
Efficient Hardware-assisted Logging
with Asynchronous and Direct Update

for Persistent Memory

Jungi Jeong, Chang Hyun Park,
Jaehyuk Huh, and Seungryoul Maeng

International Symposium on Microarchitecture (MICRO) 2018

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

222018-10-23

NVM-aware
File System

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

232018-10-23

NVM-aware
File System

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

242018-10-23

NVM-aware
File System

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

252018-10-23

NVM-aware
File System

A

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

262018-10-23

NVM-aware
File System

A C

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

272018-10-23

NVM-aware
File System

A C

B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

282018-10-23

NVM-aware
File System

A C

B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

292018-10-23

NVM-aware
File System

A C

B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

302018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

312018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

322018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

332018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

342018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

352018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

362018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

372018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

382018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

392018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

402018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

412018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Directly attached to the app’s virtual address space
• Accessible through load/store instructions
• In-memory data persistency

• Ex) Doubly linked-list insertion

Memory-
mapped

Storage-Class Memory

NVDIMMs

Application
Load/Store

User
Space

Kernel
Space

Devices

422018-10-23

NVM-aware
File System

A C

B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

New requirement:
Supporting Crash-Consistency of NVM stores

Atomic Durability through Logging

43
2018-10-23

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

44
2018-10-23

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

45
2018-10-23

Durability with
cache-flush

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

46
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

47
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

48
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

49
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

Log
Write

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

50
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

Log
Write

Data
Update

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

51
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

Log
Write

Data
Update

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

store log[0]=A->next
store log[1]=C->prev
cache-flush
sfence
store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush
sfence

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

52
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

Log
Write

Data
Update

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

store log[0]=A->next
store log[1]=C->prev
cache-flush
sfence
store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush
sfence

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

53
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

Log
Write

Data
Update

Persist-ordering with
store-fence

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

store log[0]=A->next
store log[1]=C->prev
cache-flush
sfence
store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush
sfence

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

54
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

Log
Write

Data
Update

Persist-ordering with
store-fence

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

store log[0]=A->next
store log[1]=C->prev
cache-flush
sfence
store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush
sfence

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

55
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

Log
Write

Data
Update

Persist-ordering with
store-fence

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

store log[0]=A->next
store log[1]=C->prev
cache-flush
sfence
store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush
sfence

• Transaction
• All stores in a transaction become durable all together or nothing

• Ex) Atomic durability in software

Atomic Durability through Logging

56
2018-10-23

Durability with
cache-flush

Atomicity and ordering with
write-ahead logging

Log
Write

Data
Update

Persist-ordering with
store-fence

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B

store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush

store log[0]=A->next
store log[1]=C->prev
cache-flush
sfence
store B->next=C
store B->prev=A
store A->next=B
store C->prev=B
cache-flush
sfence

HW-assisted Logging

2018-10-23 57

HW-assisted Logging
• Simple programming model

• HW is responsible for 1) log-write and 2) data update

• Advantages over software-logging
• Fine-grained ordering & less CPU cycles

2018-10-23 58

HW-assisted Logging
• Simple programming model

• HW is responsible for 1) log-write and 2) data update

• Advantages over software-logging
• Fine-grained ordering & less CPU cycles

2018-10-23 59

Transaction_begin()
store B->next=C
…
store C->prev=B
Transaction_end()

HW-assisted Logging
• Simple programming model

• HW is responsible for 1) log-write and 2) data update

• Advantages over software-logging
• Fine-grained ordering & less CPU cycles

2018-10-23 60

Transaction_begin()
store B->next=C
…
store C->prev=B
Transaction_end()

store B->next=C
…
store C->prev=B

HW-assisted Logging
• Simple programming model

• HW is responsible for 1) log-write and 2) data update

• Advantages over software-logging
• Fine-grained ordering & less CPU cycles

2018-10-23 61

Transaction_begin()
store B->next=C
…
store C->prev=B
Transaction_end()

store B->next=C
…
store C->prev=B

HW-assisted Logging
• Simple programming model

• HW is responsible for 1) log-write and 2) data update

• Advantages over software-logging
• Fine-grained ordering & less CPU cycles

2018-10-23 62

Transaction_begin()
store B->next=C
…
store C->prev=B
Transaction_end()

store B->next=C
…
store C->prev=B

Caches

NVM Log

1) Log-Write

Log Ctrl.

