
Supporting Secure Multi-GPU Computing with
Dynamic and Batched Metadata Management

Seonjin Na1, Jungwoo Kim2, Sunho Lee2, Jaehyuk Huh2

1Georgia Institute of Technology,   2KAIST

1 / 22



Importance of Multi-GPU Computing  

2 / 22



Secure GPU Computing Efforts in Academia and Industry 

Trusted Domain Untrusted Domain
TEE-Enabled CPU

TEE 
Extension

Graviton [OSDI ’18] 
HIX [ASPLOS ’19] 

Common Counters [HPCA’ 21] 
SHM [HPCA ’22] 
Plutus [HPCA ’23]

GPU mem 
Protection

NVIDIA Secure H100 GPU 
Lack of data protection mechanism 
optimized for multi-GPU systems 

3 / 22



Our Goal: Efficient Data Protection for Multi-GPU System 

Secure CPU-GPU 
Communication

Secure GPU-GPU 
Communication

Protect transferred data with 
a low-performance overhead

Goal of this work 

Mem
Protection

Our Focus

Prior secure 
region

4 / 22



• Introduction 

• Background and Motivation 

• Key insights and Main Idea

• Evaluation

Contents 

5 / 22



Background: Protecting Transferred Data through Interconnect

Untrusted Interconnect

Encrypted
data MAC

Sender Receiver

Authenticated
en/decryption

Replay attack
protection

Shared secret key 

Additional 
metadata

Sender Receiver

Confidentiality & Integrity 

Freshness

MAC

Re-computed
 MAC 

=?

Intercept 
packet

Encrypted data 
with metadata

Older Encrypted 
Data with metadata

ID(Sender), Ctr

6 / 22



Background: Protecting Transferred Data through Interconnect

Authenticated
en/decryption

Replay attack
protection

Confidentiality & Integrity 

Freshness

ACK
Security 

metadata =? 

Encrypted
data MAC

Sender Receiver
Shared secret key 

Additional 
metadata

MAC

Re-computed
 MAC 

=?

Sender ReceiverEncrypted data 
with metadata

Check whether the receiver gets 
the latest version of data

ID(Sender), Ctr

Untrusted Interconnect

7 / 22



Authenticated En/Decryption with Pre-Computation [1]

Untrusted Interconnect

Encrypted
data MAC

Sender Receiver

Encryption 
pad

Authentication 
pad

Encrypted
data XOR

Plain Data

GHASH
MAC

Valid Enc. 
pad

Auth. 
pad Ctr

1bit 512bit 64bit 64bit

Store pre-generated Enc.pad/ Auth. pad 

[1] Efficient data protection for distributed shared memory multiprocessors, PACT’06

Pad table

Naïve 
approach

Pre-computed
pads

Time

Time

XOR GHASH

Encryption Generate MAC

8 / 22

Stored in on-chip area



• Maintains same # of pad entries for all commu. pairs in a system

Prior Pad Table Management (Private) [1] 

E.g.) 4-GPU System

Send
direction

Receive 
direction

CPU GPU 1 GPU 3 GPU 4
# of 

entry 

Performance

Increasing # of 
pad table entries 

On-chip storage 
overhead 

Valid Enc. 
pad

Auth. 
pad Ctr

1bit 512bit 64bit 64bit

~80B 

[1] Efficient data protection for distributed shared memory multiprocessors, PACT’06 9 / 22

CPU GPU 1 GPU 3 GPU 4

GPU1 GPU2 

GPU3 GPU4 



Performance Impact of # of Pad Table Entries (Private) [1]

0

0.5

1

1.5

2

2.5

N
or

m
. E

xe
c 

Ti
m

e
Pad_1X Pad_2X Pad_4X Pad_8X Pad_16X

121.1%

49.7%

19.5%

Baseline 
Config

16.8% 14.0%
Lower is 
better

Use 4 pad table entries
 for all commu. pairs

Baseline: 
Unsecure 4 GPU

[1] Efficient data protection for distributed shared memory multiprocessors, PACT’06 10 / 22



• Secure multi-GPU incurs average 19.5% performance degradation 
• Auth. en/decryption: 8.2% slowdown,  Metadata traffic: 11.3% slowdown 

