
Hardware Hardened Sandbox Enclaves for
Trusted Serverless Computing

Joongun Park

ACM Transactions on Architecture and Code Optimization 21(1)

Excerpted from the PhD defense slides by Joongun Park

1 / 49

• Cloud provider manages the underlying platform instead of a developer
• Services consist of user-level, stand-alone, isolated function modules
• Pay-as-you-go model

2

Serverless Computing

Lambda
1

DB
(Dynamo

DB)

Lambda
2

Gateway
(SSL)

Client

Resource
Accounting

Email
Service
(SE3)

Storage
(S3)

Cloud Platform

Regulated
Syscall

Service

Module

Monitor
(Cloud
Watch)

Cloud
Provider

Module
Provider

/ 49

Service

What’s different in Cloud security?

• Traditional
• Protect module/system from a

client

• Cloud security
• Protect each compartment from

others

3

System SoftwareSystem Software

Modules Module
0

Module
1

Module
2

Service Service

Cloud
provider

Module
Provider

ClientClient

/ 49

attack attack

attack

attack

Protect against malicious Client and Module Provider
Cloud

Provider

Module Provider

Client

Protect against malicious Cloud Provider, Clients, and other
Module Providers

Wants to minimize privacy exposal to
Cloud Provider, Module Provider, and other Clients

4

Requirements for Secure Cloud

/ 49

Trusted Execution Environment (TEE)

• TEE is an execution environment that
provides protection against privileged
software and physical attacks

• Enclave is one of the TEE models which
supports user-level instances

• An Enclave provides,
• Access control
• Data protection
• Attestation

5

Enclaves
User Process

. . .

Privileged Software

Trusted Untrusted

Untrusted
User

Other process

HardwareCPU

/ 49

그림:
MLS support for TEE

그림:
More generalized isolation

그림:
Native Sandbox support for

TEE

Hardware implementation of Enclave

• Intel’s commercialized Trusted Execution Environment called SGX

6

Access control Data protection Attestation
TLB

VA #2 PA #2
VA #1 Abort

Secured w/ HW

Blocked!

Privileged Software

Enclave
Enclave

CPU Memory

Encrypted
Data

Integrity
Protection

Enclave

Memory

Hash

CPU spec

Attestation
Report

Digest

Trusted Untrusted
/ 49

Challenge 1: Monolithic Design

• A service module importing a 3rd-party
library in Enclave as its TCB

• Vulnerability in 3rd party endanger entire
the enclave

• E.g., Memory leak (OpenSSL HeartBleed)

7

Operating System

Module 3rd-Party lib

Enclave

attack
Bug

1. Third-party library should be isolated

/ 49

Challenge 2: Lack of Sharing Semantic

• Memory is wasted due to strictly isolated
libraries

• SW encryption has limitations
• Costly encryption
• Race condition attack (TOCTOU) [1]
• Knowledge attack (Silent dropping) [2]

8

Operating System

Enclave

Lib 1

Module

A

Lib 2

Enclave

Lib 2

Module

B

Lib 3

Enclave

Lib 1

Module

C

Lib 3

Shared memory

Encrypt
data Decrypt

data

[1] CVE-2021-33097
[2] Panoply: Low-TCB Linux Applications With SGX Enclaves (NDSS’ 17)

2. Enclave needs to support secured sharing

/ 49

Challenge 3: Potentially vulnerable module

• An enclave may attack the system
• Malicious module provider
• Vulnerable module

• Enclave is one-way protection
• Protect the service from the cloud
• Sandbox is needed

9

Operating System

A vulnerable module

Enclave

3. System should be protected from Enclave (Sandboxing)

attack

/ 49

Challenge 4: Securing monitor

• Sandbox monitor is a mediator between
the system and module

• System call delegation for sandbox
• 328 vulnerabilities have been reported in 2019-

2022 at CVE

• Hard to protect all compartment
• 1,2: Vulnerable monitor
• 3: Privilege escalation (e.g, shellshock[1])
• 4: Iago attack[2]

