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Classification of LLM Workloads
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Host Memory Offloading for LLM

= Problem: Using multiple GPUs to serve large LLMs is extremely costly.
= Solution: Offload LLM weights & KV Cache to host memory.
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Host Memory Offloading for LLM

= Problem: Using multiple GPUs to serve large LLMs is extremely costly.
= Solution: Offload LLM weights & KV Cache to host memory.
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Limited Benefit of Large Batch Size

= Increasing the batch size offers diminishing returns.
= Larger batches lead to a massive KV Cache, creating a new PCle bottleneck.
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Limited Benefit of Large Batch Size

= [ncreasing the batch size shows diminishing returns on throughput.
= KV Cache size grows linearly with the batch size.
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Limited Benefit of Large Batch Size

= [ncreasing the batch size shows diminishing returns on throughput.
= KV Cache size grows linearly with the batch size.
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Opportunity: KV Cache Recomputation

= Key Insight: Trade slow communication (PCIe) for fast computation (GPU).
= Solution: Recompute the KV Cache on-the-fly, avoiding the data transfer.
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Limitation of KV Cache Recomputation

= KV recomputation is computationally expensive.
= Even a 20% recomputation leads to a 1.45x slowdown for OPT-30B
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Problems

= Host memory offloading is a low-cost solution.
= But it suffers from severe GPU underutilization.

= And KV recomputation offers only marginal gains.

We need a more intelligent approach

to the computation-communication trade-off
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Capture: Overview
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Potential of Activation Cache

= Token recomputation always re-executes the entire chain.
= This leads to massive redundant computation.
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Potential of Activation Cache

» The input activation for Decoder #K is the output of Decoder #K-1
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Potential of Activation Cache

= Activation caching can skip Attention, Projection, FFNs to recompute
= Activation uses only half the memory compared to KV Cache.
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Potential of Activation Cache

» 789%0 faster activation recomputation compared to token recomputation.
= Use KV-Activation Hybrid Caching to maximize PCIe and GPU overlap

[ 1 QKV Gen Il MHA [ Projection [ FFNs Il Others

Tok
rg 500 —
£ 400+
§ 300 Tok Tok
2001 gy .
— 100+ |:|A—Ct| Act Act -=‘
0 ! . .
32:512 32:1024 64:512 64:1024

Batch Size : Context Length

CASYS

KAIST 1 6
Computer Architecture
& System Lab



Asynchronous Inference Engine

= | everage double buffering to hide data transfer latency.
= Asynchronously overlap PCle transfers, recomputation, and the forward pass.

PCle Load ACT Load KV Load Weight Load ACT

PU

17



Need for Cache Management Policy

= Excessive ACT Cache idles the PCle bus.

ﬁ
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Cache Management Policy

= Partition the KV/Activation cache to co-optimize PCle and GPU usage.

= Allocate GPU memory to the ACT cache, and split host memory into KV:ACT
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Evaluation Methodology

= Environment
O NVIDIA RTX 4090 GPU, equipped with 24GB of GDDR6X via PCle 4.0 x16

= Models
o OPT-6.7B, 13B, 30B, 66B

= Baseline
o DeepSpeed Inference 1]
O FlexGen (2]
O Activation-only-Cache System

KAIST [1] Aminabadi, et al. "Deepspeed-inference: enabling efficient inference of transformer models at unprecedented scale.” SC, 2022. >
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Eval: Throughput Improvement

= Hybrid-Cache achieves 2.19x higher throughput over FlexGen
= 1.35x higher throughput over Act-Cache system
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- Capture
o Efficient Host-memory Offloading LLM Inference System

« Contributions
> Solve the KV cache bottleneck caused via KV-Activation Hybrid Caching.
> Propose a framework for efficient computation-communication overlap.
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