2) Data-Update

NVM Data

Processor

NVM

HW-assisted Logging
• Simple programming model

• HW is responsible for 1) log-write and 2) data update

• Advantages over software-logging
• Fine-grained ordering & less CPU cycles

2018-10-23 63

Transaction_begin()
store B->next=C
…
store C->prev=B
Transaction_end()

store B->next=C
…
store C->prev=B

Caches

NVM Log

1) Log-Write

Log Ctrl.

2) Data-Update

NVM Data

Processor

NVM

Log A
Log B

Fence Store A
Store B

Log A
Log B

Store A
Store B

(a) Ordering with SW (b) Ordering with HW

Past Proposal: Undo-based HW-Logging

2018-10-23 64

• A. Joshi et al. HPCA 2017.
• S. Shin et al. ISCA 2017.

Caches

NVM Log

Log Ctrl.

NVM Data

Processor

NVM

Past Proposal: Undo-based HW-Logging
• Store old value in logs
• Update data in NVM before commit

 Synchronous data-update

2018-10-23 65

• A. Joshi et al. HPCA 2017.
• S. Shin et al. ISCA 2017.

Caches

NVM Log

Log Ctrl.

NVM Data

Processor

NVM

Past Proposal: Undo-based HW-Logging
• Store old value in logs
• Update data in NVM before commit

 Synchronous data-update

2018-10-23 66

• A. Joshi et al. HPCA 2017.
• S. Shin et al. ISCA 2017.

Caches

NVM Log

1) Store old value
in NVM logs

Log Ctrl.

NVM Data

Processor

NVM

Past Proposal: Undo-based HW-Logging
• Store old value in logs
• Update data in NVM before commit

 Synchronous data-update

2018-10-23 67

• A. Joshi et al. HPCA 2017.
• S. Shin et al. ISCA 2017.

Caches

NVM Log

1) Store old value
in NVM logs

Log Ctrl.

NVM Data

Processor

NVM

Past Proposal: Undo-based HW-Logging
• Store old value in logs
• Update data in NVM before commit

 Synchronous data-update

2018-10-23 68

• A. Joshi et al. HPCA 2017.
• S. Shin et al. ISCA 2017.

Caches

NVM Log

1) Store old value
in NVM logs

Log Ctrl.

NVM Data

Processor

NVM

Addr

Past Proposal: Undo-based HW-Logging
• Store old value in logs
• Update data in NVM before commit

 Synchronous data-update

2018-10-23 69

• A. Joshi et al. HPCA 2017.
• S. Shin et al. ISCA 2017.

Caches

NVM Log

1) Store old value
in NVM logs

Log Ctrl.

2) Update data
in NVM

NVM Data

Processor

NVM

Addr Old Value

Past Proposal: Undo-based HW-Logging
• Store old value in logs
• Update data in NVM before commit

 Synchronous data-update

2018-10-23 70

• A. Joshi et al. HPCA 2017.
• S. Shin et al. ISCA 2017.

Caches

NVM Log

1) Store old value
in NVM logs

Log Ctrl.

2) Update data
in NVM

NVM Data

Processor

NVM

Long critical path due to synchronous data-update

Addr Old Value

Past Proposal: Undo-based HW-Logging
• Store old value in logs
• Update data in NVM before commit

 Synchronous data-update

2018-10-23 71

• A. Joshi et al. HPCA 2017.
• S. Shin et al. ISCA 2017.

Caches

NVM Log

1) Store old value
in NVM logs

Log Ctrl.

2) Update data
in NVM

NVM Data

Processor

NVM

Long critical path due to synchronous data-update

Addr Old Value

Past Proposal: Undo-based HW-Logging
• Store old value in logs
• Update data in NVM before commit

 Synchronous data-update

2018-10-23 72

• A. Joshi et al. HPCA 2017.
• S. Shin et al. ISCA 2017.

