
Sunho Lee1, Seonjin Na2, Jeongwon Choi1

Jinwon Pyo1, Jaehyuk Huh1

KAIST1, Georgia Tech2

Unified Memory Protection

with Multi-granular MAC and Integrity Tree

for Heterogeneous Processors

Secure Heterogeneous Processor

▪ Heterogeneous processor: SoC with CPU, GPU, NPU

2/16

System-on-a-Chip (SoC) based
Heterogeneous Processor

Secure
On-chip

NPUCPU GPU

Unsecure
Off-chip

Secure Heterogeneous Processor

▪ Heterogeneous processor: SoC with CPU, GPU, NPU

▪ Data confidentiality & integrity are essential

[1] Lest We Remember: Cold-Boot Attacks on Encryption Keys (USENIX Security 2008)
[2] RAMBleed: Reading Bits in Memory Without Accessing Them (S&P 2020)
[3] Direct Memory Attack the Kernel (DEFCON 2016; PCILeech)
[4] Handbook of Applied Cryptography (Menezes, Alfred J. et. al.) 2/16

System-on-a-Chip (SoC) based
Heterogeneous Processor

Secure
On-chip

NPUCPU GPU

Unsecure
Off-chip

ML Models Personal Data

Secure Heterogeneous Processor

▪ Heterogeneous processor: SoC with CPU, GPU, NPU

▪ Data confidentiality & integrity are essential

[1] Lest We Remember: Cold-Boot Attacks on Encryption Keys (USENIX Security 2008)
[2] RAMBleed: Reading Bits in Memory Without Accessing Them (S&P 2020)
[3] Direct Memory Attack the Kernel (DEFCON 2016; PCILeech)
[4] Handbook of Applied Cryptography (Menezes, Alfred J. et. al.)

Rowhammer Attack [2]Cold Boot Attack [1]

DMA Attack [3] Replay Attack [4]

2/16

System-on-a-Chip (SoC) based
Heterogeneous Processor

Secure
On-chip

NPUCPU GPU

Unsecure
Off-chip

ML Models Personal Data

Secure Heterogeneous Processor

▪ Heterogeneous processor: SoC with CPU, GPU, NPU

▪ Data confidentiality & integrity are essential

[1] Lest We Remember: Cold-Boot Attacks on Encryption Keys (USENIX Security 2008)
[2] RAMBleed: Reading Bits in Memory Without Accessing Them (S&P 2020)
[3] Direct Memory Attack the Kernel (DEFCON 2016; PCILeech)
[4] Handbook of Applied Cryptography (Menezes, Alfred J. et. al.)

Rowhammer Attack [2]Cold Boot Attack [1]

DMA Attack [3] Replay Attack [4]

2/16

System-on-a-Chip (SoC) based
Heterogeneous Processor

Secure
On-chip

NPUCPU GPU

Unsecure
Off-chip

ML Models Personal Data

Memory protection is necessary for heterogeneous processors

Research Goal

3/16

Time

Addr

NPU: Software-aware
Coarse-grained

Time
CPU: Fine-grained

Addr

Time

Addr

GPU: Medium-grained

▪ Existing memory protections are tailored to specific,

individual access patterns

Research Goal

3/16

Time

Addr

NPU: Software-aware
Coarse-grained

Time
CPU: Fine-grained

Addr

Time

Addr

GPU: Medium-grained

▪ Existing memory protections are tailored to specific,

individual access patterns

▪ Common Counters [1] → GPU medium-grained pattern

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Research Goal

3/16

Time

Addr

NPU: Software-aware
Coarse-grained

Time
CPU: Fine-grained

Addr

Time

Addr

GPU: Medium-grained

▪ Existing memory protections are tailored to specific,

individual access patterns

▪ Common Counters [1] → GPU medium-grained pattern

▪ Studies of S/W-based counters→ NPU S/W-detected pattern

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Research Goal

3/16

Time

Addr

NPU: Software-aware
Coarse-grained

Time
CPU: Fine-grained

Addr

Time

Addr

GPU: Medium-grained

▪ Existing memory protections are tailored to specific,

individual access patterns

▪ Common Counters [1] → GPU medium-grained pattern

▪ Studies of S/W-based counters→ NPU S/W-detected pattern

▪ Heterogeneous processor → diverse access pattern

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Research Goal

3/16

Time

Addr

NPU: Software-aware
Coarse-grained

Time
CPU: Fine-grained

Addr

Time

Addr

GPU: Medium-grained

▪ Existing memory protections are tailored to specific,

individual access patterns

▪ Common Counters [1] → GPU medium-grained pattern

▪ Studies of S/W-based counters→ NPU S/W-detected pattern

▪ Heterogeneous processor → diverse access pattern

▪ A unified memory protection for all access patterns

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Research Goal

3/16

Time

Addr

NPU: Software-aware
Coarse-grained

Time
CPU: Fine-grained

Addr

Time

Addr

GPU: Medium-grained

▪ Existing memory protections are tailored to specific,

individual access patterns

▪ Common Counters [1] → GPU medium-grained pattern

▪ Studies of S/W-based counters→ NPU S/W-detected pattern

▪ Heterogeneous processor → diverse access pattern

▪ A unified memory protection for all access patterns

▪ Limitation of prior studies: Bypassing integrity tree optimization

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Research Goal

3/16

Time

Addr

NPU: Software-aware
Coarse-grained

Time
CPU: Fine-grained

Addr

Time

Addr

GPU: Medium-grained

▪ Existing memory protections are tailored to specific,

individual access patterns

▪ Common Counters [1] → GPU medium-grained pattern

▪ Studies of S/W-based counters→ NPU S/W-detected pattern

▪ Heterogeneous processor → diverse access pattern

▪ A unified memory protection for all access patterns

▪ Limitation of prior studies: Bypassing integrity tree optimization

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

This study constructs a unified memory protection scheme
with integrity tree optimization for heterogeneous processors

Counter-mode Memory Protection

4/16

Counter-mode Memory Protection

4/16

CounterCiphertext MAC

Counter-mode Memory Protection

4/16

CounterCiphertext

Encryption

MAC

of write-back

Counter-mode Memory Protection

4/16

CounterCiphertext

Encryption
Integrity

Protection

MAC

Hash (Ciphertext)

Counter-mode Memory Protection

4/16

CounterCiphertext

Encryption
Integrity

Protection

Counter
Tree

MAC

Counter-mode Memory Protection

4/16

CounterCiphertext

Encryption
Integrity

Protection

Counter
Tree

Replay-attack Protection

MAC

Counter-mode Memory Protection

4/16

CounterCiphertext

Encryption
Integrity

Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

MAC

Counter-mode Memory Protection

4/16

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

MAC

▪ Critical factors of memory protection

▪ Amount of counters and MACs: Granularity

Counter-mode Memory Protection

4/16

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

▪ Critical factors of memory protection

▪ Amount of counters and MACs: Granularity

▪ Overhead of recursive validation: Height of integrity tree

Counter-mode Memory Protection

4/16

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

▪ Critical factors of memory protection

▪ Amount of counters and MACs: Granularity

▪ Overhead of recursive validation: Height of integrity tree

▪ 34% delay with 29% data traffic increment

0.8
0.9

1
1.1
1.2
1.3
1.4

Unsecure Conventional

fine-granularity

w/ full tree

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Performance of
Heterogeneous Processor

Counter-mode Memory Protection

4/16

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

▪ Critical factors of memory protection

▪ Amount of counters and MACs: Granularity

▪ Overhead of recursive validation: Height of integrity tree

▪ 34% delay with 29% data traffic increment

0.8
0.9

1
1.1
1.2
1.3
1.4

Unsecure Conventional

fine-granularity

w/ full tree

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Performance of
Heterogeneous Processor

Significant overhead caused by
the conventional 64B-granular protection with a full integrity tree

Diverse Access Granularity

5/16

Diverse Access Granularity

0%

20%

40%

60%

80%

100%

64B 512B 4KB 32KB

CPU GPU NPU

▪ Major access chunks (consecutive access blocks)

▪ Fine-grained (64B): CPU

5/16

Diverse Access Granularity

0%

20%

40%

60%

80%

100%

64B 512B 4KB 32KB

CPU GPU NPU

▪ Major access chunks (consecutive access blocks)

