Unified Memory Protection
with Multi-granular MAC and Integrity Tree
for Heterogeneous Processors

Sunho Lee!, Seonjin NaZ, Jeongwon Choil
Jinwon Pyo!, Jaehyuk Huh!

KAIST!, Georgia Tech?

KAI ST CASYS Georgia

School of Computing Tech

Secure Heterogeneous Processor

= Heterogeneous processor: SoC with CPU, GPU, NPU

System-on-a-Chip (SoC) based
Heterogeneous Processor

E o o
chu goGPUOE NPYL_ secure
ST F T | ()n-chip
rrrrrrrrrrrrrrrrrrrrrnrtd
H Unsecure
Off-chip

_—— == ——— - —

2/16

Secure Heterogeneous Processor

= Heterogeneous processor: SoC with CPU, GPU, NPU

= Data confidentiality & integrity are essential

System-on-a-Chip (SoC) based

Heterogeneous Processor

=1||||||||||||||||= PUNNINNN g I I
E E 19 °F — -
| OGPUO E _|NPYL secure
:IIIIIIIIIIIIIIIII= _l LILBLILILIL l_ I I On'Chlp
rrrrrrrrrrrrrrrrrrrrrrrd
1§ Unsecure
Off-chip

ML Models Personal Data

[1] Lest We Remember: Cold-Boot Attacks on Encryption Keys (USENIX Security 2008)
[2] RAMBleed: Reading Bits in Memory Without Accessing Them (S&P 2020)

[3] Direct Memory Attack the Kernel (DEFCON 2016; PCILeech)
[4] Handbook of Applied Cryptography (Menezes, Alfred J. et. al.)

2/16

Secure Heterogeneous Processor

= Heterogeneous processor: SoC with CPU, GPU, NPU

= Data confidentiality & integrity are essential

System-on-a-Chip (SoC) based
Heterogeneous Processor

ST _||||||||_ I I
=|||||n|||||l||l|= _llllllll_ I I On'Chlp é _.\' N‘
rTrrrrrrrrrrrrrrrrrrrrnmd Cold Boot Attack ;; Rowhammer Attack 2
H Unsecure
Off-chip y—
° <
&)
DMA Attack 3 Replay Attack 4]

ML Models Personal Data

[1] Lest We Remember: Cold-Boot Attacks on Encryption Keys (USENIX Security 2008)

[2] RAMBleed: Reading Bits in Memory Without Accessing Them (S&P 2020)

[3] Direct Memory Attack the Kernel (DEFCON 2016; PCILeech)

[4] Handbook of Applied Cryptography (Menezes, Alfred J. et. al.) 2/16

Secure Heterogeneous Processor

Memory protection is necessary for heterogeneous processors

[3] Direct Memory Attack the Kernel (DEFCON 2016; PCILeech)
[4] Handbook of Applied Cryptography (Menezes, Alfred J. et. al.)

Research Goal

= Existing memory protections are tailored to specific,
individual access patterns

CPU: Fine-grained
Timef i} -

GPU: Medium-grained
Timet

Addr

NPU: Software-aware

Time4

Coarse-grained

Research Goal

= Existing memory protections are tailored to specific,
individual access patterns

= Common Counters i 2 GPU medium-grained pattern

CPU: Fine-grained
Timef i} T

Addr

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

GPU: Medium-grained
Timet

Addr

NPU: Software-aware
Coarse-grained
Time4

Addr

3/16

Research Goal

= Existing memory protections are tailored to specific,
individual access patterns

= Common Counters i 2 GPU medium-grained pattern
= Studies of S/W-based counters=> NPU S/W-detected pattern

CPU: Fine-grained
Timef i} .-

Addr

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

GPU: Medium-grained
Timet

Addr

NPU: Software-aware
Coarse-grained
Time4

Research Goal

= Existing memory protections are tailored to specific,
individual access patterns
= Common Counters i 2 GPU medium-grained pattern

= Studies of S/W-based counters=> NPU S/W-detected pattern
= Heterogeneous processor - diverse access pattern

NPU: Software-aware
CPU: Fine-grained GPU: Medium-grained Coarse-grained

Timef _ _ - Timet Time4

Addr Addr Addr

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021) 3/16

Research Goal

= Existing memory protections are tailored to specific,
individual access patterns

= Common Counters i 2 GPU medium-grained pattern
= Studies of S/W-based counters=> NPU S/W-detected pattern

= Heterogeneous processor - diverse access pattern

= A unified memory protection for all access patterns

CPU: Fine-grained
Timef i} .-

Addr

GPU: Medium-grained
Timet

Addr

NPU: Software-aware

Time4

Coarse-grained

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Research Goal

= Existing memory protections are tailored to specific,
individual access patterns

= Common Counters i 2 GPU medium-grained pattern
= Studies of S/W-based counters=> NPU S/W-detected pattern

= Heterogeneous processor - diverse access pattern

= A unified memory protection for all access patterns
= Limitation of prior studies: Bypassing integrity tree optimization

