAM
« Asynchronous update to the SLOW NVM

Processor [Caches } Log Buffer

} SYNCHRONOUS update to fast DRAM

DRAM Redo-logs

ASYNCHRONOUS update to blgW NVM

v

\ 4
NVM NVM Data NVM Log

ReDU — Direct-Update

a
% Cache Cache
;é [Last-level Cache]
NVM Data

2018-10-23 141

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

[Last-level Cache]

Processor

NVM Data

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

[Last-level Cache]

Processor

NVM Data

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

[Last-level Cache]

Processor

NVM Data

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

[Lest-level Cache]

Processor

NVM Data | %

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

[Lest-level Cache]

Processor

NVM Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

[Lest-level Cache]

Processor

NVM Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

[Lest-level Cache]

Processor

DRAW Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

[Lest-level Cache]

Processor

DRAW Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

[Lest-level Cache]

Processor

DRAW Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache D

[Lest-level Cache]

Processor

DRAW Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

|| on-commit-flushed
[Lest-level Cache]

Processor

DRAW Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

|| on-commit-flushed
[Lest-level Cache]

Processor

DRAW Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

|| on-commit-flushed
[Lest-level Cache]

Processor

DRAW Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

|| on-commit-flushed
[Lest-level Cache]

Processor

DRAW Data |

ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache

Cache Cache

|| on-commit-flushed
[Lest-level Cache]

Processor

DRAW Data |

ReDU — Direct-Update

Processor

DRAM

NVM

Early-eviction
|| on-commit-flushed

AM Cache _|

Data

2018-10-23

157

ReDU — Direct-Update

« Update to NVM done asynchronously

e Only flush cachelines that belong to the committed
transaction
e DRAM cache maintains the committed transaction IDs

 Various write-back policies are possible
 E.g., Eager or LRU

Cache Cache

Processor

|| on-commit-flushed
[Lest-level Cache]

DRAM D |[AM Cache |

¥

NVM Data

ReDU — Direct-Update

« Update to NVM done asynchronously

e Only flush cachelines that belong to the committed
transaction
e DRAM cache maintains the committed transaction IDs

 Various write-back policies are possible
 E.g., Eager or LRU

Cache Cache

Processor

|| on-commit-flushed
[Lest-level Cache]

DRAM D [AM Cache |

{ I

NVM Data

ReDU — Direct-Update

« Update to NVM done asynchronously

e Only flush cachelines that belong to the committed
transaction
e DRAM cache maintains the committed transaction IDs

 Various write-back policies are possible
 E.g., Eager or LRU

C h C h :
e 4 || on-commit-flushed

Processor

Lest-level Cache

DRAM D [AM Cache |

v %

NVM Data

More In the paper...

 Full design space exploration of HW logging
* Log optimization #1: coalescing
e Log optimization #2: packing

 Details of DRAM cache organization
* Transaction Table and Offset Table

Bloom filter-based HW-filter to reduce DRAM accesses
Evaluation of LRU write-back policy of the DRAM cache
Log management

Methodology

e Gemb simulator e Benchmarks
Processor 000, 2GHz, x86 Micro-bench | Vector, Swap
L1 I/D cache | Private, 32KB, 8-way NVML HashMap, B-Tree, RB-Tree
L2 cache Private, 256KB, 8-way Macro-bench | YCSB, TPCC, ECHO
L3 cache Shared, 8MB, 16-way
DRAM cache | 40MB (8MB meta + 32MB data)
NVM Read: 50ns, write: 150ns

e Comparing schemes

 All equally include log optimizations (e.g., coalescing and packing)
UndoSync: undo log with synchronous commit
Redolndirect: redo log with asynchronous but indirect update
Undo+Redo: undo+redo log with asynchronous & direct update
ReDU: our approach

Evaluation — Transaction Throughput

A mAYE wAHYEs mAHY,

1.6

1.4

.|||-- m EEe
1 2 3

=
[N}

[EEN

o
[e)]

Cycles per Transaction normalized to undo
(Lower is better)
o o
IS o0

o
N

2018-10-23 163

Evaluation — Transaction Throughput

e Large & sequential workloads

"Ag1 mAg: wAE: WAL « Undo and ReDU perform similarly
1.6 (same data path and NVM bandwidth saturated)

» Redo suffers from indirect update

« UndoRedo requires double NVM writes
for logs

 Small & Random workloads
5 e On average
0.4
0.2
. EEEE EEe.
] 2 3

1.4

=
[N}

[EEN

o
[e)]

Cycles per Transaction normalized to undo
(Lower is better)
o
[ole}

2018-10-23 164

Evaluation — Transaction Throughput

e Large & sequential workloads

"Ag1 mAg: wAE: WAL « Undo and ReDU perform similarly
1.6 (same data path and NVM bandwidth saturated)

» Redo suffers from indirect update

« UndoRedo requires double NVM writes
for logs

1.4

=
[N}

[EEN

« Small & Random workloads
e On average

o
o))