▪ Fine-grained (64B): CPU

▪ Medium-grained (512B, 4KB): GPU

5/16

Diverse Access Granularity

0%

20%

40%

60%

80%

100%

64B 512B 4KB 32KB

CPU GPU NPU

▪ Major access chunks (consecutive access blocks)

▪ Fine-grained (64B): CPU

▪ Medium-grained (512B, 4KB): GPU

▪ Coarse-grained (32KB): NPU

5/16

Diverse Access Granularity

0%

20%

40%

60%

80%

100%

64B 512B 4KB 32KB

CPU GPU NPU

▪ Major access chunks (consecutive access blocks)

▪ Fine-grained (64B): CPU

▪ Medium-grained (512B, 4KB): GPU

▪ Coarse-grained (32KB): NPU

5/16

Matching security granularity to access granularity

Diverse Access Granularity

0%

20%

40%

60%

80%

100%

64B 512B 4KB 32KB

CPU GPU NPU

▪ Major access chunks (consecutive access blocks)

▪ Fine-grained (64B): CPU

▪ Medium-grained (512B, 4KB): GPU

▪ Coarse-grained (32KB): NPU

5/16

Matching security granularity to access granularity
→ Requirement: Multi-granularity for MACs and counters

Multi-granular MAC

6/16

Conventional
Fine-granular

MAC
Data

MAC

CoarseFine

High
Overhead

Multi-granular MAC

6/16

Conventional
Fine-granular

MAC
Data

MAC

MACMACMACMACMACMACMACMAC

CoarseFine

High
Overhead

Multi-granular MAC

6/16

Conventional
Fine-granular

MAC
Data

MAC

Dual-granular
MAC [1]

Data

MAC

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

MACMACMACMACMACMACMACMAC

CoarseFine

High
Overhead

Multi-granular MAC

6/16

Conventional
Fine-granular

MAC
Data

MAC

Dual-granular
MAC [1]

Data

MAC

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

Medium
Overhead

MACMACMACMACMACMACMACMAC

MACMACMACMAC

CoarseFine

High
Overhead

Multi-granular MAC

6/16

▪ Multi-granular MAC

Conventional
Fine-granular

MAC
Data

MAC

Data

MACMulti-granular
MAC

Dual-granular
MAC [1]

Data

MAC

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

Medium
Overhead

MACMACMACMACMACMACMACMAC

MACMACMACMAC

CoarseFine

High
Overhead

Multi-granular MAC

6/16

▪ Multi-granular MAC

▪ Multi-granular MAC fetches fewer MACs

Conventional
Fine-granular

MAC
Data

MAC

Low
Overhead

MAC

Data

MACMulti-granular
MAC

Dual-granular
MAC [1]

Data

MAC

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

Medium
Overhead

MACMACMACMACMACMACMACMAC

MACMACMACMAC

CoarseFine

High
Overhead

Multi-granular MAC

6/16

▪ Multi-granular MAC

▪ Multi-granular MAC fetches fewer MACs

Conventional
Fine-granular

MAC
Data

MAC

Low
Overhead

MAC

Data

MACMulti-granular
MAC

Dual-granular
MAC [1]

Data

MAC

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

Medium
Overhead

MACMACMACMACMACMACMACMAC

MACMACMACMAC

CoarseFine

Multi-granular MAC → Only managing the security granularity

High
Overhead

Multi-granular MAC

6/16

▪ Multi-granular MAC

▪ Multi-granular MAC fetches fewer MACs

Conventional
Fine-granular

MAC
Data

MAC

Low
Overhead

MAC

Data

MACMulti-granular
MAC

Dual-granular
MAC [1]

Data

MAC

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

Medium
Overhead

MACMACMACMACMACMACMACMAC

MACMACMACMAC

CoarseFine

Multi-granular MAC → Only managing the security granularity

What about multi-granular counters?

Prior Multi-granular Counter

7/16

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Common Counters [1]

Data

Counter

CoarseFine

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Common Counters [1]

Data

Counter

Limited Storage
for Coarse Counters

Kernel-level update

CoarseFine

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Conventional Tree

Miss

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Common Counters [1]

Data

Counter

Limited Storage
for Coarse Counters

Kernel-level update

CoarseFine

GPU-specific

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Conventional Tree

Miss

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Common Counters [1]

Data

Counter

Limited Storage
for Coarse Counters

Kernel-level update

CoarseFine

GPU-specific

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Conventional Tree

Miss

S/W-managed Studies [2-5]

Data

Counter

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

Common Counters [1]

Data

Counter

Limited Storage
for Coarse Counters

Kernel-level update

CoarseFine

GPU-specific

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Conventional Tree

Miss

S/W-managed Studies [2-5]

Data

Counter

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

Common Counters [1]

Data

Counter

Limited Storage
for Coarse Counters

S/W-managed
Storage

for Coarse Counters

Kernel-level update

CoarseFine

GPU-specific

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Conventional Tree

Miss

S/W-managed Studies [2-5]

Data

Counter

Tree-less

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

Common Counters [1]

Data

Counter

Limited Storage
for Coarse Counters

S/W-managed
Storage

for Coarse Counters

Kernel-level update

CoarseFine

GPU-specific

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Conventional Tree

Miss

S/W-managed Studies [2-5]

Data

Counter

Tree-less

ML-specific

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

Common Counters [1]

Data

Counter

Limited Storage
for Coarse Counters

S/W-managed
Storage

for Coarse Counters

Kernel-level update

CoarseFine

GPU-specific

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Conventional Tree

Miss

S/W-managed Studies [2-5]

Data

Counter

Tree-less

ML-specific

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

Non-Tree Optimization
Common Counters [1]

Data

Counter

Limited Storage
for Coarse Counters

S/W-managed
Storage

for Coarse Counters

Kernel-level update

CoarseFine

GPU-specific

Prior Multi-granular Counter

7/16

▪ Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Conventional Tree

Miss

S/W-managed Studies [2-5]

Data

Counter

Tree-less

ML-specific

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

Non-Tree Optimization
Common Counters [1]