NPU: Software-aware
CPU: Fine-grained GPU: Medium-grained Coarse-grained
Timel Timet Time4

Addr Addr Addr

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Research Goal

This study constructs a unified memory protection scheme
with integrity tree optimization for heterogeneous processors

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Counter-mode Memory Protection

Counter-mode Memory Protection

Ciphertext —— i

4/16

Counter-mode Memory Protection

Encryiption

i

Ciphertext

of write-back

4/16

Counter-mode Memory Protection

Integrity
Encryiption Prote‘ction

Ciphertext _"E -- ma ----- ------- — “5

Hash (Ciphertext)

4/16

Counter-mode Memory Protection

Integrity
Encniption Prote‘ction

Ciphertext —— [€ellljii=]; MAC |

Counter
LGE

4/16

Counter-mode Memory Protection

Integrity
Encniption Prote‘ction

Ciphertext —— [€ellljii=]; m i

Counter
LGE

\4
Replay-attack Protection

4/16

Counter-mode Memory Protection

Integrity
Encniption Prote‘ction

Ciphertext —— [€ellljii=]; m i

Recursive

Validation
Counter

Tree

v
Replay-attack Protection

4/16

Counter-mode Memory Protection

= Critical factors of memory protection

= Amount of counters and MACs: Granularity

Integrity

_Granularity Encryption Protection

<«

Ciphertext —— [€ellljii=]; MAC |

Recursive

Validation
Counter

Tree

\4
Replay-attack Protection

4/16

Counter-mode Memory Protection

= Critical factors of memory protection
= Amount of counters and MACs: Granularity

= QOverhead of recursive validation: Height of integrity tree

_ Integrity
_Granularity Encryipuon Protection
Ciphertext —— [@lljlis E
Recursive Tree

Validation .
Counter Height

Tree

\4
Replay-attack Protection

4/16

Counter-mode Memory Protection

= Critical factors of memory protection
= Amount of counters and MACs: Granularity
= QOverhead of recursive validation: Height of integrity tree

= 349% delay with 29% data traffic increment

_ Integrity Performance of
Granularity Encryiptlon ProteACuon g Heterogeneous Processor
< > SmoE=s-o Y14
Ciphertext — [®0ligiic]y m ! g 1.3 g -oospTTTTTTTTTTT
--------------------- ' 1.2
(0]
SRR ',qi) 1-1 / |290/0 349
- = 09
RGQUFQVG Tree Sog EBEE 0 BN v
Validation .
Counter Height Unsecure Conventional
Tree ! fine-granularity
v o w/ full tree
Replay-attack Protection Norm. Exec. Time
—e—Norm. Data Traffic

4/16

Counter-mode Memory Protection

Significant overhead caused by
the conventional 64B-granular protection with a full integrity tree

Diverse Access Granularity

Diverse Access Granularity

= Major access chunks (consecutive access blocks)
= Fine-grained (64B): CPU

100% G
(o] T [| B ||
- i
60%
|

40%
20%
0%

64B m512B = 4KB m32KB

5/16

Diverse Access Granularity

= Major access chunks (consecutive access blocks)
= Fine-grained (64B): CPU
= Medium-grained (512B, 4KB): GPU

100% G
(o] T [| B ||
- i
60%
|

40%
20%
0%

o & & N
& & &

64B m512B = 4KB m32KB

5/16

Diverse Access Granularity

= Major access chunks (consecutive access blocks)

100%
80%
60%
40%
20%

0%

= Fine-grained (64B): CPU
= Medium-grained (512B, 4KB): GPU
= Coarse-grained (32KB): NPU

CPU

64B m512B = 4KB m32KB

5/16

Diverse Access Granularity

= Major access chunks (consecutive access blocks)
= Fine-grained (64B): CPU
= Medium-grained (512B, 4KB): GPU
= Coarse-grained (32KB): NPU

CPU GPU NPU
100% — mm . - . o :
INREREI RN
60% ! i
40% P - = -
20%] il !
0% 1 i
¢ & A S L N
6§b §§b QSQ

64B m512B = 4KB m32KB

Matching security granularity to access granularity

5/16

Diverse Access Granularity

100%
80%
60%
40%
20%

0%

Major access chunks (consecutive access blocks)
= Fine-grained (64B): CPU

= Medium-grained (512B, 4KB): GPU

= Coarse-grained (32KB): NPU

CPU GPU NPU
N O i I = B
- _BE §
o) $
@4@ ’S\Q ’OAQ

64B m512B = 4KB m32KB

Matching security granularity to access granularity

- Requirement: Multi-granularity for MACs and counters

5/16

Multi-granular MAC

Fine--------- +Coarse
OX X)

Conventional | MAC 4y 4y ey YYy
Fine-granular Data [T T TR T TR N [N N T A A A |
MAC

6/16

Multi-granular MAC

i Q0000000000000 00 IMAC |]
C_onventlonal MAC RS E NSRS : [l : High
Fine-granular p,., Fa7a7a0 e ||— 1| Overhead

