Interference Aware DNN Serving on Heterogeneous Processors in Edge Systems

Yeonjae Kim, Igjae Kim Kwanghoon Choi (KAIST), Jeongseob Ahn (Korea Universit Jongse Park, Jaehyuk Huh (KAIST)

DESIGN

Integrating heterogeneous devices for ML computing

- Deep Learning Applications
 - Object detection
 - Speech cognition
 - ▶ Recommendation
- Heterogeneous Processors
 - Xavier, Apple Ml, Samsung Exynos 9820

DESIGN

EVALUATION

CONCLUSION

Performance Interference is not negligible

Example of heterogeneous edge device: NVIDIA AGXJetson Xavier

In 50% mappings,

GPUtasks:24%↑ perfermonce degradation DLA tasks:22%↑ perfermonce degradation

What are the sources of the interference?

"Memory bandwidth utilization"

"Limitation of DLA capability"

Architecture of NVIDIA Xavier platform

Related work

- Heterogeneous ML Schedulers
- None of these schedulers supports interference modeling

	MOSAI	SLO-PMAEL[2]	Gavel[3]	Our work
Heterogeneity support	1	 ✓ 	 ✓ 	 ✓
Multi-model support	×	 ✓ 	✓	 ✓
Customizable goal	×	×	 ✓ 	✓
Inference Tasks	1	 ✓ 	×	✓ ✓
Interference Modeling	×	×	×	

[1] M. Han et al., Mosaic: Heterogeneity-, communication-, and constraint-aware modelslicing and execution for accurate and efficient inference, PACT 2019.
[2] Seo et al., SLO-aware Inference Scheduler for Heterogeneous Processors in Edge Platforms, TACO 2021.
[3] D. Narayanan et al., Heterogeneity-aware cluster scheduling policies for deep learning workloads, OSDI 2020.

Interfered processor	GPU	DLA	GPU	DLA0
Co-running Processor	DLA	GPU	DLA0, DLA1	DLA1,GPU
Accuracy	97.8%	94.3%	97.4%	94.0%

Interference Modeling

- Interference models are built with Multi-Layer Perceptron (MLP).
 - ► MLP models show the highest accuracy among several regression models.

Model	Model 1	Model2	Model3	Model4
MLP	97.8%	94.3%	97.4%	94.0%
Kneighbor	97.7%	91.8%	95.6%	91.2%
Random forest	98.5%	92.7%	92.7%	88.5%
Decision Tree	97.5%	92.0%	87.4%	77.6%
SVR	92.8%	92.7%	94.6%	86.5%

EVALUATION

Goal-Independent Scheduling Framework

• Overview

"Interference-Aware, Goal-Independent Scheduling Framework"

EVALUATION

CONCLUSION

Goal-Independent Scheduling Framework

• Search for the best scheduling policy

[1] P. Radojkoviet al. "Optimal Task Assignment in Multithreaded Processors: A Statistical Approach," ACM SIGPLAN Notices

Goal-Independent Scheduling Framework

• Priority-based scheduling

• Priority score

 $Priority\ Score = \frac{Allocation\ Ratio}{Consumed\ Allocation}$

• Routes requests to different devices depending on priority score

Evaluation Setting

• Nvidia AGXJetson Xavier

GPU	512-Core Volta GPU with Tensor Cores
DLA	(2x)NVDLAEngines

- TensorRT API
- Benchmarks
 - ▶ 40 (8x5)application scenarios with 14 DNN models from the torchvision
 - consist of 8 application sets, for each set we use 5 different request ratios
- Metrics
 - ► Goodput, Throughput with SLO99%, Throughput, Fairness

Performance comparison

• Goodput: Throughput which satisfy target SLO.

Compared to w/o it f pred, w/ it f pred shows 18.1% average improvement Compared to Base thpt, w/ it f pred shows 40.0% average improvement

Performance comparison

• Throughput under SLO satisfaction rate 99%

Compared to w/o it f pred, w/ it f pred shows 33% average improvement Compared to Base thpt, w/ it f pred shows 36.1% average improvement

Conclusion

• Develop an MLP-based interference model, trained from randomly generated layers.

• Propose a goal-independent scheduling mechanism with sampled simulation.

• Achieve 40.0% higher goodput compared to baseline.

Thank you for listening! Q&A