Data

Counter

Limited Storage
for Coarse Counters

S/W-managed
Storage

for Coarse Counters

Kernel-level update

CoarseFine

Multi-granular counter integrity tree is necessary

Multi-granular Counter Integrity Tree

8/16

Conventional
Fine-granular

Tree

Data

Counter
Tree

CoarseFine

Multi-granular Counter Integrity Tree

8/16

Conventional
Fine-granular

Tree

Data

Counter
Tree

CounterCounterCounterCounterCounterCounterCounterCounter

CounterCounterCounterCounter
CounterCounter Counter

RootLeaf

Counter

High Overhead

CoarseFine

Multi-granular Counter Integrity Tree

8/16

Conventional
Fine-granular

Tree

Data

Counter
Tree

CounterCounterCounterCounterCounterCounterCounterCounter

CounterCounterCounterCounter
CounterCounter Counter

RootLeaf

Counter

Long High Overhead

CoarseFine

Multi-granular Counter Integrity Tree

8/16

▪ Multi-granular tree

Multi-granular
Tree

Data

Counter
Tree

Conventional
Fine-granular

Tree

Data

Counter
Tree

CounterCounterCounterCounterCounterCounterCounterCounter

CounterCounterCounterCounter
CounterCounter Counter

RootLeaf

Counter

Long High Overhead

CoarseFine

Multi-granular Counter Integrity Tree

8/16

▪ Multi-granular tree

▪ Counters w/ varying granularities are mapped to different levels

Multi-granular
Tree

Data

Counter
Tree

Conventional
Fine-granular

Tree

Data

Counter
Tree

CounterCounterCounterCounterCounterCounterCounterCounter

CounterCounterCounterCounter
CounterCounter Counter

RootLeaf

Counter

Long High Overhead

CoarseFine

Low Overhead

Multi-granular Counter Integrity Tree

8/16

▪ Multi-granular tree

▪ Counters w/ varying granularities are mapped to different levels

▪ Fetches fewer counters

Multi-granular
Tree

Data

Counter
Tree

Conventional
Fine-granular

Tree

Data

Counter
Tree

Counter Counter

RootLeaf

CounterCounterCounterCounterCounterCounterCounterCounter

CounterCounterCounterCounter
CounterCounter Counter

RootLeaf

Counter

Long High Overhead

CoarseFine

Short
Low Overhead

Multi-granular Counter Integrity Tree

8/16

▪ Multi-granular tree

▪ Counters w/ varying granularities are mapped to different levels

▪ Fetches fewer counters

▪ Shortens recursive validation path

Multi-granular
Tree

Data

Counter
Tree

Conventional
Fine-granular

Tree

Data

Counter
Tree

Counter Counter

RootLeaf

CounterCounterCounterCounterCounterCounterCounterCounter

CounterCounterCounterCounter
CounterCounter Counter

RootLeaf

Counter

Long High Overhead

CoarseFine

Multi-granular MAC&Tree

▪ Multi-granular MAC&Tree

9/16

Multi-granular MAC&Tree

▪ Multi-granular MAC&Tree

▪ Dynamically supports multi-granular MACs and a counter tree

9/16

Multi-granular MAC&Tree

▪ Multi-granular MAC&Tree

▪ Dynamically supports multi-granular MACs and a counter tree

Data

MAC

CTR
Tree

Conventional

9/16

CoarseFine

Multi-granular MAC&Tree

▪ Multi-granular MAC&Tree

▪ Dynamically supports multi-granular MACs and a counter tree

Data

MAC

CTR
Tree

Conventional Ours

9/16

CoarseFine

Multi-granular MAC&Tree

▪ Multi-granular MAC&Tree

▪ Dynamically supports multi-granular MACs and a counter tree

▪ Key Idea: Merging MACs/counters & pruning a counter tree

Data

MAC

CTR
Tree

Conventional Ours
Merging MACs/Counters

& Tree Pruning

9/16

CoarseFine

Multi-granular MAC&Tree

▪ Multi-granular MAC&Tree

▪ Dynamically supports multi-granular MACs and a counter tree

▪ Key Idea: Merging MACs/counters & pruning a counter tree

Data

MAC

CTR
Tree

Conventional Ours
Merging MACs/Counters

& Tree Pruning

9/16

1. How to dynamically detect granularity

CoarseFine

Multi-granular MAC&Tree

▪ Multi-granular MAC&Tree

▪ Dynamically supports multi-granular MACs and a counter tree

▪ Key Idea: Merging MACs/counters & pruning a counter tree

Data

MAC

CTR
Tree

Conventional Ours
Merging MACs/Counters

& Tree Pruning

9/16

1. How to dynamically detect granularity
2. How to switch granularity

CoarseFine

Granularity Detection (Fine → Coarse)

10/16

Coarse
grained

CoarseFine

Granularity Detection (Fine → Coarse)

10/16

▪ Access tracker

▪ Records accessed addresses

Coarse
grained

Access
Tracker

Addr Access Bits

First Cacheline
of Addr

Last Cacheline
of Addr

CoarseFine

Granularity Detection (Fine → Coarse)

10/16

▪ Access tracker

▪ Records accessed addresses

▪ Consecutive access bits are set
Coarse
grained

Access
Tracker

Addr Accessed

Coarse
Access

Addr Access Bits

First Cacheline
of Addr

Last Cacheline
of Addr

CoarseFine

Granularity Detection (Fine → Coarse)

10/16

▪ Access tracker

▪ Records accessed addresses

▪ Consecutive access bits are set

▪ Granularity detection engine

▪ Computes a new granularity

Coarse
grained

Access
Tracker

<< +

Granularity
Detection Engine

Addr Accessed

Coarse
Access

Addr Access Bits

First Cacheline
of Addr

Last Cacheline
of Addr

CoarseFine

Granularity Detection (Fine → Coarse)

10/16

▪ Access tracker

▪ Records accessed addresses

▪ Consecutive access bits are set

▪ Granularity detection engine

▪ Computes a new granularity

▪ Updates granularity table

Coarse
grained

Access
Tracker

<< +

Granularity
Detection Engine

Granularity
Table

(Addr, coarse)
Update

Addr Accessed

Coarse
Access

Addr Access Bits

First Cacheline
of Addr

Last Cacheline
of Addr

CoarseFine

Granularity Switching (Fine → Coarse)

11/16

▪ Granularity switching engine

Coarse
grained

Granularity
Table

Scale-up

CoarseFine

Granularity Switching (Fine → Coarse)

11/16

▪ Granularity switching engine

▪ Loads additional data

→ Old counters, MACs, data blocks

Coarse
grained

Granularity
Table

Scale-up

Loads Additional Data

CoarseFine

Granularity Switching (Fine → Coarse)

11/16

▪ Granularity switching engine

▪ Loads additional data

→ Old counters, MACs, data blocks

▪ Computes counters, MACs Coarse
grained

Granularity
Table

Scale-up

Loads Additional Data

Computes
a new MAC & a counter

= 1+MAX(, , ,)

= HASH(, , ,)

CoarseFine

Granularity Switching (Fine → Coarse)

11/16

▪ Granularity switching engine

▪ Loads additional data

→ Old counters, MACs, data blocks

▪ Computes counters, MACs

▪ Re-encrypts old data

Coarse
grained

Granularity
Table

Scale-up

Loads Additional Data

Computes
a new MAC & a counter

= 1+MAX(, , ,)

= HASH(, , ,)

Re-encrypts & Stores
Data

CoarseFine

Granularity Switching (Fine → Coarse)

11/16

▪ Granularity switching engine

▪ Loads additional data

→ Old counters, MACs, data blocks

▪ Computes counters, MACs

▪ Re-encrypts old data

▪ Updates & prunes integrity tree

Coarse
grained

Granularity
Table

Scale-up

Loads Additional Data

Computes
a new MAC & a counter

= 1+MAX(, , ,)

= HASH(, , ,)

Replaces
a MAC and a counter

Re-encrypts & Stores
Data

CoarseFine

Granularity Switching (Fine → Coarse)

11/16

▪ Granularity switching engine

▪ Loads additional data

→ Old counters, MACs, data blocks

▪ Computes counters, MACs

▪ Re-encrypts old data

▪ Updates & prunes integrity tree

Coarse
grained

Granularity
Table

Scale-up

Loads Additional Data

Computes
a new MAC & a counter

= 1+MAX(, , ,)

= HASH(, , ,)

Replaces
a MAC and a counter

Re-encrypts & Stores
Data

Prunes integrity
tree nodes

CoarseFine

Granularity Switching (Fine → Coarse)

11/16

▪ Granularity switching engine

▪ Loads additional data

→ Old counters, MACs, data blocks

▪ Computes counters, MACs

▪ Re-encrypts old data

▪ Updates & prunes integrity tree

Coarse
grained

Granularity
Table

Scale-up

Loads Additional Data

Computes
a new MAC & a counter

= 1+MAX(, , ,)

= HASH(, , ,)

Replaces
a MAC and a counter

Re-encrypts & Stores
Data

Prunes integrity
tree nodes

CoarseFine
Granularity switching requires significant overhead → Lazy switching

Evaluation Environment

12/16

Evaluation Environment

▪ ChampSim (CPU) + MGPUSim (GPU) + mNPUsim (NPU)

12/16

Evaluation Environment

▪ ChampSim (CPU) + MGPUSim (GPU) + mNPUsim (NPU)

▪ Configuration: Similar to NVIDIA Orin

▪ ARM Cortex CPU + Ampere GPU + 2 x NVDLA with LPDDR4

CPU (Jetson AGX
Orin ARM Cortex)

GPU (Jetson AGX
Orin Ampere)

NPU (NVDLA)

Compute
Engine

8-core 14 SMs
45 x 45

Systolic Array

On-chip
Storage

Cache
(L1: 64KB, L2: 2MB)

Cache
(L1: 192 KB, L2: 4MB)

Scratchpad Memory
(2.2MB in total)

Frequency 2.2GHz 1GHz 1GHz

Memory
System

2.4GHz, 17GB/s, LPDDR4 Memory System

12/16

▪ Workloads & Scenarios

▪ 14 workloads, 250 scenarios (all combinations)

Evaluation Environment

13/16

▪ Workloads & Scenarios

▪ 14 workloads, 250 scenarios (all combinations)

▪ Access pattern: Fine – ff – f – c – cc – Coarse | Diverse (d)

▪ Traffic per cycles: Small (s) – Medium (m) – Large (l)

Evaluation Environment

Workloads (access pattern-traffic per cycles)

CPU bw (ff-s), gcc (ff-s), mcf (ff-m), xal (f-m), ray (ff-s)