MAC | _

6/16

Multi-granular MAC

Conventional | MAC {0y Yy YR Y Yy i€ high
Flne- ranUIar [T O T I I | 1 [
g Data N I .[1| Overhead
MAC W @ T
MAC @ © © © © O OO00O
Dual-granular t 4 4+ 4+ 4 AAAd
MAC Data 071 70 17 71 1 TrTrTraT

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
6/16

Multi-granular MAC

i MA MA .
Conventional — MAC Yy Yy YTy 1 S| pigh
ine-granuiar Data |EIEESE i e e . 1 Overhead
MAac 1 | fmmmmms
MAC | e ! :
Dual-granular ? ? ? ? ? ????? =: [l I Medium
MAC 1 Data [0 by L-----|0Overhead

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
6/16

Multi-granular MAC

= Multi-granular MAC R > Coarse
ONON N J
|- = === |
Conventional MAC ©000OOOOOOOOOOOO . | :
. FALAAA AL AARE A " A High
Fine-granular o, Frssssaaageessss'sh : :Overhead
MAC 71 | ===
MAC | dvAcl ! :
Dual-granular T Y5 YT TR S 1| Medium
MAC Data [ttt L - - - — — |Overhead
Multi-granular MAC e ? 959
MAC Data | ' I I B

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
6/16

Multi-granular MAC
= Multi-granular MAC

= Multi-granular MAC fetches fewer MACs
@
i

Conventional - MAC 2999999909920009

Fine-granular .5 Pt e e s
MAC

MAC @ @ © © © O 0000

Dual-granular t 4 & & & & FAL4

MAC 1, Data [ettt

Multi-granular MAC e ISEe

MAC Data || ' | [T 1]

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

Fine--------- +Coarse

1= - 7= |

> ll'=_ I ngh

:_ _ 1/ Overhead

T Ty I

. '| Medium

L — — — - - |Overhead

£ I

i MAS 1 Low
Overhead

6/16

Multi-granular MAC
= Multi-granular MAC

= Multi-granular MAC fetches fewer MACs
@
t

Conventional MAC_ 9999999999999999

Fine-granular p,; P s e e s
MAC

MAC ©O © © © © 0 OO0

Dual-granular (SR SR S S S S WYY S

MAC Data [e e ey

Multi-granular MAC e ISEe

MAC Data | ' [[T T 1]

Fing--------- +Coarse

1= = 5= 1

1 4fl=> 1| High
:__ 1/ Overhead
8 | mea

= |'|'|=_ '| Medium
L - - ---0Overhead
+ M0 1 Low

Overhead

Multi-granular MAC - Only managing the security granularity

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

6/16

Multi-granular MAC
= Multi-granular MAC

= Multi-granular MAC fetches fewer MACs
@
t

Conventional MAC_ 9999999999999999

Fine-granular p,; P s e e s
MAC

MAC ©O © © © © 0 OO0

Dual-granular (SR SR S S S S WYY S

MAC Data [e e ey

Multi-granular MAC e T OFYYy

MAC Data | ' [[T T 1]

Fing--------- +Coarse

1= = 5= 1

1 4fl=> 1| High
:__ 1/ Overhead
8 | mea

= |'|'|=_ '| Medium
L - - ---0Overhead
+ M0 1 Low

Overhead

Multi-granular MAC - Only managing the security granularity

What about multi-granular counters?

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

6/16

Prior Multi-granular Counter

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass
integrity tree under specific conditions.

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass

integrity tree under specific conditions. Fine === Coarse

Common Counters
Counter ’ B E OO0
! R
Data | [T T T T1TT11

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass

integrity tree under specific conditions. Fine------- g Coarse

Common Counters Kernel-level update
1
Counter -+ -
T Y
Data | ' I T T 171711 -

Limited Storage
for Coarse Counters

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

7/16

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass

integrity tree under specific conditions. Fine === Coarse

Common Counters Kernel-level update
1
Counter - X - Miss
; T YRRy —En!
ata ['] I -

Limited Storage
for Coarse Counters Conventional Tree

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

7/16

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass

integrity tree under specific conditions.

Common Counters
Counter ’ m

Data

GPU-specific

KerneI-Ie\{eI update

— b i
:|DD|MISS

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

L -1

Limited Storage

for Coarse Counters

Fine--------- +Coarse
RN B |

Conventional Tree

7/16

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass
integrity tree under specific conditions. Fine -~ Coarse

GPU-specific

Common Counters Kernel-level update
1
- X Mi
Counter ’ Q Q QQQQ =:_DD :MISS
Data | ' 0 1T T 7171711 -
Limited Storage
for Coarse Counters Conventional Tree

S/W-managed Studies 2+

Counter N , 101000
t o
Data | | [T 117

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

7/16

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass

integrity tree under specific conditions.
GPU-specific

Common Counters Kernel-level update
1
Counter - X - Miss
Ty i
Data | ' I T T 171711 -
Limited Storage
for Coarse Counters