10

Monitor

Operating System

Module

Enclave

attack

Monitor

Operating System

Module

Enclave

attack
Manipulate
syscall return

Operating System

Module Monitor

attack

Operating System

Module Monitor

attack

Enclave Enclave1 2

3 4

4. The monitor should be isolated both module and kernel

[1] CVE-2014-7169, [2] Iago Attacks: Why the System Call API is a Bad Untrusted RPC Interface (UCSD dissertation) / 49

Challenge 5: Trusted System Level Objective

• Resource accounting should be
protected from both side

• Bill should be mutually-agreeable

• In order to meet SLO, nimble instance
loading is important

• Verification slows down loading

11

Enclave

Memory

(2) Hash(1) Load
Memory

(3) Verify

Digest

Time
Consuming

5. Resource usage should be securely tracked,
and Loading should be accelerated

/ 49

Monitor

Accounting
Service

Operating System

Module

$

Enclave

attack
attack

1

2

Prior Work

12

Related Work Challenge
1

Challenge
2

Challenge
3

Challenge
4

Challenge
5

Ryoan
(OSDI ’16)

O X O X X

AccTEE
(Middleware ’20)

X X O X O

Occlum
(ASPLOS ’20)

X O O X X

CHANCEL
(NDSS ’21)

O X O X X

SGXLock
(Security ’22)

X X O X X

Module

A

Library OS
(+Monitor)

Enclave Enclave
Module

C

Library OS
(+Monitor)

Enclave
Module

B

Library OS
(+Monitor)

Operating System

Ryoan

Software Encryption

/ 49

Challenge Summary

13

Operating System

Module Monitor

Enclave

attack

attack

Shared Memory

Operating System

Enclave

Lib 1

Module

A

Enclave

Lib 2

Module

B

Enclave

Lib 1

Module

C

Shared Memory

Hierarchical isolation
for multilevel security

Bi-directional Isolation
for trusted sandboxes

1

2, 5

2, 5
2, 5

3

4

attack

/ 49

Propose Idea

• All enclaves with different privileges are isolated
• Communicate in a secure and effective way
• Hardware extension for trustworthy system level objective

14 / 49

Function 1

Sandbox

Enclave

Function 2

Sandbox

Enclave

Function 3

Sandbox

Enclave

Client

Cloud Platform

No direct
access

f1 f2 f3 Developer

Threat Model

• Trusted Computing Base (TCB)
• CPU processor
• Code running in the enclave
• Code running in monitor

• Protection
• Confidentiality, Integrity, and freshness of enclave memory
• Confidentiality, Integrity, and freshness of communication channel, and accounting service

• Attack surface
• Software attacks from outside the enclave
• Hardware attacks from outside CPU package

• Out of scope
• Side channel attacks

15 / 49

Code launched by oneself

Goals

• To propose a new enclave model to have richer semantics for
trustworthy cloud service

• Goal:
• To support fine-grained compartmentalization and sharing
• To enhance security for trusted service level objective
• To improve the performance of trusted cloud computing

16 / 49

Target Scenario

• Challenge 1: Monolithic Design
• Potentially malicious third-party

libraries

• Challenge 2: Lack of Sharing Semantic
• Wasted memory by not supporting

shared library

17

Operating System

Enclave

Lib 1

Module

A

Enclave

Lib 2

Module

B

Enclave

Lib 1

Module

C

Shared Memory

/ 49

1

2

2

Nested Enclave (ISCA 20)

• Our prior work for Challenge 1 and 2
• Hardware extension to SGX
• Compartmentalization

• Isolated peer compartments

• Hierarchical Isolation
• Supports multi-level security

• Sharing lower compartment
• Shared library
• Communication channel

18

Inner
Enclave

Inner
Enclave

Outer Enclave

Protected

Untrusted Context

Access permission
Control transition

X

/ 49

Nested Enclaves (ISCA 20)

• Hierarchical Isolation
• Outer enclave doesn’t have access

permission to inner enclaves
• Inner enclave has access

permission to the lower level

• Multi Level Security support
• Map top secret to inner enclave
• Map secret to outer enclave

Inner
Enclave

Outer
Enclave

Untrusted
Context

Top Secret

Secret

Non - Secret

User privacy data

Database
ML Service
Other service libs..