GPU syr2k (ff-m), pr (f-m), sten (c-l), mm (cc-m), floyd (d-s),

NPU ncf (c-s), dlrm (c-s), sfrnn (c-l), alex (cc-m)

13/16

Evaluation Result (Avg of Processing Units)

14/16

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization

Norm. Exec. Time Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

Evaluation Result (Avg of Processing Units)

▪ 14% improvement with 11% data reduction

14%

14/16

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization

Norm. Exec. Time Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

Evaluation Result (Avg of Processing Units)

▪ 14% improvement with 11% data reduction

▪ Combining prior subtree optimization [1-4]

▪ Performance improvement: 14% → 21%

21%

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

14/16

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization

Norm. Exec. Time Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

Evaluation Result (Avg of Processing Units)

▪ 14% improvement with 11% data reduction

▪ Combining prior subtree optimization [1-4]

▪ Performance improvement: 14% → 21%

▪ CTR-only (7%), +MAC (7%), +Prior tree optimization (7%)

7%

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

14/16

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization

Norm. Exec. Time Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

Evaluation Result (Avg of Processing Units)

▪ 14% improvement with 11% data reduction

▪ Combining prior subtree optimization [1-4]

▪ Performance improvement: 14% → 21%

▪ CTR-only (7%), +MAC (7%), +Prior tree optimization (7%)

7%

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

14/16

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization

Norm. Exec. Time Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

Evaluation Result (Avg of Processing Units)

▪ 14% improvement with 11% data reduction

▪ Combining prior subtree optimization [1-4]

▪ Performance improvement: 14% → 21%

▪ CTR-only (7%), +MAC (7%), +Prior tree optimization (7%)

7%

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

14/16

Evaluation Result (Per Processing Unit)

15/16

1

1.1

1.2

1.3

1.4

1.5

1.6

Conventional CTR-only Ours

N
o
rm

.
E
xe

c.
 T

im
e

NPU1 NPU2 GPU CPU

Evaluation Result (Per Processing Unit)

▪ Performance improvement of each processing unit

▪ CPU (24%), GPU (23%), NPU (10%)

CPU: 24%
GPU: 23%
NPUs: 10%

15/16

L
o
w

e
r

is
 b

e
tt

e
r

1

1.1

1.2

1.3

1.4

1.5

1.6

Conventional CTR-only Ours

N
o
rm

.
E
xe

c.
 T

im
e

NPU1 NPU2 GPU CPU

Evaluation Result (Per Processing Unit)

▪ Performance improvement of each processing unit

▪ CPU (24%), GPU (23%), NPU (10%)

CPU: 24%
GPU: 23%
NPUs: 10%

15/16

L
o
w

e
r

is
 b

e
tt

e
r

NPU blocks
are released

Conclusion

16/16

Conclusion

▪ Unified memory protection for heterogeneous processor

16/16

Our Unified Memory Protection Scheme

FastSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU

Conclusion

▪ Unified memory protection for heterogeneous processor

▪ Multi-granular MAC & Integrity Tree

16/16

Our Unified Memory Protection Scheme

FastSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU

Conclusion

▪ Unified memory protection for heterogeneous processor

▪ Multi-granular MAC & Integrity Tree

▪ Challenge: Diverse access pattern

16/16

Our Unified Memory Protection Scheme

FastSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU

Conclusion

▪ Unified memory protection for heterogeneous processor

▪ Multi-granular MAC & Integrity Tree

▪ Challenge: Diverse access pattern

▪ Improvement: 14% (w/o subtree opt.), 21% (w/ subtree opt.)

16/16

Our Unified Memory Protection Scheme

FastSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU

Thank you

Backup Slide

Detailed Granularity Switching

Backup

Detailed Granularity Switching

* Scale-up (Fine → Coarse)

Backup

Detailed Granularity Switching

Data

MAC

CTR
Tree

Coarse-grained

1) Detect scale-up

* Scale-up (Fine → Coarse)

Backup

Detailed Granularity Switching

Data

MAC

CTR
Tree

Coarse-grained

= HASH()

= 1+MAX()

1) Detect scale-up 2) Compute new MAC/CTR

* Scale-up (Fine → Coarse)

Backup

Detailed Granularity Switching

Data

MAC

CTR
Tree

Coarse-grained

= HASH()

= 1+MAX()

1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR

* Scale-up (Fine → Coarse)

Backup

Detailed Granularity Switching

Data

MAC

CTR
Tree

Coarse-grained

= HASH()

= 1+MAX()

1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-up (Fine → Coarse)

Backup

Detailed Granularity Switching

Data

MAC

CTR
Tree

Coarse-grained

= HASH()

= 1+MAX()

1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-up (Fine → Coarse)

* Scale-down (Coarse → Fine)

Backup

Detailed Granularity Switching

Data

MAC

CTR
Tree

Coarse-grained

= HASH()

= 1+MAX()

1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-up (Fine → Coarse)

1) Detect scale-down

Data

MAC

CTR
Tree

Fine-grained

* Scale-down (Coarse → Fine)

Backup

Detailed Granularity Switching

Data

MAC

CTR
Tree

Coarse-grained

= HASH()

= 1+MAX()

1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-up (Fine → Coarse)

1) Detect scale-down 2) Compute new MAC/CTR

Data

MAC

CTR
Tree

Fine-grained

* Scale-down (Coarse → Fine)

=

Hash

Backup

Detailed Granularity Switching

Data

MAC

CTR
Tree

Coarse-grained

= HASH()

= 1+MAX()

1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-up (Fine → Coarse)

1) Detect scale-down 2) Compute new MAC/CTR

Data

MAC

CTR
Tree

Fine-grained 3) Replace MAC/CTR and
restore CTR tree

* Scale-down (Coarse → Fine)

=

Hash

Backup

Detailed Granularity Switching

Data

MAC

CTR
Tree

Coarse-grained

= HASH()

= 1+MAX()

1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-up (Fine → Coarse)

1) Detect scale-down 2) Compute new MAC/CTR

Data

MAC

CTR
Tree

Fine-grained 3) Replace MAC/CTR and
restore CTR tree

* Scale-down (Coarse → Fine)

=

Hash

Granularity switching requires significant overhead! → Lazy switching

Backup

Lazy Switching Overhead by MAC

Backup

Lazy Switching Overhead by MAC

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)

Backup

Lazy Switching Overhead by MAC

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

Backup

Lazy Switching Overhead by MAC

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

Coarse-detection

Backup

Lazy Switching Overhead by MAC

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

= HASH()Coarse-detection

Backup

Lazy Switching Overhead by MAC

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

= HASH()Coarse-detection

* Scale-down

Backup

Lazy Switching Overhead by MAC

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

= HASH()Coarse-detection

* Scale-down

Fine-detection

Backup

Lazy Switching Overhead by MAC

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

= HASH()Coarse-detection

* Scale-down

Fine-detection R/O: Load

None-R/O: Load &
Compute

Backup

Lazy Switching Overhead by MAC

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

= HASH()Coarse-detection

* Scale-down

Fine-detection R/O: Load

None-R/O: Load &
Compute

Overhead!!

Backup

Lazy Switching Overhead by MAC

▪ 97.2% of reqs → Hidden by lazy switching & R/O

▪ Only 2.8% of reqs makes moderate overhead (ld data chunks)

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

= HASH()Coarse-detection

* Scale-down

Fine-detection R/O: Load

None-R/O: Load &
Compute

Overhead!!

Backup

Lazy Switching Overhead by MAC

▪ 97.2% of reqs → Hidden by lazy switching & R/O

▪ Only 2.8% of reqs makes moderate overhead (ld data chunks)

𝐶𝑜𝑎𝑟𝑠𝑒 𝑀𝐴𝐶 = 𝐻𝐴𝑆𝐻 (𝐹𝑖𝑛𝑒 𝑀𝐴𝐶𝑠)
* Scale-up

= HASH()Coarse-detection

* Scale-down

Fine-detection R/O: Load

None-R/O: Load &
Compute

Overhead!!

Lazy switching considerably reduces switching overhead!!

Backup

Lazy Switching Overhead by CTR Tree

Backup

Lazy Switching Overhead by CTR Tree

Granul.
detection

Backup

Lazy Switching Overhead by CTR Tree

Granul.
detection

Store
next granul.