Caches

NVM Log

1) Store old value
in NVM logs

Log Ctrl.

2) Update data
in NVM

NVM Data

Processor

NVM

Long critical path due to synchronous data-update

Addr Old Value

Past Proposal: Redo-based HW-Logging

2018-10-23 73
• K. Doshi et al. HPCA 2016.

Caches

NVM Log

Log Ctrl.

NVM Data

Processor

NVM

Addr New Value

Past Proposal: Redo-based HW-Logging
• Store new value in logs
• Update data in NVM after commit

 Asynchronous data-update
• However, update by reading log entries from NVM

 Indirect data-update

2018-10-23 74
• K. Doshi et al. HPCA 2016.

Caches

NVM Log

Log Ctrl.

NVM Data

Processor

NVM

Addr New Value

Past Proposal: Redo-based HW-Logging
• Store new value in logs
• Update data in NVM after commit

 Asynchronous data-update
• However, update by reading log entries from NVM

 Indirect data-update

2018-10-23 75
• K. Doshi et al. HPCA 2016.

Caches

NVM Log

1) Store new value
in NVM logs

Log Ctrl.

NVM Data

Processor

NVM

Addr New Value

Past Proposal: Redo-based HW-Logging
• Store new value in logs
• Update data in NVM after commit

 Asynchronous data-update
• However, update by reading log entries from NVM

 Indirect data-update

2018-10-23 76
• K. Doshi et al. HPCA 2016.

Caches

NVM Log

1) Store new value
in NVM logs

Log Ctrl.

NVM Data

Processor

NVM

Addr New Value

Past Proposal: Redo-based HW-Logging
• Store new value in logs
• Update data in NVM after commit

 Asynchronous data-update
• However, update by reading log entries from NVM

 Indirect data-update

2018-10-23 77
• K. Doshi et al. HPCA 2016.

Caches

NVM Log

1) Store new value
in NVM logs

Log Ctrl.

2) Update data
in NVM

NVM Data

Processor

NVM

Addr New Value

Past Proposal: Redo-based HW-Logging
• Store new value in logs
• Update data in NVM after commit

 Asynchronous data-update
• However, update by reading log entries from NVM

 Indirect data-update

2018-10-23 78
• K. Doshi et al. HPCA 2016.

Caches

NVM Log

1) Store new value
in NVM logs

Log Ctrl.

2) Update data
in NVM

NVM Data

Processor

NVM

Addr New Value

Past Proposal: Redo-based HW-Logging
• Store new value in logs
• Update data in NVM after commit

 Asynchronous data-update
• However, update by reading log entries from NVM

 Indirect data-update

2018-10-23 79
• K. Doshi et al. HPCA 2016.

Caches

NVM Log

1) Store new value
in NVM logs

Log Ctrl.

2) Update data
in NVM

NVM Data

Processor

NVM

Wastes extra NVM bandwidth for reading logs from NVM

Addr New Value

Past Proposal: Undo-Redo HW-Logging

2018-10-23 80

Caches

NVM LogNVM Data

Processor

NVM

• M. Ogleari et al. HPCA 2018.

Log Buffer

Addr Old Value New Value

Past Proposal: Undo-Redo HW-Logging
• Store both old and new value in logs

 Larger log sizes
• Update data in NVM after commit

2018-10-23 81

Caches

NVM LogNVM Data

Processor

NVM

• M. Ogleari et al. HPCA 2018.

Log Buffer

Addr Old Value New Value

Past Proposal: Undo-Redo HW-Logging
• Store both old and new value in logs

 Larger log sizes
• Update data in NVM after commit

2018-10-23 82

Requires more NVM writes for storing logs in NVM

Caches

NVM Log

1) Store both old
and new value
in NVM logs

NVM Data

Processor

NVM

• M. Ogleari et al. HPCA 2018.

