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Importance of Multi-GPU Computing  
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Secure GPU Computing Efforts in Academia and Industry 
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Our Goal: Efficient Data Protection for Multi-GPU System 
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Background: Protecting Transferred Data through Interconnect
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Background: Protecting Transferred Data through Interconnect
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Authenticated En/Decryption with Pre-Computation [1]

Untrusted Interconnect
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[1] Efficient data protection for distributed shared memory multiprocessors, PACT’06
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Stored in on-chip area



• Maintains same # of pad entries for all commu. pairs in a system

Prior Pad Table Management (Private) [1] 

E.g.) 4-GPU System

Send
direction

Receive 
direction

CPU GPU 1 GPU 3 GPU 4
# of 

entry 

Performance

Increasing # of 
pad table entries 

On-chip storage 
overhead 

Valid Enc. 
pad

Auth. 
pad Ctr

1bit 512bit 64bit 64bit

~80B 

[1] Efficient data protection for distributed shared memory multiprocessors, PACT’06 9 / 22
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Performance Impact of # of Pad Table Entries (Private) [1]
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• Secure multi-GPU incurs average 19.5% performance degradation 
• Auth. en/decryption: 8.2% slowdown,  Metadata traffic: 11.3% slowdown 

Performance Breakdown Analysis
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Key Insight 1: Dynamic Behavior of Communication Patterns 
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• Analyze distribution of cycles for gathering 16 transmitted data blocks 

Key Insight 2: Burstiness of Communication in Multi-GPU System

Cycle distribution 
for gathering 16 transmitted data blocks 

Communication between processors 
occurs within a short period 

69.2% 
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Our Key Observations
1. Dynamic behavior of communication patterns

2. Burstiness of communication



Main Idea of This Work 

Dynamic pad table 
management 

Batched MAC 
generation& verification

…

Challenge 1: authenticated 
en/decryption overhead
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by security metadata 
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• Dynamically adjust pad table entries based on communication pattern 

Dynamic Pad Table Management 
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• Generate coarse-grained MAC to reduce metadata bandwidth 

Batched MAC Generation & Verification 

Prior 
approach
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MAC
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• Simulator: MGPUSim [ISCA ’19]
• Workloads: 17 apps from various benchmark suites 
• AMD APP SDK, DNN Mark, Hetero Mark, Polybench, SHOC benchmark suites 

• System configuration: Models 4 GPU system (AMD R9Nano GPU)

Evaluation Methodology 

GPU Configuration 
Compute Unit 64 CUs per GPU, 1.0 GHz 

L1 Inst / Vector / Scalar Caches
Shared L2 Cache

16 KB / 32KB / 16KB
2MB 

DRAM 4GB HBM Memory, 512 GB/s 
CPU-GPU, GPU-GPU Interconnect 32 GB/s, 50 GB/s

Security Configuration
Authenticated

encryption/decryption 40 cycles [1,2]

[1] Adaptive Security Support for Heterogenous Memory on GPUs, HPCA ’22
[2] Plutus: Bandwidth-Efficient Memory Security for GPUs, HPCA’23 19 / 22



Performance Comparison Result 
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• Compared with two different mechanisms 
• Private[1]: Uses same number of pad entries for all pairs
• Cached[1]: Allocates pad table entries like LRU cache  

Lower is 
better

All configs have the same total # of pad table entries

Higher is better

20.0%

[1] Efficient data protection for distributed shared memory multiprocessors, PACT’06 20 / 22
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• Scalability study to the number of GPUs 

• Sensitivity study to authenticated encryption/decryption latency  

• Hardware overhead of our design 

 

More Results in the Paper 
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• Problem
• Secure communication degrades multi-GPU system performance

• Key Idea
• Dynamic pad table management exploit dynamic communication patterns
• Batched MAC generation leverage burstiness nature of communication  

• Evaluation results 
• Reduces perf. overhead by 11.6%, 8.4% compared to Private, Cached 

Summary
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