19

Access permission
Control transition

/ 49

Protected

Protected

Nested Enclaves (ISCA 20)

• Shared Library
• Reduced total memory usage
• Reduced TCB to Inner Enclave

• Secure transition between
Enclaves

Inner
Enclave

Inner
Enclave

Outer Enclave

Untrusted Context

20

Shared library

Access permission
Control transition

/ 49

New Target Scenario

• Challenge 3: Potentially vulnerable module
• Code running in an enclave can be malicious

• Challenge 2: Lack of Sharing Semantic
• Sharing through unprotected memory might

be vulnerable

21 / 49

Operating System

Module

Enclave

Shared Memory 2

3

attack

Module

Enclave

New Target Scenario

• Challenge 4: Securing monitor
• Sandbox Monitor should be protected

by both cloud provider and module
provider

• Challenge 5: Trusted Service Level
Objective (SLO)

• Cannot fully trust billing measured by
others

22

Operating System

Module Monitor

attack

Operating System

Module Monitor

Enclave Enclave

Manipulate

/ 49

New Target Scenario

• Challenge 5: Trusted SLO
• Massive verification slows down

enclave instance loading

• Verification is done by hashing
the entire memory and
comparing with compile time
measurement

23

Enclave

Memory

(2) Hash

(1) Load
Memory

(3) Verify

Digest

/ 49

Hashing overhead > 65%

Cloister (This work)

• Sandbox Enclave
• Mutually isolated Enclave
• No access permission to untrusted

context
• Cannot perform control transition

to untrusted context
• Hardware-managed signal handler

24

Protected

Access permission
Control transition

Sandbox
Enclave

Untrusted Context

Protected Comm.

Adversarial
Module

Sandboxing needed!

/ 49

Cloister (This work)

• Page-granularity Sharing
• Share a page between Enclaves
• The shared page only allows

Read/Write permission
• Faster IPC through cache

• Skipping encryption

25

Protected

Access permission
Control transition

Sandbox
Enclave Enclave

Untrusted Context

Protected Comm.

Shared
Page

/ 49

Cloister (This work)

• Monitor Enclave
• Mutually trusted by attestation
• Filters system call requests
• Accounting system
• Validates system call returns

26

Protected

Access permission

Control transition

Untrusted Context

Monitor Enclave

Sandbox Enclave

Syscall
Return

Validator

allow:
open
read

deny:
write

Allowed
Syscall?

Yes

1

2

3

5

4

Accounting
System

No
Filtered

X

/ 49

Design – Trusted Resource Accounting

• Tracking CPU/MEM usage
• Measure in-enclave CPU time

• Time Stamp Counter (TSC)
• Frequency (Power state)

• Track enclave memory allocation
• SGX Instructions

27

Sandbox
Enclave

Monitor
Enclave

Hardware
Update

HW-logged page

Accounting Service $ Entered time
$ CPU freq.
$ Enclave size
$ Lock
$ …$

/ 49

Redundant
M

F

MRENCLAVE H Header (Incl. EPC Offset) D 512 Bit EPC data chunk

SHA-256 Hash function

M F

H

F

D

F

D

F

D

F

D

M F

H

F

D

F

D

F

D

F

D

Update &
Unlock &
Lock ...Lock

Design (1/2) - Fast Measurement

• Original SGX measurement for a page (4KB)
• Redundant operations
• Serialized hash operations

/ 4928
80 Hash chain for 4k Page

256

...
D

D

+

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

H

F

D

F

D

F

D

F

D

F F

+

M

Lock &
Update &
Unlock

256

256

256

Design (2/2) - Fast Measurement

• Suggested SGX measurement for a page (4KB)
• Eliminating redundant operations
• Parallelizing hash operations

/ 4929

No redundancy

Parallel Hashing

18 Hash chain
for 4k Page

Evaluation Questions

• Security benefits from isolation
• CASE 1: Heart Bleed Attack

• Performance in serverless computing scenario
• CASE 2: Query Server

• Latency distribution with trustworthy resource accounting
• CASE 3: Secure Accounting with FTPS Server

• Loading time acceleration from hardware support
• CASE 4: Launching Enclave Instances

30 / 49

Methodology

Implementation
• New instructions in SDK / Driver for

emulation
• Porting applications to use new

instructions
• Micro architecture simulation

31

Evaluation Environment
• Intel i7-7700, 64 GB DRAM
• Ubuntu 18.04
• Intel SGX Linux SDK/Driver v2.2
• ZSim / Dramsim2

/ 49

CASE 1: Heartbleed Attack

32

Simple
Server

OpenSSL

Untrusted
Application

Heart Beat

Content=Hello
Size=9999

Response=
Secret

Leaked!