Log Buffer

Addr Old Value New Value

Past Proposal: Undo-Redo HW-Logging
• Store both old and new value in logs

 Larger log sizes
• Update data in NVM after commit

2018-10-23 83

Requires more NVM writes for storing logs in NVM

Caches

NVM Log

1) Store both old
and new value
in NVM logs

2) Update data
in NVM

NVM Data

Processor

NVM

• M. Ogleari et al. HPCA 2018.

Log Buffer

Addr Old Value New Value

Past Proposal: Undo-Redo HW-Logging
• Store both old and new value in logs

 Larger log sizes
• Update data in NVM after commit

2018-10-23 84

Requires more NVM writes for storing logs in NVM

Caches

NVM Log

1) Store both old
and new value
in NVM logs

2) Update data
in NVM

NVM Data

Processor

NVM

• M. Ogleari et al. HPCA 2018.

Log Buffer

Addr Old Value New Value

Past Proposal: Undo-Redo HW-Logging
• Store both old and new value in logs

 Larger log sizes
• Update data in NVM after commit

2018-10-23 85

Requires more NVM writes for storing logs in NVM

Caches

NVM Log

1) Store both old
and new value
in NVM logs

2) Update data
in NVM

NVM Data

Processor

NVM

• M. Ogleari et al. HPCA 2018.

Log Buffer

Addr Old Value New Value

Past Proposal: Undo-Redo HW-Logging
• Store both old and new value in logs

 Larger log sizes
• Update data in NVM after commit

2018-10-23 86

Requires more NVM writes for storing logs in NVM

Caches

NVM Log

1) Store both old
and new value
in NVM logs

2) Update data
in NVM

NVM Data

Processor

NVM

• M. Ogleari et al. HPCA 2018.

Log Buffer

Addr Old Value New Value

Past Proposals: Summary

2018-10-23 87

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 88

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 89

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 90

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 91

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 92

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 93

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 94

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 95

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly Redo-Friendly

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 96

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly Redo-Friendly

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 97

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly Redo-Friendly

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 98

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly Redo-Friendly

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 99

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly Redo-Friendly

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 100

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly Redo-Friendly

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 101

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly Redo-Friendly

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

0.4

0.6

0.8

1

1.2

1 2 3
0.4

0.6

0.8

1

1.2

1.4

1 2 3

Past Proposals: Summary

2018-10-23 102

Log-Write Data-Update Drawback

ATOM [HPCA 2017] Undo Direct Synchronous
Long Critical Path

Proteus [ISCA 2017] Undo Direct Synchronous

Wrap [HPCA 2016] Redo Indirect Asynchronous Waste NVM Bandwidth

FWB [HPCA 2018] UndoRedo Direct Asynchronous More Log Write

Large & Sequential
Workloads

Small & Random
Workloads

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Undo-Friendly Redo-Friendly

Cy
cle

s
pe

r T
ra

ns
ac

tio
n

(C
PT

)
Lo

w
er

 is
 B

et
te

r

Trade-offs exist!

Design Goal & Challenges

2018-10-23 103

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 104

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 105

Caches

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 106

Caches

NVM Log

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 107

Caches

NVM Log

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 108

Caches

NVM Log

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 109

Caches

NVM Log
NVM Data

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 110

Caches

NVM Log
NVM DataNVM

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 111

Caches

NVM Log
NVM DataNVM

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 112

Caches

NVM Log
NVM DataNVM

Tx1

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 113

Caches

NVM Log
NVM DataNVM

Tx1 Tx2

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 114

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 115

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 116

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 117

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 118

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 119

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 120

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 121

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 122

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 123

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)
Transaction #2

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 124

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)
Transaction #2 (committed)

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 125

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)
Transaction #2 (committed)
Transaction #3

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 126

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)
Transaction #2 (committed)
Transaction #3 (not committed)

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 127

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)
Transaction #2 (committed)
Transaction #3 (not committed)

(deleted)

Logs removed
since data-update

completed

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 128

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)
Transaction #2 (committed)
Transaction #3 (not committed)

(deleted)

Logs removed
since data-update

completed

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 129

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)
Transaction #2 (committed)
Transaction #3 (not committed)

(deleted)

Logs removed
since data-update

completed

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 130

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)
Transaction #2 (committed)
Transaction #3 (not committed)