S/W-managed Studies 2+

Counter — T T
N AT T LT
Data ' | [T T 11

S/W-managed
Storage
for Coarse Counters

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Fine--------- +Coarse
RN B |

Conventional Tree

[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)

[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

7/16

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass
integrity tree under specific conditions. Fine -~ Coarse

GPU-specific
Common Counters Kernel-level update
1
Counter - X - Miss
T
Data | ' I T T 171711 -
Limited Storage
for Coarse Counters Conventional Tree
S/W-managed Studies 2+
Counter - === J: _w __________
0 T o Firp—mE o = N = i
Data | ' [[T T 1] S/W-managed IR I T R T
Storage
for Coarse Counters Tree-less

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

7/16

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass

integrity tree under specific conditions. e e
GPU-specific
Common Counters Kernel-level update
1
Counter - * - Miss
I LT
Data || ' I 1T T T 71717 -
Limited Storage
for Coarse Counters Conventional Tree
S/W-managed Studies .5 ML-specific
Counter eyt
S B iy ST T Ta}
Data || ' | [T T T S/W-managed

Storage
for Coarse Counters

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Tree-less

[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)

[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)
[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

7/16

Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass

integrity tree under specific conditions. Fine === Coarse
GPU-specific

Non-Tree Optimization

Common Counters Kernel-level update
1
Counter - X - Miss
I T
Data | ' I T T 171711 -
Limited Storage
for Coarse Counters Conventional Tree
S/W-managed Studies .5 ML-specific
Counter imm |
I BUCTY e T
Data | : | —EEE s/W-managed
Storage
for Coarse Counters Tree-less

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

[2] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

[5] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

7/16

Prior Multi-granular Counter

Multi-granular counter integrity tree is necessary

Multi-granular Counter Integrity Tree

Conventional Counter

Fine-granular Tree

Tree

Data |

--------- +Coarse

CEEN

8/16

Multi-granular Counter Integrity Tree

Fing--------- +Coarse
O N

High Overhead

Conventional counter . -+ =t [eeeme e e e m e e - == -

1 1

Fine-granular Tree X W- |
Counter|

| (¢ Counter, !

Tree (CounterCounterfs

e e e e B e e e e e e e
DY | 50 | 0 » Root

8/16

Multi-granular Counter Integrity Tree

Fing--------- +Coarse
OEEN

High Overhead

Long
Conventional Counter / - =
Fine-granular Tree //; ?.?.

o o o i o

Tree

DY | 50 | 0 » Root

8/16

Multi-granular Counter Integrity Tree

= Multi-granular tree

Fing--------- +Coarse
OEEN

High Overhead

D

{

Long
Conventional Counter /" — =
Fine-granular Tre ? — ~ o W
<Counter
Tree lllllﬁlllﬁlllll |

DY | 50 | 0 » Root

Counter
Multi-granular Tree :
Tree
Data | ' S B

8/16

Multi-granular Counter Integrity Tree

= Multi-granular tree

= Counters w/ varying granularities are mapped to different levels

Fing--------- +Coarse
OEEN

High Overhead

Long
Conventional Counter /- — =
Fine-granular Tree /- ?.?.

i i o [e

Tree

1Y [Y 5 | e » Root

Counter
Multi-granular Tree
Tree
Data | ' S B

8/16

Multi-granular Counter Integrity Tree

= Multi-granular tree

= Counters w/ varying granularities are mapped to different levels

» Fetches fewer counters

Long
]

Conventional Coun
Fine-granular Tre
Tree

Fing--------- +Coarse
OEEN

High Overhead

DY | 50 | 0 » Root
Low Overhead
Counter % _—— [________ :
Multi-granular Tree : :: ,'
Tree N o [O el
: L1 1 Leaf - ROOt
Datall [T 111

8/16

Multi-granular Counter Integrity Tree

= Multi-granular tree
= Counters w/ varying granularities are mapped to different levels

» Fetches fewer counters

Fing--------- ~+Coarse
= Shortens recursive validation path NN

High Overhead

Long

Conventional Coun
Fine-granular Tre
Tree

Data Leaf ----------------mmmmmmmmmm- > Root
Low Overhead
Counter % _—— | [C_______ :
Multi-granular Tree : :: Counter],
Tree = " Leat > Root

[->
Datall T ca 00
8/16

Multi-granular MAC&Tree
= Multi-granular MAC&Tree

Multi-granular MAC&Tree
= Multi-granular MAC&Tree

= Dynamically supports multi-granular MACs and a counter tree

Multi-granular MAC&Tree
= Multi-granular MAC&Tree

= Dynamically supports multi-granular MACs and a counter tree

Fine------—--- +>Coarse

on
ol
on
on

Conventional

CTR
Tree

MAC OOOOOOOOOOO0O0O0OOO
Data I e e e e

9/16

Multi-granular MAC&Tree
= Multi-granular MAC&Tree

= Dynamically supports multi-granular MACs and a counter tree

Fine------—--- +>Coarse
mioy N |
000 e
Conventional QOurs
CTR
= '/D\iﬁ%
MAC OOO0O0000000000000 (] ®@ 0000