Remain
secured

• Goal:
• To show security benefits from

isolation

• Attacking Echo server with
vulnerability in OpenSSL

/ 49

Response=
Secret

CASE 1: Heartbleed Attack
Original Enclave:
Simple server with monolithic enclave

Nested Enclave:
Simple server with Nested enclave

Simple Server
with OpenSSL

Untrusted
Application

Simple
Server

OpenSSL

Untrusted
Application

Heart Beat

Content=Hello
Size=9999

Heart Beat

Content=Hello
Size=9999

33

Response=
Secret

In Simple Server

ResponseResponse

Protect echo server from heartbleed attack

/ 49

CASE 2: Query Server

34

• Goal:
• To show performance implications

in serverless computing scenario

• A query server scenario with
SQLite / LibSVM

• Least privilege support
• E.g., SQLite cannot perform file I/O

Monitor

Protected
FS

OpenSSL
Server

SQLite

LibSVM

Least privileged Principle

Sandbox Enclave modules

/ 49

35

44.1% better performance over software sandboxing in SQLite,
Similar performance in ML workload

Prior work, No access control

YCSB 10000 Queries Supported vector machine datasets, 10000 Queries

CASE 2: Query Server

/ 49

CASE 3: Secure Accounting with FTPS Server

36

• Goal:
• To show latency distribution along with

trustworthy resource accounting

• FTPS Server with secure
accounting

• 512 Clients send requests to the
server for a 1MB encrypted file

Operating System

Monitor Accounting
System

512 clients

FTP Server

SSL

/ 49

CASE 3: Secure Accounting with FTPS Server

37

Overhead is small (<2%)

/ 49

CASE 4: Launching Enclave Instances

38 / 49

256

...
D

D

+

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

H

F

D

F

D

F F

+

M

256

256

256

No redundancyParallel Hashing
• Goal:

• To show instance loading
acceleration with hardware support

• Launching enclave instances with
various sizes and levels of
parallelism

CASE 4: Launching Enclave Instances

39

63% reduced loading time with 8x parallelism

/ 49

Summary

• Nested Enclave [ISCA’20]
• Hierarchical isolation
• Control Transition
• 1:N shared Enclave

• Cloister [On review]
• Bi-direction isolation
• Message
• 1:1 shared page
• Accounting
• Fast loading

40

Inner
Encl

Inner
Encl

Outer Enclave

Monitor Enclave

Privileged Software

Sandbox
Enclave

Nested Enclave

Cloister

/ 49

Conclusion

• Investigate the limitations of the current monolithic enclave design

• To propose a new enclave model to have richer semantics for
trustworthy cloud service

• Support fine-grained compartmentalization and sharing
• Enhance security for trusted service level objective
• Improve the performance of trusted cloud computing

• Evaluate the performance benefits from emulation and simulation

41 / 49

Appendix

• Detailed Access control
• Case study

• Shared library

• Comparison to prior sandbox

42

Design (1/3) - Memory access control

• Validate memory access during TLB miss handling
• Invariant for security: TLB must contain only validated translation

• Memory access cases
• Inner enclave accesses its outer enclave

43

Virtual Address Outer VA

Outer PAPhysical Address

Inner VA

Inner PA

VA #1

PA #1

Secured
w/ HW VA #2 PA #2

VA #1 PA #1

TLB
Permission
check!