(deleted)

Logs removed
since data-update

completed

Design Goal & Challenges
• Redo log with asynchronous & direct update to NVM
• Challenge #1: tracking write-sets of previous transactions

• Without data update, logs keep growing
• Challenge #2: handling an early-eviction

• Eviction of uncommitted changes from volatile CPU caches

2018-10-23 131

Caches

NVM Log
NVM DataNVM

Tx1 Tx2Tx3

Tx1 Tx2

Pr
oc

es
so

r

Transaction #1 (committed)
Transaction #2 (committed)
Transaction #3 (not committed)

(deleted)

Logs removed
since data-update

completed

Uncommitted data
must not be

written to NVM

Naïve Solution: On-chip Cache Extension

2018-10-23 132

Caches

NVM Log

Redo-logs

Log Buffer

ASYNCHRONOUS update to NVM

NVM Data

Processor

NVM

Naïve Solution: On-chip Cache Extension
• Additional storages to store multiple write-sets

• E.g., to store all physical address, scan the entire cache hierarchy
• Cache replacement policy to be aware of transactions

• E.g., evict non-transactional cache blocks first
• Has to discard the cache block if overflow
 Need to search log area for read access
 Need indirect data update

2018-10-23 133

Caches

NVM Log

Redo-logs

Log Buffer

ASYNCHRONOUS update to NVM

NVM Data

Processor

NVM

Naïve Solution: On-chip Cache Extension
• Additional storages to store multiple write-sets

• E.g., to store all physical address, scan the entire cache hierarchy
• Cache replacement policy to be aware of transactions

• E.g., evict non-transactional cache blocks first
• Has to discard the cache block if overflow
 Need to search log area for read access
 Need indirect data update

2018-10-23 134

Caches

NVM Log

Redo-logs

Log Buffer

ASYNCHRONOUS update to NVM

NVM Data

Processor

NVM

Naïve Solution: On-chip Cache Extension
• Additional storages to store multiple write-sets

• E.g., to store all physical address, scan the entire cache hierarchy
• Cache replacement policy to be aware of transactions

• E.g., evict non-transactional cache blocks first
• Has to discard the cache block if overflow
 Need to search log area for read access
 Need indirect data update

2018-10-23 135

Caches

NVM Log

Redo-logs

Log Buffer

ASYNCHRONOUS update to NVM

NVM Data

Processor

NVM

Redo log with Direct Update (ReDU)

2018-10-23 136

Caches

NVM Log

Log Buffer

ASYNCHRONOUS update to NVM

NVM Data

Processor

NVM

Redo-logs

Redo log with Direct Update (ReDU)
• Our approach: use DRAM for handling direct-update

• Synchronous update to the FAST DRAM
• Asynchronous update to the SLOW NVM

2018-10-23 137

Caches

NVM Log

Log Buffer

ASYNCHRONOUS update to NVM

NVM Data

Processor

NVM

Redo-logs

Redo log with Direct Update (ReDU)
• Our approach: use DRAM for handling direct-update

• Synchronous update to the FAST DRAM
• Asynchronous update to the SLOW NVM

2018-10-23 138

Caches

NVM Log

Log Buffer

ASYNCHRONOUS update to NVM

NVM Data

DRAM

Processor

NVM

Redo-logs

Redo log with Direct Update (ReDU)
• Our approach: use DRAM for handling direct-update

• Synchronous update to the FAST DRAM
• Asynchronous update to the SLOW NVM

2018-10-23 139

Caches

NVM Log

Log Buffer

ASYNCHRONOUS update to NVM

NVM Data

DRAM

Processor

NVM

SYNCHRONOUS update to fast DRAM

Redo-logs

Redo log with Direct Update (ReDU)
• Our approach: use DRAM for handling direct-update

