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Integrat ing heterogeneous devices for ML computing

 Deep Learning Applications

▶ Object  detection

▶ Speech cognit ion

▶ Recommendation

 Heterogeneous Processors

▶ Xavier, Apple M1, Samsung Exynos 9820 
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Performance Interference is not  negligible
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Example of heterogeneous edge device:
NVIDIA AGX Jetson Xavier

DNN
App1

DNN

App3

App2

DNN

In 50% mappings,
GPUtasks: 24%↑ perfermonce degradation
DLAtasks: 22%↑ perfermonce degradation
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Architecture of NVIDIA Xavier platform
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What are the sources of the interference?

Contention!

NVDLAVolta GPU

Not enough!

“Memory bandwidth ut ilizat ion”

Contention!

“Limitat ion of  DLA capability”
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MOSAIC[1] SLO-PMAEL[2] Gavel[3] Our work
Heterogeneity support ✓ ✓ ✓ ✓

Multi-model support ✗ ✓ ✓ ✓

Customizable goal ✗ ✗ ✓ ✓

Inference Tasks ✓ ✓ ✗ ✓

Interference Modeling ✗ ✗ ✗ ✓
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Related work
 Heterogeneous ML Schedulers

 Noneof these schedulers supports interference modeling

[1] M. Han et  al., Mosaic: Heterogeneity- , communication- , and constraint-aware model slicing and execution for accurate and efficient  inference, PACT 2019.
[2] Seo et  al., SLO-aware Inference Scheduler for Heterogeneous Processors in Edge Platforms, TACO 2021.
[3] D. Narayanan et  al., Heterogeneity-aware cluster scheduling policies for deep learning workloads, OSDI 2020.

INTRODUCTION MOTIVATION



6 / 14
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Interference Modeling

 Consist of 4 sub-models:
Model 1 Model 2 Model 3 Model 4

Interfered processor GPU DLA GPU DLA0

Co-running Processor DLA GPU DLA0, DLA1 DLA1, GPU

Accuracy 97.8% 94.3% 97.4% 94.0%

▶ Memory bandwidth utilizat ion

▶ GPU utilizat ion

▶ Average layer execution t ime on GPU

▶ Latency slowdown by stress

 For each co-located application,

DESIGNMOTIVATION
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Interference Modeling

 Interference models are built  with Multi-Layer Perceptron (MLP).

▶ MLP models show the highest  accuracy among several regression models.

Model Model 1 Model 2 Model 3 Model 4

MLP 97.8% 94.3% 97.4% 94.0%

Kneighbor 97.7% 91.8% 95.6% 91.2%

Random forest 98.5% 92.7% 92.7% 88.5%

Decision Tree 97.5% 92.0% 87.4% 77.6%

SVR 92.8% 92.7% 94.6% 86.5%
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Goal-Independent  Scheduling Framework

 Overview

“Interference-Aware, Goal-Independent  Scheduling Framework”



Device Time
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Goal-Independent  Scheduling Framework

 Search for the best  scheduling policy 

Simulator

…
Possible Allocation Matrices

Expected
Latency

Profiles of 
model A, B, C

“Best”
GPU A(0.6) B(0.4)
DLA B(0.4) C(0.6)

Allocation
Matrix

=Userspecified
goals

With 1,000 samplesthere exists an allocation with 

99% performance of the best allocation. [1]

[1] P. Radojkovic´ et al.“Optimal Task Assignment in Multithreaded Processors: A Statistical Approach,” ACM SIGPLAN Notices
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Goal-Independent  Scheduling Framework

 Priority-based scheduling

 Priority score

 Routes requests to different  devices 

depending on priority score

“Best”

Allocation
Matrix

Waiting
Requests

B
A
C
C
B
A

Priority
Calculation

0.1
1.6
0
0
0.1
0.2

is_idle() Allocate!
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 TensorRT API

 Benchmarks

▶ 40 (8x5) application scenarios with 14 DNN models from the torchvision

▶ consist  of 8 application sets, for each set  we use 5 different  request  rat ios

 Metrics

▶ Goodput, Throughput with SLO 99%, Throughput, Fairness

GPU 512-Core Volta GPU with Tensor Cores
DLA (2x) NVDLA Engines

EVALUATION CONCLUSIONINTRODUCTION MOTIVATION DESIGN

Evaluat ion Set t ing

 Nvidia AGX Jetson Xavier
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Performance comparison

 Goodput: Throughput which sat isfy target  SLO.

Compared to w/o itf pred , w/ it f pred shows 18.1% average improvement
Compared to Base thpt  , w/ it f pred shows 40.0% average improvement
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Performance comparison

 Throughput under SLO satisfaction rate 99%.

Compared to w/o itf pred , w/ it f pred shows 33% average improvement
Compared to Base thpt  , w/ it f pred shows 36.1% average improvement



14 / 14

 Develop an MLP-based interference model, trained from randomly generated layers.

 Propose a goal-independent  scheduling mechanism with sampled simulation.

CONCLUSIONINTRODUCTION MOTIVATION DESIGN

Conclusion

EVALUATION

 Achieve 40.0% higher goodput  compared to baseline. 
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