Backup

Lazy Switching Overhead by CTR Tree

Granul.
detection

Store
next granul.

Granul. switch
after next access

Backup

Lazy Switching Overhead by CTR Tree

$

$

$

$

Read Write Scale
Down

Scale
UpCached$

Granul.
detection

Store
next granul.

Granul. switch
after next access

Backup

Lazy Switching Overhead by CTR Tree

* Scale-up with WAR/WAW

$

Write

$

Scale
Up

$

$

$

$

Read Write Scale
Down

Scale
UpCached$

Granul.
detection

Store
next granul.

Granul. switch
after next access

Backup

Lazy Switching Overhead by CTR Tree

* Scale-up with WAR/WAW

$

Write

$

Scale
Up

* Scale-up with RAW

$

Write

$

Scale
Up

Metadata
Cache

$

$

$

$

Read Write Scale
Down

Scale
UpCached$

Granul.
detection

Store
next granul.

Granul. switch
after next access

Backup

Lazy Switching Overhead by CTR Tree

* Scale-up with WAR/WAW

$

Write

$

Scale
Up

* Scale-up with RAW

$

Write

$

Scale
Up

Metadata
Cache

* Scale-up with RAR

$

Read

$

Scale
Up

$

$

$

$

Read Write Scale
Down

Scale
UpCached$

Granul.
detection

Store
next granul.

Granul. switch
after next access

Backup

Lazy Switching Overhead by CTR Tree

* Scale-up with WAR/WAW

$

Write

$

Scale
Up

* Scale-up with RAW

$

Write

$

Scale
Up

Metadata
Cache

Overhead!!

* Scale-up with RAR

$

Read

$

Scale
Up

$

$

$

$

Read Write Scale
Down

Scale
UpCached$

Granul.
detection

Store
next granul.

Granul. switch
after next access

Backup

Lazy Switching Overhead by CTR Tree

* Scale-up with WAR/WAW

$

Write

$

Scale
Up

* Scale-up with RAW

$

Write

$

Scale
Up

Metadata
Cache

Overhead!!

* Scale-up with RAR

$

Read

$

Scale
Up

* Scale-down

$

Read

$

Scale
Down

$

Write

$

$

$

$

Read Write Scale
Down

Scale
UpCached$

Granul.
detection

Store
next granul.

Granul. switch
after next access

Backup

Lazy Switching Overhead by CTR Tree

* Scale-up with WAR/WAW

$

Write

$

Scale
Up

* Scale-up with RAW

$

Write

$

Scale
Up

Metadata
Cache

Overhead!!

* Scale-up with RAR

$

Read

$

Scale
Up

* Scale-down

$

Read

$

Scale
Down

$

Write

$

$

$

$

Read Write Scale
Down

Scale
UpCached$

Granul.
detection

Store
next granul.

Granul. switch
after next access

▪ 91.2% of reqs → Hidden by lazy switching

▪ Only 8.2% of reqs makes low overhead (read req → write req)

Backup

Pros of Matching Granularity

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Data

MAC

CTR
Tree

Fine Granularity

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Coarse Reqs

Data

MAC

CTR
Tree

Coarse Req Coarse Req

Fine Granularity

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Coarse Reqs

Data

MAC

CTR
Tree

Coarse Req Coarse Req

X 4 X 4 X 9

Fine Granularity

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Coarse Reqs

Data

MAC

CTR
Tree

Coarse Req Coarse Req

X 4 X 4 X 9

Fine Granularity

X 4 X 1 X 3

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Coarse Reqs Good

Data

MAC

CTR
Tree

Coarse Req Coarse Req

X 4 X 4 X 9

Fine Granularity

X 4 X 1 X 3

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Coarse Reqs

Fine Reqs

Good

Data

MAC

CTR
Tree

Coarse Req Fine Req Coarse Req Fine Req

X 4 X 4 X 9

Fine Granularity

X 4 X 1 X 3

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Coarse Reqs

Fine Reqs

Good

Data

MAC

CTR
Tree

Coarse Req Fine Req Coarse Req Fine Req

X 4 X 4 X 9

Fine Granularity

X 4 X 1 X 3

X 1 X 1 X 5

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Coarse Reqs

Fine Reqs

Good

Data

MAC

CTR
Tree

Coarse Req Fine Req Coarse Req Fine Req

X 4 X 4 X 9

Fine Granularity

X 4 X 1 X 3

X 1 X 1 X 5 X 4 X 1 X 3

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Coarse Reqs

Fine Reqs Good

Good

Data

MAC

CTR
Tree

Coarse Req Fine Req Coarse Req Fine Req

X 4 X 4 X 9

Fine Granularity

X 4 X 1 X 3

X 1 X 1 X 5 X 4 X 1 X 3

Backup

Pros of Matching Granularity

▪ Proper granularity → Reduce security metadata

▪ Wrong granularity → Data load penalty

Coarse Granularity

Coarse Reqs

Fine Reqs

Granularity-managed MAC&tree makes efficient memory protection

Good

Good

Data

MAC

CTR
Tree

Coarse Req Fine Req Coarse Req Fine Req

X 4 X 4 X 9

Fine Granularity

X 4 X 1 X 3

X 1 X 1 X 5 X 4 X 1 X 3

Backup

Prior Domain-specific Memory Protections

▪ No prior study using integrity tree pruning or

multi-granular MAC&counter

Backup

Prior Domain-specific Memory Protections

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

▪ No prior study using integrity tree pruning or

multi-granular MAC&counter

1. Dual-granular & GPU-optimized Counter [1]

Dual CTRs, limited CTRs,
CTR-only, device-specificCounter

Tree

Limited set of
Coarse Counters

Counter
Requests

Miss

Backup

Prior Domain-specific Memory Protections

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

▪ No prior study using integrity tree pruning or

multi-granular MAC&counter

1. Dual-granular & GPU-optimized Counter [1]

Dual CTRs, limited CTRs,
CTR-only, device-specificCounter

Tree

Limited set of
Coarse Counters

Counter
Requests

Miss

OR

Coarse MAC

Fine MAC

Dual MACs, MAC-only

2. Dual-granular MAC [2]

MAC
Requests

Backup

Prior Domain-specific Memory Protections

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[4] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[5] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[6] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

▪ No prior study using integrity tree pruning or

multi-granular MAC&counter

1. Dual-granular & GPU-optimized Counter [1]

Dual CTRs, limited CTRs,
CTR-only, device-specificCounter

Tree

Limited set of
Coarse Counters

Counter
Requests

Miss

OR

Coarse MAC

Fine MAC

Dual MACs, MAC-only

2. Dual-granular MAC [2]

MAC
Requests

Domain-specific

3. S/W Counter [3-6]

Counter
Requests

Tree-less
Counters

Backup

Prior Domain-specific Memory Protections

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[4] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[5] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[6] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

