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Memory protection is necessary for heterogeneous processors
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This study constructs a unified memory protection scheme
with integrity tree optimization for heterogeneous processors
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Significant overhead caused by
the conventional 64B-granular protection with a full integrity tree
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Matching security granularity to access granularity
→ Requirement: Multi-granularity for MACs and counters
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What about multi-granular counters?
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Evaluation Environment

▪ ChampSim (CPU) + MGPUSim (GPU) + mNPUsim (NPU)

▪ Configuration: Similar to NVIDIA Orin

▪ ARM Cortex CPU + Ampere GPU + 2 x NVDLA with LPDDR4

CPU (Jetson AGX 
Orin ARM Cortex)

GPU (Jetson AGX
Orin Ampere)

NPU (NVDLA)

Compute
Engine

8-core 14 SMs
45 x 45 

Systolic Array

On-chip
Storage

Cache
(L1: 64KB, L2: 2MB)

Cache
(L1: 192 KB, L2: 4MB)

Scratchpad Memory
(2.2MB in total)

Frequency 2.2GHz 1GHz 1GHz

Memory
System

2.4GHz, 17GB/s, LPDDR4 Memory System
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▪ Workloads & Scenarios

▪ 14 workloads, 250 scenarios (all combinations)

▪ Access pattern: Fine – ff – f – c – cc – Coarse | Diverse (d)

▪ Traffic per cycles: Small (s) – Medium (m) – Large (l)

Evaluation Environment

Workloads (access pattern-traffic per cycles)

CPU bw (ff-s), gcc (ff-s), mcf (ff-m), xal (f-m), ray (ff-s)

GPU syr2k (ff-m), pr (f-m), sten (c-l), mm (cc-m), floyd (d-s),

NPU ncf (c-s), dlrm (c-s), sfrnn (c-l), alex (cc-m)
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Conclusion

▪ Unified memory protection for heterogeneous processor

▪ Multi-granular MAC & Integrity Tree

▪ Challenge: Diverse access pattern

▪ Improvement: 14% (w/o subtree opt.), 21% (w/ subtree opt.)

16/16

Our Unified Memory Protection Scheme

FastSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU
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Lazy Switching Overhead by MAC

▪ 97.2% of reqs → Hidden by lazy switching & R/O

▪ Only 2.8% of reqs makes moderate overhead (ld data chunks)

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

= HASH(             )Coarse-detection

* Scale-down

Fine-detection R/O: Load 

None-R/O: Load                 &
Compute

Overhead!!

Lazy switching considerably reduces switching overhead!!
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Lazy Switching Overhead by CTR Tree
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▪ 91.2% of reqs → Hidden by lazy switching

▪ Only 8.2% of reqs makes low overhead (read req → write req)
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Prior Domain-specific Memory Protections

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[4] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[5] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[6] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)
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▪ Prior hotness-based integrity tree optimization scheme 
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▪ Pruned unused nodes

Multi-granular MAC&Tree further improves prior solutions!!

Prior Subtree Optimization

$

$ $

$

$

$

Ours

$

Ours + Prior

$

$ $

$

$

$



Design of Multi-granular MAC&Tree

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching 2. Granularity Detection

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching 2. Granularity Detection
3. Multi-granularity 
Memory Protection

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection
3. Multi-granularity 
Memory Protection

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity 
Memory Protection

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity 
Memory Protection

Access
Tracker

Addr Access Bits

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity 
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity 
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

Granularity
Table

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity 
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

Granularity
Table

Granularity-aware Protection

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity 
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

log ALU

CTR/MAC
Addr.

Compute
Engine

Granularity
Table

Granularity-aware Protection

Backup



Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity 
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

log ALU

CTR/MAC
Addr.

Compute
Engine

Granularity
Table

Granularity-aware Protection

Data

CTR

Enc.

Enc.

Enc.

Multi-granular Mem. 
Protection Engine

Backup



Design of Multi-granular MAC&Tree

Backup



Design of Multi-granular MAC&Tree

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Granularity Detection

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Multi-granularity based Memory Protection

Granularity Detection

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Granul.
Table

Multi-granularity based Memory Protection

Granularity Detection

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Granul.
Table

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Address

Granul.
Table

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Access
Tracker

Address

Granul.
Table

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Access
Tracker

Address

Granul.
Table

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Access
Tracker

Address

Granul.
Table

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Access
Tracker

Address

Granul.
Table

Update

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Access
Tracker

log ALU
CTR/MAC
Address
Compute

Address

Granul.
Table

Granul.