Modification

Design (2/3) - Memory access control

• Validate memory access during TLB miss handling
• Invariant for security: TLB must contain only validated translation

• Memory access cases
• Bi-Enclave accesses outside its memory

44

Virtual Address Monitor
Enclave VA

Monitor
Enclave VA

Bi-Enclave
VA

Bi-Enclave
PA

Secured
w/ HW VA #2 PA #2

VA #1 Abort

TLB

VA #1

Abort page

0xffPhysical Address

Modification

Design (3/3) - Memory access control

• Validate memory access during TLB miss handling
• Invariant for security: TLB must contain only validated translation

• Memory access cases
• Bi-Enclave accesses shared frame

45

Virtual Address Monitor
Enclave VA

Monitor
Enclave VA

Bi-Enclave
VA

Bi-Enclave
PA

VA #2

PA #2 (shared frame)

Secured
w/ HW VA #2 PA #2

VA #1

TLB

Physical Address

Modification

Control
Transition

Design (1/1) - Secure control transition

• Transition between Inner and
outer enclave

• Save running context
• Flush flags, register, and TLB
• Check & sanitize parameters
• Restore target context if exists
• Done with 2 new instructions

46

Outer Enclave Inner Enclave

Restored
Outer enclave

context

Saved
Inner enclave

context

Protected

Untrusted Context

Regs = 0x0

RunningRunning

Buffer check!

X

Modification

Control
Transition

Protected

Untrusted Context

Design (1/1) - Communication API

• Message based calling
communication

• Copy into private memory
• Call functions after verification

• To prevent race attack
• E.g., Time-of-check-time-of-use

(TOCTOU)

47

Bi-Enclave
(Receiver)

Bi-Enclave
(Sender)

Message

Running

Verify the message

X

Running

Copy

Message

Shared library

48

Loading an enclave instance is 4.25 times faster

Access Control

49

• Modifications are marked grey

50

• Modifications are marked blue

Access Control (detail)

Problem - Access control

;mask and align
andl eax, 0xffffffe0

;rax = base + eax
leaq rax, [r14 + rax]
call rax

;rax = target address
call rax

Sandbox
Enclave

Blocked!

Enlarges TCB

51

• Goal : Preventing to access outside sandbox

• A software based approach

• Pros:
• No need to change hardware

• Cons:
• Enlarge TCB
• Slowdown every memory access

• ~24%
• Vulnerable to attacks

• Bugs, Spectre, Rowhammer,

Binary Instrumentation

Problem - Access control

52

Enclave

Page Table Entry (OS)

PKEY …

PKEY
No perm

Blocked!

…

(b) HW+OS confinement

PKRU Register (User)

Requirement:
MPK disabled

Frame Number

• Goal : Preventing to access outside
sandbox

• A hardware+OS approach

• Pros:
• Fast
• Smaller TCB

• Cons:
• Limited number of domains
• Vulnerable to Rowhammer attacks
• Still, HW need to be changed

	Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing
	Serverless Computing
	What’s different in Cloud security?
	Requirements for Secure Cloud
	Trusted Execution Environment (TEE)
	Hardware implementation of Enclave
	Challenge 1: Monolithic Design
	Challenge 2: Lack of Sharing Semantic
	Challenge 3: Potentially vulnerable module
	Challenge 4: Securing monitor
	Challenge 5: Trusted System Level Objective
	Prior Work
	Challenge Summary
	Propose Idea
	Threat Model
	Goals
	Target Scenario
	Nested Enclave (ISCA 20)
	Nested Enclaves (ISCA 20)
	Nested Enclaves (ISCA 20)
	New Target Scenario
	New Target Scenario
	New Target Scenario
	Cloister (This work)
	Cloister (This work)
	Cloister (This work)
	Design – Trusted Resource Accounting
	Design (1/2) - Fast Measurement
	Design (2/2) - Fast Measurement
	Evaluation Questions
	Methodology
	CASE 1: Heartbleed Attack
	CASE 1: Heartbleed Attack
	CASE 2: Query Server
	CASE 2: Query Server
	CASE 3: Secure Accounting with FTPS Server
	CASE 3: Secure Accounting with FTPS Server
	CASE 4: Launching Enclave Instances
	CASE 4: Launching Enclave Instances
	Summary
	Conclusion
	Appendix
	Design (1/3) - Memory access control
	Design (2/3) - Memory access control
	Design (3/3) - Memory access control
	Design (1/1) - Secure control transition
	Design (1/1) - Communication API
	Shared library
	Access Control
	Access Control (detail)
	Problem - Access control
	Problem - Access control