Data [e e [[[1]

9/16

Multi-granular MAC&Tree
= Multi-granular MAC&Tree

= Dynamically supports multi-granular MACs and a counter tree

= Key Idea: Merging MACs/counters & pruning a counter tree

Fine------—--- +>Coarse

on
ol
on
on

Conventional Ours
Merging MACs/Counters
TR & Tree Pruning

Tree jl>

MAC OOOOOOOOOOO0O0O0OOO ® ® OOOO
Data I e e e e | [T 111

9/16

Multi-granular MAC&Tree
= Multi-granular MAC&Tree

= Dynamically supports multi-granular MACs and a counter tree

= Key Idea: Merging MACs/counters & pruning a counter tree

Fing--------- +Coarse

on
ol
on
on

Conventional Ours
Merging MACs/Counters
& Tree Pruning

CTR
Tree j‘>

MAC OOOOOOOOOOO0O0O0OOO ® ® OOOO
Data I e e e e | [T 111

1. How to dynamically detect granularity

9/16

Multi-granular MAC&Tree
= Multi-granular MAC&Tree

= Dynamically supports multi-granular MACs and a counter tree

= Key Idea: Merging MACs/counters & pruning a counter tree

Fing--------- +Coarse

on
ol
on
on

Conventional Ours
Merging MACs/Counters
& Tree Pruning

CTR
Tree j‘>

MAC OOOOOOOOOOO0O0O0OOO ® ® OOOO
Data I e e e e | [T 111

1. How to dynamically detect granularity

2. How to switch granularity

9/16

Granularity Detection (Fine > Coarse)

Salhe L2

0]0]0]0]0]0l0)e, o OQOO;
il [T T T T T 11 I [[T 1 H
+ Coarse
| grained
Fine--------- +Coarse
HE R B |
ONON X |

10/16

Granularity Detection (Fine > Coarse)

= Access tracker
= Records accessed addresses 0>

§OQOOOOOO o OQOOE
§|||||||||| |||||§
+ Coarse
| grained
Fine--------- +Coarse
O EHN
O00ee
Access | i T[T 11
Tracker = =aasr |

v TTTTTS v
First Cacheline Last Cacheline
of Addr of Addr

10/16

Granularity Detection (Fine > Coarse)

= Access tracker

= Records accessed addresses 0> :
. : . 00000000 ® 0000
. ConseCUtlve access bltS are Set i| T T T T 1T T 1 | T T T 1 |i
| > |
+ Coarse
| 9grained
Fine--------- +Coarse
R R
O00ee
Access | i T[T 11
Tracker = =aasr | Coarse
Access
Adar | Access Bits =
¢ """ v
First Cacheline Last Cacheline
of Addr of Addr

10/16

Granularity Detection (Fine > Coarse)

= Access tracker
= Records accessed addresses 0>

. : . 00000000 ® 0000;
= Consecutive access bits are set | S
| > |
. . . . Coarse
= Granularity detection engine grained
= Computes a new granularity Fine------—-2 Coarse
C00e®
Access | T[]
Tracker [mmrsmer | Coarse
Access
Adr | Access Bits >
N v @
First Cacheline Last Cacheline oo :
of Addr of Addr (<< HC +)

Granularity
Detection Engine

10/16

Granularity Detection (Fine > Coarse)

= Access tracker
= Records accessed addresses 0>

. : . 00000000 ® 0000
= Consecutive access bits are set T
] . . Coarse :
= Granularity detection engine grained
= Computes a new granularity Fine------—-2 Coarse
_ oK X
= Updates granularity table
Access | i T[T 11
Tracker [E=rmmmmsr | Coarse
Access
Addr | Access Bits =
oo Y @ (Addr, coarse)
First Cacheline Last Cacheline L ~ ! E<_
of Adadr of Adadr C<<H)C+) o Update
Granularity
Detection Engine
Granularity
Table

10/16

Granularity Switching (Fine > Coarse)

= Granularity switching engine
%§EE¢ E%

EOOOOOOOO o OOOOE
§|||||||||| |||||§
+ Coarse
| grained
Fine--------- +Coarse
HE N N
C00e
E-»Scale-up
Granularity
Table

11/16

Granularity Switching (Fine > Coarse)

= Granularity switching engine
= Loads additional data %ﬁi@?&%@

> 0Old counters, MACs, data blocks COCoCo00 O CO00

, &>
+ Coarse
| grained

Fine------—--- +Coarse

on
om
on
on

E-»Scale-upc> £ & =

Loads Additional Data

Granularity
Table

11/16

Granularity Switching (Fine > Coarse)