• Synchronous update to the FAST DRAM
• Asynchronous update to the SLOW NVM

2018-10-23 140

Caches

NVM Log

Log Buffer

ASYNCHRONOUS update to NVM

NVM Data

DRAM

Processor

NVM

SYNCHRONOUS update to fast DRAM

ASYNCHRONOUS update to slow NVM

Redo-logs

ReDU – Direct-Update

2018-10-23 141

Last-level Cache

L1
Cache

L1
Cache

Data

Pr
oc

es
so

r

NVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 142

Last-level Cache

L1
Cache

L1
Cache

Data

Pr
oc

es
so

r

NVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 143

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Pr
oc

es
so

r

NVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 144

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction

Pr
oc

es
so

r

NVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 145

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction

Pr
oc

es
so

r

NVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 146

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction

Pr
oc

es
so

r

NVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 147

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction

Pr
oc

es
so

r

NVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 148

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction

Pr
oc

es
so

r

DRAMNVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 149

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction

Pr
oc

es
so

r

DRAMNVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 150

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction

Pr
oc

es
so

r

DRAMNVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 151

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction

Pr
oc

es
so

r

DRAMNVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 152

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction
On-commit-flushed

Pr
oc

es
so

r

DRAMNVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 153

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction
On-commit-flushed

Pr
oc

es
so

r

DRAMNVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 154

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction
On-commit-flushed

Pr
oc

es
so

r

DRAMNVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 155

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction
On-commit-flushed

Pr
oc

es
so

r

DRAMNVM

ReDU – Direct-Update
• Track the write-set within L1 cache

• No on-chip cache modifications except L1

• DRAM cache stores:
• “Early-evicted”: modified cachelines evicted from L1 before commit
• “On-commit-flushed”: modified cachelines in L1 on commit
• For both events, explicitly flush through the DRAM cache

2018-10-23 156

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction
On-commit-flushed

Pr
oc

es
so

r

DRAMNVM

ReDU – Direct-Update

2018-10-23 157

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction
On-commit-flushed

Pr
oc

es
so

r

NVM

DRAM

ReDU – Direct-Update
• Update to NVM done asynchronously
• Only flush cachelines that belong to the committed

transaction
• DRAM cache maintains the committed transaction IDs

• Various write-back policies are possible
• E.g., Eager or LRU

2018-10-23 158

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction
On-commit-flushed

Pr
oc

es
so

r

NVM

DRAM

ReDU – Direct-Update
• Update to NVM done asynchronously
• Only flush cachelines that belong to the committed

transaction
• DRAM cache maintains the committed transaction IDs

• Various write-back policies are possible
• E.g., Eager or LRU

2018-10-23 159

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction
On-commit-flushed

Pr
oc

es
so

r

NVM

DRAM

ReDU – Direct-Update
• Update to NVM done asynchronously
• Only flush cachelines that belong to the committed

transaction
• DRAM cache maintains the committed transaction IDs

• Various write-back policies are possible
• E.g., Eager or LRU

2018-10-23 160

Last-level Cache

DRAM Cache

L1
Cache

L1
Cache

Data

Early-eviction
On-commit-flushed

Pr
oc

es
so

r

NVM

DRAM

More in the paper…
• Full design space exploration of HW logging

• Log optimization #1: coalescing
• Log optimization #2: packing

• Details of DRAM cache organization
• Transaction Table and Offset Table

• Bloom filter-based HW-filter to reduce DRAM accesses
• Evaluation of LRU write-back policy of the DRAM cache
• Log management
• …

2018-10-23 161

Methodology
• Gem5 simulator

• Comparing schemes
• All equally include log optimizations (e.g., coalescing and packing)
• UndoSync: undo log with synchronous commit
• RedoIndirect: redo log with asynchronous but indirect update
• Undo+Redo: undo+redo log with asynchronous & direct update
• ReDU: our approach

Processor OoO, 2GHz, x86
L1 I/D cache Private, 32KB, 8-way
L2 cache Private, 256KB, 8-way
L3 cache Shared, 8MB, 16-way
DRAM cache 40MB (8MB meta + 32MB data)
NVM Read: 50ns, write: 150ns

2018-10-23 162

Micro-bench Vector, Swap
NVML HashMap, B-Tree, RB-Tree

Macro-bench YCSB, TPCC, ECHO

• Benchmarks

Evaluation – Transaction Throughput

2018-10-23 163

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput
• Large & sequential workloads