Update

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Access
Tracker

CTR/MAC
Storage

log ALU
CTR/MAC
Address
Compute

Address

Granul.
Table

Granul.

CTR/MAC
Address

Update

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup



Design of Multi-granular MAC&Tree

Access
Tracker

CTR/MAC
Storage

Memory
Protection

log ALU
CTR/MAC
Address
Compute

Address

Granul.
Table

Granul.

CTR/MAC
Address CTR/MAC

Update

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup



Recent Memory Protection Studies

Backup



Recent Memory Protection Studies

Study Target
Multi
CTR

Int. Tree
Opt.

Multi
MAC

Dynamic
Update

Target
App.

SoftVN CPU O X X X ML-specific

Common
Counters

GPU Dual X X X General

Adaptive GPU X X Dual O General

TNPU NPU O X X X ML-specific

Tunable
Tree

NPU O
Sub

Optimal
X X General

MGX NPU O X O X ML-specific

GuardNN NPU O X X X ML-specific

TensorTEE CPU+NPU O X O O ML-specific

Ours
CPU+GPU

+NPU
O Optimal O O General
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GPU X
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Sub
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Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876
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Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)
= 8 / 2 = 4

(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14

(# of Parents)
= sqrt{Arity}(Granularity)

(CTR Leaf Index) = 14

(CTR Index)
= Parent(Parent(….(Parent(CTR Leaf Index))))
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▪ Workloads & Scenarios

▪ 14 workloads, 250 scenarios (all combinations)

▪ Access pattern: Fine – ff – f – c – cc – Coarse | Diverse (d)

▪ Traffic per cycles: Small (s) – Medium (m) – Large (l)

Workload Analysis & Selected Scenarios

Workloads (access pattern-traffic per cycles)

CPU bw (ff-s), gcc (ff-s), mcf (ff-m), xal (f-m), ray (ff-s)

GPU syr2k (ff-m), pr (f-m), sten (c-l), mm (cc-m), floyd (d-s),

NPU ncf (c-s), dlrm (c-s), sfrnn (c-l), alex (cc-m)

ID (CPU, GPU, NPU1, NPU2)

ff (bw, syr2k, ncf, dlrm), (mcf, syr2k, sfrnn, dlrm), (gcc, floyd, sfrnn, ncf)

f (xal, pr, sfrnn, ncf), (xal, pr, ncf, ncf)

c (gcc, sten, alex, dlrm), (bw, sten, ncf, ncf), (mcf, sten, sfrnn, sfrnn)

cc (xal, mm, alex, dlrm), (ray, mm, alex, alex), (ray, Floyd, alex, alex)
Backup



Rowhammer Attacks

DeepHammer[3]

RamBleed[2]Bit-flip[1]

[1] Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (ISCA 2014)
[2] RAMBleed: Reading Bits in Memory Without Accessing Them (S&P 2020)
[3] DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips (USENIX Security 2020)
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More Design Descriptions in Our Paper

▪ Lazy-switching analysis

▪ Cacheline fragmentation issue

▪ CTR/MAC addressing for multi-granularity

▪ Coarse-grained memory protection engine using 

parallel counter sharing and nested MAC hasing

▪ Misprediction handler

▪ Efficient granularity representation

▪ Hardware overhead

▪ Comparison to prior subtree optimization schemes
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More Results in Our Paper

▪ The ratio of stream chunks

▪ Performance analysis of selected scenarios

▪ End-to-end performance

▪ Drawbacks of the per-device (static) granularity

▪ Performance comparison with dual-granularity

▪ Switching overhead measurement

▪ Security cache hit ratio improvement

▪ Hardware overhead
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Research Objective

Temp

▪ Challenge 1: Heterogeneous processors have diverse access pattern

▪ Challenge 2: Each prior protection only for a specific access pattern

▪ For example, GPU coarse-grained pattern, NPU software-detected pattern

→ We unified prior studies with our novel multi-granular tree

Constructs a general and efficient memory protection scheme
for heterogeneous processors

Our Unified Memory Protection Scheme

FastSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU



Multi-granular MAC and Counter 

Multi-granularity can reduce memory protection overhead
However, how maintain a counter integrity tree?

▪ Multi-granular MAC and counter

▪ Multi-granular MAC and counter fetches small # of MACs and 

counters for coarse-grained access

Conventional

Data

MAC

Counter

MACMACMACMACMACMACMACMAC

CounterCounterCounterCounterCounterCounterCounterCounter

Low Overhead

Multi-granular MAC & Counter

Data

MAC

Counter

MAC Counter
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