= Granularity switching engine
= Loads additional data %ﬁi@?&%@

> 0Old counters, MACs, data blocks COCoCo00 O CO00

. “Coarse
= Computes counters, MACs . grained
Fing--------- +Coarse
OEENE
0C00®

E-»Scale-upc> £ & =

Loads Additional Data

Granularity @

Table
B = 1+MAX(], L], 1,)
® = HASH(O,0,0,0)

Computes
a new MAC & a counter

11/16

Granularity Switching (Fine > Coarse)

= Granularity switching engine
= Loads additional data %ﬁi@?&%@

> 0Old counters, MACs, data blocks COCoCo00 O CO00

. Coarse
= Computes counters, MACs . grained
= Re-encrypts old data Fine--------- ~Coarse

OCEEN
C00e

E—»Scale-upc> £ @ @ @

Loads Additional Data Re-encryg;cia& Stores
Granularity @ A

Table
B = 1+MAX(], L], 1,)
® = HASH(O,0,0,0)

Computes
a new MAC & a counter

11/16

Granularity Switching (Fine > Coarse)

= Granularity switching engine
= Loads additional data N

> Old counters, MACs, data blocks |Q|Q|Q|O|O|Q|Q|Q| | ® lOlQlOlOli

n C . Coarse
omputes counters, MACs . grained
= Re-encrypts old data Fine--------- ~Coarse
: : CEEN
= Updates & prunes integrity tree cocee
E-»Scale-upz> ﬁ & il i
Loads Additional Data Re-encryg;cia& Stores
Granularity @ A
Table

B = 1+MAX(C], [, 00, 0)
® = HASH(O,0,0,0)

Computes Replaces
a new MAC & a counter a MAC and a counter

11/16

Granularity Switching (Fine > Coarse)

= Granularity switching engine
= Loads additional data D%%ZD?%@

> Old counters, MACs, data blocks |Q|Q|O|Q|Q|O|Q|Q| | ® |O|Q|Q|Q|§

. Coarse
= Computes counters, MACs " grained
= Re-encrypts old data Fine--------- ~Coarse
_ _ COCEENn
= Updates & prunes integrity tree cocee
E-»Scale-upc> £ & = L
Loads Additional Data Re-encryg;cia& Stores
Granularity @ A
Table
B = 1+MAX(], 1,0,)
| [T 111
Computes Replaces Prunes integrity
a new MAC & a counter a MAC and a counter tree nodes

11/16

Granularity Switching (Fine - Coarse)

Granularity switching requires significant overhead > Lazy switching

11/16

Evaluation Environment

Evaluation Environment

« ChampSim (CPU) + MGPUSIm (GPU) + mNPUsim (NPU)

Evaluation Environment

« ChampSim (CPU) + MGPUSIm (GPU) + mNPUsim (NPU)

= Configuration: Similar to NVIDIA Orin
= ARM Cortex CPU + Ampere GPU + 2 x NVDLA with LPDDR4

CPU (Jetson AGX GPU (Jetson AGX

Orin ARM Cortex) Orin Ampere) MAD (WYL
Compute i 45 x 45
Engine 8-core 14 SMs Systolic Array
On-chip Cache Cache Scratchpad Memory
Storage (L1: 64KB, L2: 2MB) (L1: 192 KB, L2: 4MB) (2.2MB in total)
Frequency 2.2GHz 1GHz 1GHz

Memory

System 2.4GHz, 17GB/s, LPDDR4 Memory System

Evaluation Environment

» Workloads & Scenarios

= 14 workloads, 250 scenarios (all combinations)

Evaluation Environment

= Workloads & Scenarios
= 14 workloads, 250 scenarios (all combinations)
= Access pattern: Fine — ff — f — ¢ — cc — Coarse | Diverse (d)

= Traffic per cycles: Small (s) — Medium (m) — Large (I)

Workloads (access pattern-traffic per cycles)

CPU bw (ff-s), gcc (ff-s), mcf (ff-m), xal (f-m), ray (ff-s)

GPU syr2k (ff-m), pr (f-m), sten (c-I), mm (cc-m), floyd (d-s),

NPU ncf (c-s), dirm (c-s), sfrnn (c-1), alex (cc-m)

Evaluation Result (Avg of Processing Units)

Evaluation Result (Avg of Processing Units)

= 149% improvement with 119%b data reduction

Lower is bette
=

/ 5

o

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization

Norm. Exec. Time —e—Norm. Data Traffic

Evaluation Result (Avg of Processing Units)

= 149% improvement with 119%b data reduction

= Combining prior subtree optimization (14

= Performance improvement: 14% > 21%

1.4
13 WS
B —— o
Q45 21%
Q .
wn \
11
O
|
(o)
|

0.9

0.8

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization
Norm. Exec. Time —e—Norm. Data Traffic

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)

[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Evaluation Result (Avg of Processing Units)

= 149% improvement with 119%b data reduction

= Combining prior subtree optimization (14
= Performance improvement: 14% > 21%
= CTR-only (Z%), +MAC (7%), +Prior tree optimization (7%)

is bet

Lower is

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization

Norm. Exec. Time —e—Norm. Data Traffic

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)