▪ No prior study using integrity tree pruning or

multi-granular MAC&counter

1. Dual-granular & GPU-optimized Counter [1]

Dual CTRs, limited CTRs,
CTR-only, device-specificCounter

Tree

Limited set of
Coarse Counters

Counter
Requests

Miss

OR

Coarse MAC

Fine MAC

Dual MACs, MAC-only

2. Dual-granular MAC [2]

MAC
Requests

Domain-specific

3. S/W Counter [3-6]

Counter
Requests

Tree-less
Counters

Domain-specific

4. S/W MAC [4]

MAC
Requests

Multi
MAC

Backup

Detailed of Counter-mode Protection

Backup

Detailed of Counter-mode Protection

Ciphertext

Secure
On-chip

Unsecure
Off-chip

Backup

▪ CTR-mode encryption: confidentiality

Detailed of Counter-mode Protection

Ciphertext

Secure
On-chip

Unsecure
Off-chip

Backup

▪ CTR-mode encryption: confidentiality

Detailed of Counter-mode Protection

Ciphertext CTR

Secure
On-chip

Unsecure
Off-chip

CTR-mode Encryption

of write-back
Backup

▪ CTR-mode encryption: confidentiality

Detailed of Counter-mode Protection

Ciphertext CTR

Encryption
Engine

Data Addr

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

Backup

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

Detailed of Counter-mode Protection

Ciphertext CTR

Encryption
Engine

Data Addr

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

Backup

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

Detailed of Counter-mode Protection

MAC Ciphertext CTR

Encryption
Engine

Data Addr

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Hash (Ciphertext)
Backup

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

Detailed of Counter-mode Protection

MAC Ciphertext CTR

MAC
Authenticator

Encryption
Engine

Data Addr

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Backup

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

Detailed of Counter-mode Protection

MAC Ciphertext CTR

MAC
Authenticator

Encryption
Engine

Data Addr

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

ABORT

Modified

Backup

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

▪ Freshness validation: replay-attack

Detailed of Counter-mode Protection

MAC Ciphertext CTR

MAC
Authenticator

Encryption
Engine

Data Addr

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

ABORT

Modified

Backup

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

▪ Freshness validation: replay-attack

Detailed of Counter-mode Protection

MAC Ciphertext CTR

MAC
Authenticator

Encryption
Engine

Data Addr

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Freshness Validation

ABORT

Modified

CTR
Tree

Recursive
Validation

Backup

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

▪ Freshness validation: replay-attack

Detailed of Counter-mode Protection

MAC Ciphertext CTR … CTR Hash CTR … CTR Hash

CTR … CTR Hash

MAC
Authenticator

Encryption
Engine

CTR … CTR Hash

Freshness
Validation Engine

Data Addr

Root Node

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Freshness Validation

ABORT

Modified

Backup

ABORT
Modified

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

▪ Freshness validation: replay-attack

Detailed of Counter-mode Protection

MAC Ciphertext CTR … CTR Hash CTR … CTR Hash

CTR … CTR Hash

MAC
Authenticator

Encryption
Engine

CTR … CTR Hash

Freshness
Validation Engine

Data Addr

Root Node

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Freshness Validation

ABORT

Modified

Backup

ABORT
Modified

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

▪ Freshness validation: replay-attack

Detailed of Counter-mode Protection

MAC Ciphertext CTR … CTR Hash CTR … CTR Hash

CTR … CTR Hash

MAC
Authenticator

Encryption
Engine

CTR … CTR Hash

Freshness
Validation Engine

Data Addr

Root Node

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Freshness Validation

ABORT

Modified

MACCTR

Ciphertext

Backup

ABORT
Modified

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

▪ Freshness validation: replay-attack

Detailed of Counter-mode Protection

MAC Ciphertext CTR … CTR Hash CTR … CTR Hash

CTR … CTR Hash

MAC
Authenticator

Encryption
Engine

CTR … CTR Hash

Freshness
Validation Engine

Data Addr

Root Node

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Freshness Validation

ABORT

Modified

MACCTR

CTR
Tree

Ciphertext

Backup

ABORT
Modified

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

▪ Freshness validation: replay-attack

Detailed of Counter-mode Protection

MAC Ciphertext CTR … CTR Hash CTR … CTR Hash

CTR … CTR Hash

MAC
Authenticator

Encryption
Engine

CTR … CTR Hash

Freshness
Validation Engine

Data Addr

Root Node

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Freshness Validation

ABORT

Modified

MACCTR

CTR
Tree

Ciphertext

Critical factors for perf. & traffic.

1. Amount of loaded CTRs/MACs

Backup

ABORT
Modified

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

▪ Freshness validation: replay-attack

Detailed of Counter-mode Protection

MAC Ciphertext CTR … CTR Hash CTR … CTR Hash

CTR … CTR Hash

MAC
Authenticator

Encryption
Engine

CTR … CTR Hash

Freshness
Validation Engine

Data Addr

Root Node

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Freshness Validation

ABORT

Modified

MACCTR

CTR
Tree

Ciphertext

Critical factors for perf. & traffic.

1. Amount of loaded CTRs/MACs
2. Height of a counter tree

Backup

ABORT
Modified

▪ CTR-mode encryption: confidentiality

▪ MAC authentication: value-integrity

▪ Freshness validation: replay-attack

Detailed of Counter-mode Protection

MAC Ciphertext CTR … CTR Hash CTR … CTR Hash

CTR … CTR Hash

MAC
Authenticator

Encryption
Engine

CTR … CTR Hash

Freshness
Validation Engine

Data Addr

Root Node

Secure
On-chip

Unsecure
Off-chip

Plaintext

CTR-mode Encryption

MAC Authentication

Freshness Validation

ABORT

Modified

MACCTR

CTR
Tree

Ciphertext

Critical factors for perf. & traffic.

1. Amount of loaded CTRs/MACs
2. Height of a counter tree

→ Security granularity

Granularity

Backup

Combined with Prior CTR Tree Optimization

Backup

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Combined with Prior CTR Tree Optimization

Backup

▪ Prior hotness-based integrity tree optimization scheme

(Subtree optimization)[1-4]

Prior Subtree Optimization

$

$ $

$

$

$

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Combined with Prior CTR Tree Optimization

Backup

▪ Prior hotness-based integrity tree optimization scheme

(Subtree optimization)[1-4]

▪ Caching highly used roots of subtrees

Prior Subtree Optimization

$

$ $

$

$

$

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Combined with Prior CTR Tree Optimization

Backup

▪ Prior hotness-based integrity tree optimization scheme

(Subtree optimization)[1-4]

▪ Caching highly used roots of subtrees

▪ Pruned unused nodes

Prior Subtree Optimization

$

$ $

$

$

$

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Combined with Prior CTR Tree Optimization

Backup

▪ Prior hotness-based integrity tree optimization scheme

(Subtree optimization)[1-4]

▪ Caching highly used roots of subtrees

▪ Pruned unused nodes

Prior Subtree Optimization

$

$ $

$

$

$

Ours

$

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Combined with Prior CTR Tree Optimization

Backup

▪ Prior hotness-based integrity tree optimization scheme

(Subtree optimization)[1-4]

▪ Caching highly used roots of subtrees

▪ Pruned unused nodes

Prior Subtree Optimization

$

$ $

$

$

$

Ours

$

Ours + Prior

$

$ $

$

$

$

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)
[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)
[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Combined with Prior CTR Tree Optimization

Backup

▪ Prior hotness-based integrity tree optimization scheme

(Subtree optimization)[1-4]

▪ Caching highly used roots of subtrees

▪ Pruned unused nodes

Multi-granular MAC&Tree further improves prior solutions!!

Prior Subtree Optimization

$

$ $

$

$

$

Ours

$

Ours + Prior

$

$ $

$

$

$

Design of Multi-granular MAC&Tree

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching 2. Granularity Detection

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching 2. Granularity Detection
3. Multi-granularity
Memory Protection

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection
3. Multi-granularity
Memory Protection

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity
Memory Protection

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity
Memory Protection

Access
Tracker

Addr Access Bits

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

Granularity
Table

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

Granularity
Table

Granularity-aware Protection

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

log ALU

CTR/MAC
Addr.

Compute
Engine

Granularity
Table

Granularity-aware Protection

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching

Data
MAC

CTR
Tree

Coarse-grained

Data
MAC

CTR
Tree

MAC/CTR Merging
& CTR Tree Pruning

2. Granularity Detection

Dynamic Access Tracking

3. Multi-granularity
Memory Protection

Access
Tracker

Addr Access Bits

<< +
Granul.

Detection
Engine

log ALU

CTR/MAC
Addr.

Compute
Engine

Granularity
Table

Granularity-aware Protection

Data

CTR

Enc.

Enc.

Enc.

Multi-granular Mem.
Protection Engine

Backup

Design of Multi-granular MAC&Tree

Backup

Design of Multi-granular MAC&Tree

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Granularity Detection

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Multi-granularity based Memory Protection

Granularity Detection

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Granul.
Table

Multi-granularity based Memory Protection

Granularity Detection

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Granul.
Table

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Address

Granul.
Table

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Access
Tracker

Address

Granul.
Table

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Access
Tracker

Address

Granul.
Table

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Access
Tracker

Address

Granul.
Table

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Access
Tracker

Address

Granul.
Table

Update

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Access
Tracker

log ALU
CTR/MAC
Address
Compute

Address

Granul.
Table

Granul.

Update

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Access
Tracker

CTR/MAC
Storage

log ALU
CTR/MAC
Address
Compute

Address

Granul.
Table

Granul.

CTR/MAC
Address

Update

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup

Design of Multi-granular MAC&Tree

Access
Tracker

CTR/MAC
Storage

Memory
Protection

log ALU
CTR/MAC
Address
Compute

Address

Granul.
Table

Granul.

