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• Cloud provider manages the underlying platform instead of a developer
• Services consist of user-level, stand-alone, isolated function modules
• Pay-as-you-go model
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What’s different in Cloud security?

• Traditional
• Protect module/system from a 

client  

• Cloud security
• Protect each compartment from 

others
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Protect against malicious Client and Module Provider
Cloud 

Provider

Module Provider

Client

Protect against malicious Cloud Provider, Clients, and other 
Module Providers

Wants to minimize privacy exposal to 
Cloud Provider, Module Provider, and other Clients
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Requirements for Secure Cloud
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Trusted Execution Environment (TEE)

• TEE is an execution environment that 
provides protection against privileged 
software and physical attacks

• Enclave is one of the TEE models which 
supports user-level instances

• An Enclave provides,
• Access control
• Data protection
• Attestation
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그림:
MLS support for TEE

그림:
More generalized isolation

그림:
Native Sandbox support for 

TEE

Hardware implementation of Enclave

• Intel’s commercialized Trusted Execution Environment called SGX
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Challenge 1: Monolithic Design

• A service module importing a 3rd-party 
library in Enclave as its TCB

• Vulnerability in 3rd party endanger entire 
the enclave

• E.g., Memory leak (OpenSSL HeartBleed)
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Challenge 2: Lack of Sharing Semantic

• Memory is wasted due to strictly isolated 
libraries

• SW encryption has limitations
• Costly encryption 
• Race condition attack (TOCTOU) [1]
• Knowledge attack (Silent dropping) [2]
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[2] Panoply: Low-TCB Linux Applications With SGX Enclaves (NDSS’ 17)
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Challenge 3: Potentially vulnerable module

• An enclave may attack the system
• Malicious module provider
• Vulnerable module

• Enclave is one-way protection
• Protect the service from the cloud
• Sandbox is needed
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Challenge 4: Securing monitor

• Sandbox monitor is a mediator between 
the system and module

• System call delegation for sandbox
• 328 vulnerabilities have been reported in 2019-

2022 at CVE

• Hard to protect all compartment
• 1,2: Vulnerable monitor
• 3: Privilege escalation (e.g, shellshock[1])
• 4: Iago attack[2]
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Challenge 5: Trusted System Level Objective

• Resource accounting should be 
protected from both side

• Bill should be mutually-agreeable 

• In order to meet SLO, nimble instance 
loading is important

• Verification slows down loading
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Prior Work
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Challenge Summary
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Propose Idea

• All enclaves with different privileges are isolated
• Communicate in a secure and effective way
• Hardware extension for trustworthy system level objective
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Threat Model

• Trusted Computing Base (TCB)
• CPU processor
• Code running in the enclave 
• Code running in monitor

• Protection
• Confidentiality, Integrity, and freshness of enclave memory
• Confidentiality, Integrity, and freshness of communication channel, and accounting service

• Attack surface
• Software attacks from outside the enclave 
• Hardware attacks from outside CPU package 

• Out of scope
• Side channel attacks
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Goals

• To propose a new enclave model to have richer semantics for
trustworthy cloud service

• Goal: 
• To support fine-grained compartmentalization and sharing
• To enhance security for trusted service level objective
• To improve the performance of trusted cloud computing
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Target Scenario

• Challenge 1: Monolithic Design
• Potentially malicious third-party 

libraries

• Challenge 2: Lack of Sharing Semantic 
• Wasted memory by not supporting 

shared library
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Nested Enclave (ISCA 20)

• Our prior work for Challenge 1 and 2
• Hardware extension to SGX
• Compartmentalization

• Isolated peer compartments

• Hierarchical Isolation
• Supports multi-level security

• Sharing lower compartment
• Shared library
• Communication channel
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Nested Enclaves (ISCA 20)

• Hierarchical Isolation
• Outer enclave doesn’t have access 

permission to inner enclaves
• Inner enclave has access 

permission to the lower level

• Multi Level Security support
• Map top secret to inner enclave
• Map secret to outer enclave
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Protected

Nested Enclaves (ISCA 20)

• Shared Library
• Reduced total memory usage
• Reduced TCB to Inner Enclave 

• Secure transition between 
Enclaves
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New Target Scenario

• Challenge 3: Potentially vulnerable module
• Code running in an enclave can be malicious 

• Challenge 2: Lack of Sharing Semantic 
• Sharing through unprotected memory might 

be vulnerable
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New Target Scenario

• Challenge 4: Securing monitor
• Sandbox Monitor should be protected 

by both cloud provider and module 
provider

• Challenge 5: Trusted Service Level 
Objective (SLO)

• Cannot fully trust billing measured by 
others
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New Target Scenario

• Challenge 5: Trusted SLO
• Massive verification slows down 

enclave instance loading

• Verification is done by hashing 
the entire memory and 
comparing with compile time 
measurement

23

Enclave

Memory

(2) Hash

(1) Load
Memory

(3) Verify

Digest

/ 49

Hashing overhead > 65%



Cloister (This work)

• Sandbox Enclave
• Mutually isolated Enclave
• No access permission to untrusted 

context 
• Cannot perform control transition 

to untrusted context
• Hardware-managed signal handler

24

Protected

Access permission
Control transition

Sandbox
Enclave

Untrusted Context

Protected Comm.