• Undo and ReDU perform similarly
(same data path and NVM bandwidth saturated)

• Redo suffers from indirect update
• UndoRedo requires double NVM writes

for logs

• Small & Random workloads
• On average

2018-10-23 164

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput
• Large & sequential workloads

• Undo and ReDU perform similarly
(same data path and NVM bandwidth saturated)

• Redo suffers from indirect update
• UndoRedo requires double NVM writes

for logs

• Small & Random workloads
• On average

2018-10-23 165

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput
• Large & sequential workloads

• Undo and ReDU perform similarly
(same data path and NVM bandwidth saturated)

• Redo suffers from indirect update
• UndoRedo requires double NVM writes

for logs

• Small & Random workloads
• On average

2018-10-23 166

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput
• Large & sequential workloads

• Undo and ReDU perform similarly
(same data path and NVM bandwidth saturated)

• Redo suffers from indirect update
• UndoRedo requires double NVM writes

for logs

• Small & Random workloads
• On average

2018-10-23 167

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput

2018-10-23 168

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput
• Large & Sequential workloads
• Small & Random workloads

• Undo waits synchronous commit
• Redo suffers from indirect update
• UndoRedo requires double NVM writes

for logs

• On average

2018-10-23 169

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput
• Large & Sequential workloads
• Small & Random workloads

• Undo waits synchronous commit
• Redo suffers from indirect update
• UndoRedo requires double NVM writes

for logs

• On average

2018-10-23 170

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput
• Large & Sequential workloads
• Small & Random workloads

• Undo waits synchronous commit
• Redo suffers from indirect update
• UndoRedo requires double NVM writes

for logs

• On average

2018-10-23 171

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput
• Large & Sequential workloads
• Small & Random workloads

• Undo waits synchronous commit
• Redo suffers from indirect update
• UndoRedo requires double NVM writes

for logs

• On average

2018-10-23 172

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Evaluation – Transaction Throughput
• Large & Sequential workloads
• Small & Random workloads
• On average

• Asynchronous update  9%
• Direct update  16%
• Small log size  30%

2018-10-23 173

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3

Cy
cl

es
 p

er
 T

ra
ns

ac
tio

n
no

rm
al

iz
ed

 to
 u

nd
o

(L
ow

er
 is

 b
et

te
r)

계열1 계열2 계열3 계열4

Summary
• Problem: crash-consistency in storage-class memory

• Atomicity and durability support for NVM writes
• Existing hardware solutions exhibit trade-offs

• Solution: Redo log with Direct Updates (ReDU)
• Redo-based log with optimizations
• Synchronous update to the fast DRAM
• Asynchronous update to the slow NVM

• Results: ReDU outperforms existing solutions in various
workloads

• Bringing DRAM into the atomicity and durability

2018-10-23 174

Efficient Hardware-assisted Logging
with Asynchronous and Direct Update

for Persistent Memory

Jungi Jeong, Chang Hyun Park,
Jaehyuk Huh, and Seungryoul Maeng

International Symposium on Microarchitecture (MICRO) 2018

	Efficient Hardware-assisted Logging with Asynchronous and Direct Update for Persistent Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Storage-Class Memory
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	Atomic Durability through Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	HW-assisted Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Undo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Redo-based HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposal: Undo-Redo HW-Logging
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Past Proposals: Summary
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Design Goal & Challenges
	Naïve Solution: On-chip Cache Extension
	Naïve Solution: On-chip Cache Extension
	Naïve Solution: On-chip Cache Extension
	Naïve Solution: On-chip Cache Extension
	Redo log with Direct Update (ReDU)
	Redo log with Direct Update (ReDU)
	Redo log with Direct Update (ReDU)
	Redo log with Direct Update (ReDU)
	Redo log with Direct Update (ReDU)
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	ReDU – Direct-Update
	More in the paper…
	Methodology
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Evaluation – Transaction Throughput
	Summary
	Efficient Hardware-assisted Logging with Asynchronous and Direct Update for Persistent Memory