CTR/MAC
Address CTR/MAC

Update

<< +
Granul.

Detection

Evicted
Entries

Addr Access Bits

Addr Granul.

Multi-granularity based Memory Protection

Granularity Detection

Granul.
Switching

Granul.

Additional
Data

Granularity
Switching

Backup

Recent Memory Protection Studies

Backup

Recent Memory Protection Studies

Study Target
Multi
CTR

Int. Tree
Opt.

Multi
MAC

Dynamic
Update

Target
App.

SoftVN CPU O X X X ML-specific

Common
Counters

GPU Dual X X X General

Adaptive GPU X X Dual O General

TNPU NPU O X X X ML-specific

Tunable
Tree

NPU O
Sub

Optimal
X X General

MGX NPU O X O X ML-specific

GuardNN NPU O X X X ML-specific

TensorTEE CPU+NPU O X O O ML-specific

Ours
CPU+GPU

+NPU
O Optimal O O General

Backup

Prior Integrity Tree Optimization

Backup

Prior Integrity Tree Optimization

Study Target
Multi

CTR

Int. Tree

Opt.

Multi

MAC

Dynamic

Update

Target

App.

Bonsai Merkle

Forests
CPU X

Sub

Optimal
X X General

PENGLAI GPU X
Sub

Optimal
X X General

Migratable

Merkle Tree
GPU X

Sub

Optimal
X X General

Data Enclave NPU X
Sub

Optimal
X X General

Ours
CPU+GPU

+NPU
O Optimal O O General

Backup

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Backup

▪ Coarse-MAC & counter encryption, integrity validation

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Backup

▪ Coarse-MAC & counter encryption, integrity validation

▪ 𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) = MAX(𝐶𝑇𝑅𝑓𝑖𝑛𝑒 1, 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 2, ⋯ , 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 𝑘)

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Backup

▪ Coarse-MAC & counter encryption, integrity validation

▪ 𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) = MAX(𝐶𝑇𝑅𝑓𝑖𝑛𝑒 1, 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 2, ⋯ , 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 𝑘)

▪ 𝑀𝐴𝐶𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) =

HASH(⋯HASH(HASH(𝑀𝐴𝐶𝑓𝑖𝑛𝑒 1),𝑀𝐴𝐶𝑓𝑖𝑛𝑒 2), ⋯ ,𝑀𝐴𝐶𝑓𝑖𝑛𝑒 𝑘)

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Backup

▪ Coarse-MAC & counter encryption, integrity validation

▪ 𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) = MAX(𝐶𝑇𝑅𝑓𝑖𝑛𝑒 1, 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 2, ⋯ , 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 𝑘)

▪ 𝑀𝐴𝐶𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) =

HASH(⋯HASH(HASH(𝑀𝐴𝐶𝑓𝑖𝑛𝑒 1),𝑀𝐴𝐶𝑓𝑖𝑛𝑒 2), ⋯ ,𝑀𝐴𝐶𝑓𝑖𝑛𝑒 𝑘)

512B

𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 8)

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Backup

▪ Coarse-MAC & counter encryption, integrity validation

▪ 𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) = MAX(𝐶𝑇𝑅𝑓𝑖𝑛𝑒 1, 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 2, ⋯ , 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 𝑘)

▪ 𝑀𝐴𝐶𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) =

HASH(⋯HASH(HASH(𝑀𝐴𝐶𝑓𝑖𝑛𝑒 1),𝑀𝐴𝐶𝑓𝑖𝑛𝑒 2), ⋯ ,𝑀𝐴𝐶𝑓𝑖𝑛𝑒 𝑘)

512B

𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 8)

Block
Cipher

Block
Cipher

Block
Cipher

Addr8

Addr7

Addr1

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Backup

▪ Coarse-MAC & counter encryption, integrity validation

▪ 𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) = MAX(𝐶𝑇𝑅𝑓𝑖𝑛𝑒 1, 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 2, ⋯ , 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 𝑘)

▪ 𝑀𝐴𝐶𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) =

HASH(⋯HASH(HASH(𝑀𝐴𝐶𝑓𝑖𝑛𝑒 1),𝑀𝐴𝐶𝑓𝑖𝑛𝑒 2), ⋯ ,𝑀𝐴𝐶𝑓𝑖𝑛𝑒 𝑘)

512B

𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 8)

OTP1

OTP7

OTP8

Block
Cipher

Block
Cipher

Block
Cipher

Addr8

Addr7

Addr1

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Backup

▪ Coarse-MAC & counter encryption, integrity validation

▪ 𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) = MAX(𝐶𝑇𝑅𝑓𝑖𝑛𝑒 1, 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 2, ⋯ , 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 𝑘)

▪ 𝑀𝐴𝐶𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) =

HASH(⋯HASH(HASH(𝑀𝐴𝐶𝑓𝑖𝑛𝑒 1),𝑀𝐴𝐶𝑓𝑖𝑛𝑒 2), ⋯ ,𝑀𝐴𝐶𝑓𝑖𝑛𝑒 𝑘)

512B

𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 8)

OTP1

OTP7

OTP8

Block
Cipher

Block
Cipher

Block
Cipher

Addr8

Addr7

Addr1

64B

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Backup

▪ Coarse-MAC & counter encryption, integrity validation

▪ 𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) = MAX(𝐶𝑇𝑅𝑓𝑖𝑛𝑒 1, 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 2, ⋯ , 𝐶𝑇𝑅𝑓𝑖𝑛𝑒 𝑘)

▪ 𝑀𝐴𝐶𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 𝑘) =

HASH(⋯HASH(HASH(𝑀𝐴𝐶𝑓𝑖𝑛𝑒 1),𝑀𝐴𝐶𝑓𝑖𝑛𝑒 2), ⋯ ,𝑀𝐴𝐶𝑓𝑖𝑛𝑒 𝑘)

512B

𝐶𝑇𝑅𝑐𝑜𝑢𝑟𝑠𝑒(1 ⋯ 8)

OTP1

OTP7

OTP8

Block
Cipher

Block
Cipher

Block
Cipher

XOR

XOR

XOR

Addr8

Addr7

Addr1

64B

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Backup

Address of MAC & Counter

Backup

Address of MAC & Counter

▪ Chunk-level index computation

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

543210 9876

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)
= 8 / 2 = 4

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)
= 8 / 2 = 4

(MAC Index)

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)
= 8 / 2 = 4

(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)
= 8 / 2 = 4

(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14

(CTR Leaf Index) = 14

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)
= 8 / 2 = 4

(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14

(# of Parents)

(CTR Leaf Index) = 14

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)
= 8 / 2 = 4

(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14

(# of Parents)
= sqrt{Arity}(Granularity)

(CTR Leaf Index) = 14

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)
= 8 / 2 = 4

(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14

(# of Parents)
= sqrt{Arity}(Granularity)

(CTR Leaf Index) = 14

(CTR Index)

Backup

Address of MAC & Counter

▪ Chunk-level index computation

▪ Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

543210 9876

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
= 10 * 1 = 10

(MAC Offset Index)
= (Offset Index) / (Granularity)
= 8 / 2 = 4

(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14

(# of Parents)
= sqrt{Arity}(Granularity)

(CTR Leaf Index) = 14

(CTR Index)
= Parent(Parent(….(Parent(CTR Leaf Index))))

Backup

Workload Analysis & Selected Scenarios

Backup

▪ Workloads & Scenarios

Workload Analysis & Selected Scenarios

Backup

▪ Workloads & Scenarios

▪ 14 workloads, 250 scenarios (all combinations)

▪ Access pattern: Fine – ff – f – c – cc – Coarse | Diverse (d)

▪ Traffic per cycles: Small (s) – Medium (m) – Large (l)

Workload Analysis & Selected Scenarios

Workloads (access pattern-traffic per cycles)

CPU bw (ff-s), gcc (ff-s), mcf (ff-m), xal (f-m), ray (ff-s)

GPU syr2k (ff-m), pr (f-m), sten (c-l), mm (cc-m), floyd (d-s),

NPU ncf (c-s), dlrm (c-s), sfrnn (c-l), alex (cc-m)