Adversarial
Module

Sandboxing needed!

/ 49



Cloister (This work)

• Page-granularity Sharing
• Share a page between Enclaves
• The shared page only allows 

Read/Write permission 
• Faster IPC through cache

• Skipping encryption
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Cloister (This work)

• Monitor Enclave
• Mutually trusted by attestation
• Filters system call requests
• Accounting system
• Validates system call returns
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Design – Trusted Resource Accounting

• Tracking CPU/MEM usage
• Measure in-enclave CPU time

• Time Stamp Counter (TSC)
• Frequency (Power state) 

• Track enclave memory allocation
• SGX Instructions
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• Suggested SGX measurement for a page (4KB)
• Eliminating redundant operations 
• Parallelizing hash operations
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Evaluation Questions

• Security benefits from isolation
• CASE 1: Heart Bleed Attack

• Performance in serverless computing scenario
• CASE 2: Query Server

• Latency distribution with trustworthy resource accounting
• CASE 3: Secure Accounting with FTPS Server

• Loading time acceleration from hardware support
• CASE 4: Launching Enclave Instances 
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Methodology

Implementation
• New instructions in SDK / Driver for 

emulation
• Porting applications to use new 

instructions
• Micro architecture simulation 
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Evaluation Environment
• Intel i7-7700, 64 GB DRAM
• Ubuntu 18.04
• Intel SGX Linux SDK/Driver v2.2
• ZSim / Dramsim2
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CASE 1: Heartbleed Attack
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CASE 2: Query Server
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• Goal:
• To show performance implications 

in serverless computing scenario

• A query server scenario with 
SQLite / LibSVM
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44.1% better performance over software sandboxing in SQLite,
Similar performance in ML workload

Prior work, No access control

YCSB 10000 Queries Supported vector machine datasets, 10000 Queries

CASE 2: Query Server
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CASE 3: Secure Accounting with FTPS Server

36

• Goal:
• To show latency distribution along with 

trustworthy resource accounting

• FTPS Server with secure 
accounting 
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CASE 3: Secure Accounting with FTPS Server

37

Overhead is small (<2%)
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CASE 4: Launching Enclave Instances 
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CASE 4: Launching Enclave Instances
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63% reduced loading time with 8x parallelism
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Summary

• Nested Enclave [ISCA’20]
• Hierarchical isolation
• Control Transition
• 1:N shared Enclave

• Cloister [On review]
• Bi-direction isolation
• Message
• 1:1 shared page
• Accounting
• Fast loading
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Conclusion

• Investigate the limitations of the current monolithic enclave design 

• To propose a new enclave model to have richer semantics for
trustworthy cloud service

• Support fine-grained compartmentalization and sharing
• Enhance security for trusted service level objective
• Improve the performance of trusted cloud computing

• Evaluate the performance benefits from emulation and simulation
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Appendix

• Detailed Access control
• Case study

• Shared library

• Comparison to prior sandbox
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Design (1/3) - Memory access control

• Validate memory access during TLB miss handling
• Invariant for security: TLB must contain only validated translation 

• Memory access cases
• Inner enclave accesses its outer enclave
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Design (2/3) - Memory access control

• Validate memory access during TLB miss handling
• Invariant for security: TLB must contain only validated translation 

• Memory access cases
• Bi-Enclave accesses outside its memory
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Design (3/3) - Memory access control

• Validate memory access during TLB miss handling
• Invariant for security: TLB must contain only validated translation 

• Memory access cases
• Bi-Enclave accesses shared frame
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Control
Transition

Design (1/1) - Secure control transition

• Transition between Inner and 
outer enclave

• Save running context
• Flush flags, register, and TLB
• Check & sanitize parameters
• Restore target context if exists
• Done with 2 new instructions
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Control
Transition

Protected

Untrusted Context

Design (1/1) - Communication API

• Message based calling 
communication

• Copy into private memory
• Call functions after verification

• To prevent race attack
• E.g., Time-of-check-time-of-use 

(TOCTOU)
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Shared library
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Loading an enclave instance is 4.25 times faster



Access Control
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• Modifications are marked grey
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• Modifications are marked blue

Access Control (detail)



Problem - Access control

;mask and align
andl eax, 0xffffffe0

;rax = base + eax
leaq rax, [r14 + rax]
call rax

;rax = target address
call rax

Sandbox
Enclave

Blocked!

Enlarges TCB
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• Goal : Preventing to access outside sandbox

• A software based approach

• Pros:
• No need to change hardware

• Cons:
• Enlarge TCB
• Slowdown every memory access

• ~24%
• Vulnerable to attacks

• Bugs, Spectre, Rowhammer, 

Binary Instrumentation



Problem - Access control
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• Goal : Preventing to access outside 
sandbox

• A hardware+OS approach

• Pros:
• Fast
• Smaller TCB

• Cons:
• Limited number of domains
• Vulnerable to Rowhammer attacks
• Still, HW need to be changed
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