[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Evaluation Result (Avg of Processing Units)

= 149% improvement with 119%b data reduction

= Combining prior subtree optimization (14
= Performance improvement: 14% > 21%
= CTR-only (Z%), +MAC (7%), +Prior tree optimization (7%)

1.4
g3 e
212
(0]
11
0]
= 1
@)
-

0.9

0.8

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization
Norm. Exec. Time —e—Norm. Data Traffic

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)

[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Evaluation Result (Avg of Processing Units)

= 149% improvement with 119%b data reduction

= Combining prior subtree optimization (14
= Performance improvement: 14% > 21%
= CTR-only (Z%), +MAC (7%), +Prior tree optimization (7%)

etter

Lower is

Unsecure Conventional CTR-only Ours Ours+Prior Subtree
Optimization

Norm. Exec. Time —e—Norm. Data Traffic

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)

[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Evaluation Result (Per Processing Unit)

Evaluation Result (Per Processing Unit)

= Performance improvement of each processing unit
= CPU (24%), GPU (23%), NPU (10%)

1.6

—
192

=
N

CPU: 24%
GPU: 23%
— NPUs: 10%

—
N

Lower is better
Norm. Exec. Time
—t
W

—
—

|

Conventional CTR-only Ours
—--NPU1 -=-NPU2 --GPU —-CPU

15/16

Evaluation Result (Per Processing Unit)

= Performance improvement of each processing unit
= CPU (24%), GPU (23%), NPU (10%)

1.6

—
192

NPU blocks
are released

CPU: 24%
GPU: 23%
— NPUs: 10%

=
N

—
N

Lower is better
Norm. Exec. Time
—t
W

—
—

|

Conventional CTR-only Ours
—--NPU1 -=-NPU2 --GPU —-CPU

15/16

Conclusion

Conclusion

= Unified memory protection for heterogeneous processor

Our Unified Memory Protection Scheme
O T T I I I

_ System-on-a-Chip (SoC) based — Fast

— Heterogeneous Processor — é

: SJuuunnig UNEENEN g I I : bﬂ: :g: :E‘ ICI
— = = J7—YF — — - | T= T =L
| 3| CPUIE J(GPY]E _|NPU u I | M
: §|u||u|||uu|||§ :IOI LILBLAL IOI: I | :

16/16

Conclusion

= Unified memory protection for heterogeneous processor
= Multi-granular MAC & Integrity Tree

Our Unified Memory Protection Scheme
O T T I I I

_ System-on-a-Chip (SoC) based — Fast

- Heterogeneous Processor — é

: Juuunoy 111 I I : ¢ bﬂ: :g: :E‘ ICI
- | E J9—YE — — - | = ..
| F|CPYE J|GPU[E _|NPU N T | M
— E = o of T . _

— ST -I UL I- I | L

16/16

Conclusion

= Unified memory protection for heterogeneous processor
= Multi-granular MAC & Integrity Tree

= Challenge: Diverse access pattern

Our Unified Memory Protection Scheme
O T T I I I

_ System-on-a-Chip (SoC) based — Fast

- Heterogeneous Processor — é

: Juuunoy 111 I I : ¢ bﬂ: :g: :E‘ ICI
- | E J9—YE — — - | = ..
| F|CPYE J|GPU[E _|NPU N T | M
— E = o of T . _

— ST -I UL I- I | L

16/16

Conclusion

= Unified memory protection for heterogeneous processor
= Multi-granular MAC & Integrity Tree

= Challenge: Diverse access pattern

= Improvement: 14% (w/o subtree opt.), 21% (w/ subtree opt.)

Our Unified Memory Protection Scheme
O T T I I I

_ System-on-a-Chip (SoC) based — Fast

- Heterogeneous Processor — é

: Juuunoy 111 I | : ¢ bﬂ: :g: :E‘ ICI
— E E 49—F - = - | = =
4| g|CPU|E F[GPU[E _[NPU n T | T
— E = o of T . _

—t ST -I UL I- I | e

16/16

Thank you

Backup Slide

Detailed Granularity Switching

Detailed Granularity Switching

* Scale-up (Fine = Coarse)

Detailed Granularity Switching

* Scale-up (Fine = Coarse)

CTR
Tree

MAC OOO0O0O0OO00O
Data []

<>
Coarse-grained
1) Detect scale-up

Backup

Detailed Granularity Switching

* Scale-up (Fine = Coarse)

CTR
Tree
B = 1+MAX

MAC OOOOOOO00O @® = HASHO O OO OOO
Data [[[[[I [[
<>
Coarse-grained
1) Detect scale-up 2) Compute new MAC/CTR

Backup

Detailed Granularity Switching

* Scale-up (Fine = Coarse)

CTR
Tree
B = 1+MAX

MAC OOOOOO0O0O C HASHOOOOOOOO 0 0000
Data [T] [T T 1]