ID (CPU, GPU, NPU1, NPU2)

ff (bw, syr2k, ncf, dlrm), (mcf, syr2k, sfrnn, dlrm), (gcc, floyd, sfrnn, ncf)

f (xal, pr, sfrnn, ncf), (xal, pr, ncf, ncf)

c (gcc, sten, alex, dlrm), (bw, sten, ncf, ncf), (mcf, sten, sfrnn, sfrnn)

cc (xal, mm, alex, dlrm), (ray, mm, alex, alex), (ray, Floyd, alex, alex)
Backup

Rowhammer Attacks

DeepHammer[3]

RamBleed[2]Bit-flip[1]

[1] Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (ISCA 2014)
[2] RAMBleed: Reading Bits in Memory Without Accessing Them (S&P 2020)
[3] DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips (USENIX Security 2020)

Backup

More Design Descriptions in Our Paper

▪ Lazy-switching analysis

▪ Cacheline fragmentation issue

▪ CTR/MAC addressing for multi-granularity

▪ Coarse-grained memory protection engine using

parallel counter sharing and nested MAC hasing

▪ Misprediction handler

▪ Efficient granularity representation

▪ Hardware overhead

▪ Comparison to prior subtree optimization schemes

Backup

More Results in Our Paper

▪ The ratio of stream chunks

▪ Performance analysis of selected scenarios

▪ End-to-end performance

▪ Drawbacks of the per-device (static) granularity

▪ Performance comparison with dual-granularity

▪ Switching overhead measurement

▪ Security cache hit ratio improvement

▪ Hardware overhead

Backup

Temp Slide

Research Objective

Temp

Constructs a general and efficient memory protection scheme
for heterogeneous processors

Research Objective

Temp

▪ Challenge 1: Heterogeneous processors have diverse access pattern

Constructs a general and efficient memory protection scheme
for heterogeneous processors

Conventional Memory Protection: High Overhead

SlowSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU

Research Objective

Temp

▪ Challenge 1: Heterogeneous processors have diverse access pattern

▪ Challenge 2: Each prior protection only for a specific access pattern

Constructs a general and efficient memory protection scheme
for heterogeneous processors

Conventional Memory Protection: High Overhead

SlowSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU

Research Objective

Temp

▪ Challenge 1: Heterogeneous processors have diverse access pattern

▪ Challenge 2: Each prior protection only for a specific access pattern

▪ For example, GPU coarse-grained pattern, NPU software-detected pattern

Constructs a general and efficient memory protection scheme
for heterogeneous processors

Conventional Memory Protection: High Overhead

SlowSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU

Research Objective

Temp

▪ Challenge 1: Heterogeneous processors have diverse access pattern

▪ Challenge 2: Each prior protection only for a specific access pattern

▪ For example, GPU coarse-grained pattern, NPU software-detected pattern

→ We unified prior studies with our novel multi-granular tree

Constructs a general and efficient memory protection scheme
for heterogeneous processors

Our Unified Memory Protection Scheme

FastSystem-on-a-Chip (SoC) based
Heterogeneous Processor

NPUCPU GPU

Multi-granular MAC and Counter

Multi-granularity can reduce memory protection overhead
However, how maintain a counter integrity tree?

▪ Multi-granular MAC and counter

▪ Multi-granular MAC and counter fetches small # of MACs and

counters for coarse-grained access

Conventional

Data

MAC

Counter

MACMACMACMACMACMACMACMAC

CounterCounterCounterCounterCounterCounterCounterCounter

Low Overhead

Multi-granular MAC & Counter

Data

MAC

Counter

MAC Counter

Temp

Prior Memory Protection Schemes

Temp

Prior Memory Protection Schemes

Counter-mode Protection

Temp

Prior Memory Protection Schemes

CounterCiphertext MAC

Counter-mode Protection

Temp

Prior Memory Protection Schemes

CounterCiphertext

Encryption

MAC

Counter-mode Protection

Temp

Prior Memory Protection Schemes

CounterCiphertext

Encryption
Integrity

Protection

MAC

Counter-mode Protection

Temp

Prior Memory Protection Schemes

CounterCiphertext

Encryption
Integrity

Protection

Counter
Tree

MAC

Counter-mode Protection

Temp

Prior Memory Protection Schemes

CounterCiphertext

Encryption
Integrity

Protection

Counter
Tree

Replay-attack Protection

MAC

Counter-mode Protection

Temp

Prior Memory Protection Schemes

CounterCiphertext

Encryption
Integrity

Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

MAC

Counter-mode Protection

Temp

Prior Memory Protection Schemes

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

MAC

Counter-mode Protection

Temp

Prior Memory Protection Schemes

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

Counter-mode Protection

Temp

Prior Memory Protection Schemes

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

Conventional 64B-granular ProtectionCounter-mode Protection

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%
CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

Conventional 64B-granular ProtectionCounter-mode Protection

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%
CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

Conventional 64B-granular ProtectionCounter-mode Protection

Significant overhead
in conventional protection

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

Conventional 64B-granular ProtectionCounter-mode Protection

Significant overhead
in conventional protection

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

1. Common Counters [1]

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

Conventional 64B-granular ProtectionCounter-mode Protection

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Significant overhead
in conventional protection

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

1. Common Counters [1] 2. Dual-MAC [2]

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

Conventional 64B-granular ProtectionCounter-mode Protection

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

Significant overhead
in conventional protection

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

1. Common Counters [1] 2. Dual-MAC [2]

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

3. Software-managed Granularity [3-4]

Conventional 64B-granular ProtectionCounter-mode Protection

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

Significant overhead
in conventional protection

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

1. Common Counters [1] 2. Dual-MAC [2]

Counter
Tree

Limited set of
Coarse Counters

OR

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

3. Software-managed Granularity [3-4]

Conventional 64B-granular ProtectionCounter-mode Protection

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

Significant overhead
in conventional protection

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

1. Common Counters [1] 2. Dual-MAC [2]

Counter
Tree

Limited set of
Coarse Counters

OR

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

3. Software-managed Granularity [3-4]

Conventional 64B-granular ProtectionCounter-mode Protection

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

Significant overhead
in conventional protection

Dual CTRs, limited CTRs,
CTR-only, device-specific

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

1. Common Counters [1] 2. Dual-MAC [2]

Counter
Tree

Limited set of
Coarse Counters

OR

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

OR

Coarse MAC

Fine MAC

3. Software-managed Granularity [3-4]

Conventional 64B-granular ProtectionCounter-mode Protection

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

Significant overhead
in conventional protection

Dual CTRs, limited CTRs,
CTR-only, device-specific

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

1. Common Counters [1] 2. Dual-MAC [2]

Counter
Tree

Limited set of
Coarse Counters

OR

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

OR

Coarse MAC

Fine MAC

3. Software-managed Granularity [3-4]

Conventional 64B-granular ProtectionCounter-mode Protection

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

Significant overhead
in conventional protection

Dual CTRs, limited CTRs,
CTR-only, device-specific

Dual MACs,
MAC-only

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

1. Common Counters [1] 2. Dual-MAC [2]

Counter
Tree

Limited set of
Coarse Counters

OR

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

OR

Coarse MAC

Fine MAC

3. Software-managed Granularity [3-4]

Conventional 64B-granular ProtectionCounter-mode Protection

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

Counter
Tree

Tree-less
Counter

Counter +

Significant overhead
in conventional protection

Dual CTRs, limited CTRs,
CTR-only, device-specific

Dual MACs,
MAC-only

Temp

Prior Memory Protection Schemes

0.8

0.9

1

1.1

1.2

1.3

1.4

Unsecure CTR-mode

Norm. Exec. Time
Norm. Data Traffic

L
o
w

e
r

is
 b

e
tt

e
r

29% 34%

Prior Domain-specific Memory Protection

1. Common Counters [1] 2. Dual-MAC [2]

Counter
Tree

Limited set of
Coarse Counters

OR

CounterCiphertext

Granularity
Encryption

Integrity
Protection

Counter
Tree

Replay-attack Protection

Recursive
Validation

Tree
Height

MAC

OR

Coarse MAC

Fine MAC

3. Software-managed Granularity [3-4]

Conventional 64B-granular ProtectionCounter-mode Protection

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

Counter
Tree

Tree-less
Counter

Counter +

Significant overhead
in conventional protection

Dual CTRs, limited CTRs,
CTR-only, device-specific

Dual MACs,
MAC-only

Application-specific,
device-specific

Temp

