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e M. Ogleari et al. HPCA 2018.
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Design Goal & Challenges

e Redo log with asynchronous & direct update to NVM

e Challenge #1: tracking write-sets of previous transactions
« Without data update, logs keep growing

e Challenge #2: handling an early-eviction
 Eviction of uncommitted changes from volatile CPU caches
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Naive Solution: On-chip Cache Extension
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Naive Solution: On-chip Cache Extension

« Additional storages to store multiple write-sets
« E.g., to store all physical address, scan the entire cache hierarchy

« Cache replacement policy to be aware of transactions
e E.g., evict non-transactional cache blocks first

« Has to discard the cache block if overflow
=» Need to search log area for read access
=» Need indirect data update
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Redo log with Direct Update (ReDU)
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Redo log with Direct Update (ReDU)

e Our approach: use DRAM for handling direct-update
« Synchronous update to the FAST DRAM
« Asynchronous update to the SLOW NVM
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ReDU — Direct-Update
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ReDU — Direct-Update

e Track the write-set within L1 cache
e No on-chip cache modifications except L1

 DRAM cache stores:
o “Early-evicted”: modified cachelines evicted from L1 before commit
o “On-commit-flushed”: modified cachelines in L1 on commit
* For both events, explicitly flush through the DRAM cache
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ReDU — Direct-Update

« Update to NVM done asynchronously

e Only flush cachelines that belong to the committed
transaction
e DRAM cache maintains the committed transaction IDs

 Various write-back policies are possible
 E.g., Eager or LRU
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More In the paper...

 Full design space exploration of HW logging
* Log optimization #1: coalescing
e Log optimization #2: packing

 Details of DRAM cache organization
* Transaction Table and Offset Table

Bloom filter-based HW-filter to reduce DRAM accesses
Evaluation of LRU write-back policy of the DRAM cache
Log management



Methodology

e Gemb simulator e Benchmarks
Processor 000, 2GHz, x86 Micro-bench | Vector, Swap
L1 I/D cache | Private, 32KB, 8-way NVML HashMap, B-Tree, RB-Tree
L2 cache Private, 256KB, 8-way Macro-bench | YCSB, TPCC, ECHO
L3 cache Shared, 8MB, 16-way
DRAM cache | 40MB (8MB meta + 32MB data)
NVM Read: 50ns, write: 150ns

e Comparing schemes

 All equally include log optimizations (e.g., coalescing and packing)
UndoSync: undo log with synchronous commit
Redolndirect: redo log with asynchronous but indirect update
Undo+Redo: undo+redo log with asynchronous & direct update
ReDU: our approach



Evaluation — Transaction Throughput
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Evaluation — Transaction Throughput

e Large & sequential workloads
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Evaluation — Transaction Throughput

e Large & Sequential workloads
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e  Small & Random workloads
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Evaluation — Transaction Throughput

e Large & Sequential workloads
A1 mAY2 wA g3 mA L,
e  Small & Random workloads
e On average
» Asynchronous update = 9%
» Direct update = 16%
 Small log size = 30%
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Summary

* Problem: crash-consistency in storage-class memory
e Atomicity and durability support for NVM writes
« Existing hardware solutions exhibit trade-offs

 Solution: Redo log with Direct Updates (ReDU)
» Redo-based log with optimizations
« Synchronous update to the fast DRAM
« Asynchronous update to the slow NVM

* Results: ReDU outperforms existing solutions in various
workloads
* Bringing DRAM into the atomicity and durability
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