0.4

Cycles per Transaction normalized to undo
(Lower is better)
o
[ole}

0.2

2018-10-23 165

Evaluation — Transaction Throughput

e Large & sequential workloads

"Ag1 mAg: wAE: WAL « Undo and ReDU perform similarly
1.6 (same data path and NVM bandwidth saturated)

» Redo suffers from indirect update

« UndoRedo requires double NVM writes
for logs

1.4

=
[N}

[EEN

« Small & Random workloads
e On average

o
o))

0.4

Cycles per Transaction normalized to undo
(Lower is better)
o
[ole}

0.2

2018-10-23 166

Evaluation — Transaction Throughput

e Large & sequential workloads

"Ag1 mAg: wAE: WAL « Undo and ReDU perform similarly
1.6 (same data path and NVM bandwidth saturated)

» Redo suffers from indirect update

« UndoRedo requires double NVM writes
for logs

1.4

=
[N}

[EEN

« Small & Random workloads
e On average

o
o))

0.4

Cycles per Transaction normalized to undo
(Lower is better)
o
[ole}

0.2

2018-10-23 167

Evaluation — Transaction Throughput

A mAYE wAHYEs mAHY,

1.6

1.4

=
[N}

[EEN

Cycles per Transaction normalized to undo
(Lower is better)
o° o o
IS o o0

o
N

o
il
]
|

=
N
w

2018-10-23 168

Evaluation — Transaction Throughput

e Large & Sequential workloads
m7 g1 mAE2 wHZE3 mAH s

e Small & Random workloads
* Undo waits synchronous commit
» Redo suffers from indirect update

» UndoRedo requires double NVM writes
for logs

1.4

=
[N}

[EEN

e On average

o
o))

o
N

Cycles per Transaction normalized to undo
(Lower is better)
o
[ole}

o
N

0 EEmm C L B

2018-10-23 169

Evaluation — Transaction Throughput

e Large & Sequential workloads
m7 g1 mAE2 wHZE3 mAH s

e Small & Random workloads
* Undo waits synchronous commit
» Redo suffers from indirect update

» UndoRedo requires double NVM writes
for logs

1.4

=
[N}

[EEN

e On average

o
o))

o
N

Cycles per Transaction normalized to undo
(Lower is better)
o
[ole}

2018-10-23 170

Evaluation — Transaction Throughput

e Large & Sequential workloads
m7 g1 mAE2 wHZE3 mAH s

e Small & Random workloads
* Undo waits synchronous commit
» Redo suffers from indirect update

» UndoRedo requires double NVM writes
for logs

1.4

=
[N}

[EEN

e On average

o
o))

o
N

Cycles per Transaction normalized to undo
(Lower is better)
o
[ole}

2018-10-23 171

Evaluation — Transaction Throughput

e Large & Sequential workloads
m7 g1 mAE2 wHZE3 mAH s

e Small & Random workloads
* Undo waits synchronous commit
» Redo suffers from indirect update

» UndoRedo requires double NVM writes
for logs

1.4

=
[N}

[EEN

e On average

o
o))

o
N

Cycles per Transaction normalized to undo
(Lower is better)
o
[ole}

2018-10-23 172

Evaluation — Transaction Throughput

e Large & Sequential workloads
A1 mAY2 wA g3 mA L,
e Small & Random workloads
e On average
» Asynchronous update = 9%
» Direct update = 16%
 Small log size = 30%

1.4

=
[N}

[EEN

o
o))

o
N

Cycles per Transaction normalized to undo
(Lower is better)
o
(00}

0.2

, AENE EEFE
1 2 3

2018-10-23 173

Summary

* Problem: crash-consistency in storage-class memory
e Atomicity and durability support for NVM writes
« Existing hardware solutions exhibit trade-offs

 Solution: Redo log with Direct Updates (ReDU)
» Redo-based log with optimizations
« Synchronous update to the fast DRAM
« Asynchronous update to the slow NVM

* Results: ReDU outperforms existing solutions in various
workloads
* Bringing DRAM into the atomicity and durability

Efficient Hardware-assisted Logging
with Asynchronous and Direct Update
for Persistent Memory

Jungi Jeong, Chang Hyun Park,
Jaehyuk Huh, and Seungryoul Maeng

School of
KAIST Computing

	Efficient Hardware-assisted Logging with Asynchronous and Direct Update for Persistent Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Naïve Solution: On-chip Cache Extension
	Naïve Solution: On-chip Cache Extension
	Naïve Solution: On-chip Cache Extension
	Naïve Solution: On-chip Cache Extension
	Redo log with Direct Update (ReDU)
	Redo log with Direct Update (ReDU)
	Redo log with Direct Update (ReDU)
	Redo log with Direct Update (ReDU)
	Redo log with Direct Update (ReDU)
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	More in the paper…
	Methodology
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Summary
	Efficient Hardware-assisted Logging with Asynchronous and Direct Update for Persistent Memory