Performance Breakdown Analysis

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
. E

xe
c 

Ti
m

e 
Unsecure  +Authenticated en/decryption  +Metadata traffic

8.2%
19.5%

Lower is 
better

+ 8.2% + 11.3%

Performance bottlenecks of secure communication
1. Authenticated en/decryption

2. Additional security metadata traffic

11 / 22



• Introduction 

• Background and Motivation 

• Key insights and Main Idea

• Evaluation

Contents 

12 / 22



Key Insight 1: Dynamic Behavior of Communication Patterns 

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Pe
rc

en
ta

ge
 o

f 
re

m
ot

e 
re

qu
es

ts
 

Time ( x138000 cycles)
Matrix multiplication 

Total_Send Total_Recv
Measured on GPU1 

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Ra
tio

Time ( x138000 cycles)
Matrix multiplication

CPU GPU2 GPU3 GPU4

Recv requests 
Breakdown

Distribution of send/recv requests 

Distribution of recv requests by processors

13 / 22



0

0.2

0.4

0.6

0.8

1

Pr
op

or
tio

n 
of

 e
ac

h 
In

te
rv

al

[1,40) [40,160) [160,640) [640,2560) [2560,Inf)

• Analyze distribution of cycles for gathering 16 transmitted data blocks 

Key Insight 2: Burstiness of Communication in Multi-GPU System

Cycle distribution 
for gathering 16 transmitted data blocks 

Communication between processors 
occurs within a short period 

69.2% 

14 / 22

Our Key Observations
1. Dynamic behavior of communication patterns

2. Burstiness of communication



Main Idea of This Work 

Dynamic pad table 
management 

Batched MAC 
generation& verification

…

Challenge 1: authenticated 
en/decryption overhead

Challenge 2: additional bandwidth 
by security metadata 

Increase opportunity to hide 
authenticated en/decryption latency Reduce security metadata traffic

Encrypted data

MAC & ACK

…

…

Exploit dynamic behavior of 
communication pattern 

Exploit burstiness of 
communication

15 / 22



• Dynamically adjust pad table entries based on communication pattern 

Dynamic Pad Table Management 

Send

Recv

# of 
Reqs Ratio

1.0 Send Recv
CPU GPU2 GPU3 GPU4

Monitoring
phase

Monitoring
phase

Pad
 adjustment phase

Pad
 adjustment phase

. . .
Time

Pad table entries 
on GPU1

Pad
adjustment

phase

Monitoring
phase

16 / 22



• Generate coarse-grained MAC to reduce metadata bandwidth 

Batched MAC Generation & Verification 

Prior 
approach

Our batched 
MAC

Encrypted Data

MAC & ACK

…

…

…

16 or 64 data blocks

64 Data + 64 Metadata (for decryption)
+ 64 MAC & ACK 

Example:  4KB page migration 

64 Data + 64 Metadata (for decryption)  
+ 1 Batch info + 1 MAC & ACK

Traffic

Traffic

17 / 22



• Introduction 

• Background and Motivation 

• Key insights and Main Idea

• Evaluation

Contents 

18 / 22



• Simulator: MGPUSim [ISCA ’19]
• Workloads: 17 apps from various benchmark suites 
• AMD APP SDK, DNN Mark, Hetero Mark, Polybench, SHOC benchmark suites 

• System configuration: Models 4 GPU system (AMD R9Nano GPU)

Evaluation Methodology 

GPU Configuration 
Compute Unit 64 CUs per GPU, 1.0 GHz 

L1 Inst / Vector / Scalar Caches
Shared L2 Cache

16 KB / 32KB / 16KB
2MB 

DRAM 4GB HBM Memory, 512 GB/s 
CPU-GPU, GPU-GPU Interconnect 32 GB/s, 50 GB/s

Security Configuration
Authenticated

encryption/decryption 40 cycles [1,2]

[1] Adaptive Security Support for Heterogenous Memory on GPUs, HPCA ’22
[2] Plutus: Bandwidth-Efficient Memory Security for GPUs, HPCA’23 19 / 22



Performance Comparison Result 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
. E

xe
c 

Ti
m

e 

Private Cached  +Dynamic  +Batching 0

0.2

0.4

0.6

0.8

1

Private Cached Ours

Ra
tio

Hidden Partial hidden Not hidden

19.5% 16.3% 14.7% 7.9%

0
0.2
0.4
0.6
0.8

1
1.2
1.4

N
or

m
. T

ra
ff

ic
 R

at
io

Private Cached Ours

• Compared with two different mechanisms 
• Private[1]: Uses same number of pad entries for all pairs
• Cached[1]: Allocates pad table entries like LRU cache  

Lower is 
better

All configs have the same total # of pad table entries

Higher is better

20.0%

[1] Efficient data protection for distributed shared memory multiprocessors, PACT’06 20 / 22

59.6% 
hidden 

20% traffic
reduction 



• Scalability study to the number of GPUs 

• Sensitivity study to authenticated encryption/decryption latency  

• Hardware overhead of our design 

 

More Results in the Paper 

21 / 22



• Problem
• Secure communication degrades multi-GPU system performance

• Key Idea
• Dynamic pad table management exploit dynamic communication patterns
• Batched MAC generation leverage burstiness nature of communication  

• Evaluation results 
• Reduces perf. overhead by 11.6%, 8.4% compared to Private, Cached 

Summary

22 / 22