<>
Coarse-grained
1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR

Backup

Detailed Granularity Switching

* Scale-up (Fine = Coarse)

CTR
Tree
B = 1+MAX

MAC OOOOO0O00O Q HASHOOOOOOOO Q 0000 ® OOO0O
Data [T] [T T 1] [T T 1]

<>
Coarse-grained
1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

Backup

Detailed Granularity Switching

* Scale-up (Fine = Coarse)

CTR
Tree
B = 1+MAX

MAC OOOOO0O00O Q HASHOOOOOOOO Q 0000 ® OOO0O
Data [T] [T T 1] [T T 1]

<>
Coarse-grained
1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-down (Coarse = Fine)

Backup

Detailed Granularity Switching

* Scale-up (Fine = Coarse)

CTR
Tree
= 1+MAX

MAC OOO0OO0O0O0O Q HASHO OO OO OO0 Q 0000 ® OO0OO

Data [T 1] [T T 11 [T T 11
<>
Coarse-grained
1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-down (Coarse = Fine)

CTR
Tree

MAC O O000
Data | [T 1T 11

<>
Fine-grained
1) Detect scale-down

Backup

Detailed Granularity Switching

* Scale-up (Fine = Coarse)

CTR
Tree
= 1+MAX

MAC OOO0OO0OOO Q HASHO O OOV OOO Q o000 ® OOO0O0
Data [N [T T 1] [T T 11
<>
Coarse-grained
1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-down (Coarse = Fine)

=% h

MAC o 0000 O 0000

Data | [T T 1] CIT T T T T T 1]
Fine?grained Hash““

1) Detect scale-down 2) Compute new MAC/CTR

Backup

Detailed Granularity Switching

* Scale-up (Fine = Coarse)

CTR
Tree
B = 1+MAX

MAC OOOOO0O00O 0 HASHOOOOOOOO 0 0000 ® OOO0O
Data [T] [T T 1] [T T 1]

<>
Coarse-grained
1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-down (Coarse = Fine)

MAC o 0000 o 0000 OOQQQQQO
Data | [T T 1] |_|h||||||||| [T T 1]
<> as
Fine-grained ““ 3) Replace MAC/CTR and
1) Detect scale-down 2) Compute new MAC/CTR restore CTR tree

Backup

Detailed Granularity Switching

* Scale-up (Fine - Coarse)

MAC OOOOO0O00O 0 HASHOOOOOOOO 0 0000 ® OOO0O
Data [T [T T 1] [T T 1]

<>
Coarse-grained
1) Detect scale-up 2) Compute new MAC/CTR 3) Replace MAC/CTR 4) Prune CTR tree

* Scale-down (Coarse = Fine)

MAC o 0000 o 0000 OOOOOOOO
Data | [T T 1] Hh||||||||| [T T 1]
<> as
Fine-grained ““ 3) Replace MAC/CTR and
1) Detect scale-down 2) Compute new MAC/CTR restore CTR tree

Granularity switching requires significant overhead! - Lazy switching

Backup

Lazy Switching Overhead by MAC

Lazy Switching Overhead by MAC

o 0000
Coarse MAC = HASH (Fine MACs)

Lazy Switching Overhead by MAC

o 0000
Coarse MAC = HASH (Fine MACs)
* Scale-up

Lazy Switching Overhead by MAC

o 0000
Coarse MAC = HASH (Fine MACs)
* Scale-up
0000 0000
(I T T

Coarse-detection

Backup

Lazy Switching Overhead by MAC

o 0000
Coarse MAC = HASH (Fine MACs)

* Scale-up
Q000 Q000 O O
T T 1] T I T 1 I

Coarse-detection ® = HASHO OO 0O)

Backup

Lazy Switching Overhead by MAC

o 0000
Coarse MAC = HASH (Fine MACs)

* Scale-up
Q000 Q000 O O
T T 1] T I T 1 I

Coarse-detection ® = HASHO OO 0O)

* Scale-down

Backup

Lazy Switching Overhead by MAC

o 0000
Coarse MAC = HASH (Fine MACs)

* Scale-up
Q000 Q000 O O
T T 1] T I T 1 I

Coarse-detection ® = HASHO OO 0O)

* Scale-down
® ®
I T CT T 1]

Fine-detection

Backup

Lazy Switching Overhead by MAC

o 0000
Coarse MAC = HASH (Fine MACs)

* Scale-up
Q000 Q000 O
T T 1] T I T 1

Coarse-detection ® = HASHO OO 0O)

* Scale-down

o o 0000
Fine-detection R/O: Load OO OO
None-R/O: Load T 1171 &
Compute OO OO

0000

Backup

Lazy Switching Overhead by MAC

o 0000
Coarse MAC = HASH (Fine MACs)

* Scale-up
Q000 Q000 O
T T 1] T I T 1

Coarse-detection ® = HASHO OO 0O)

* Scale-down

[o 0000
Fine-detection R/O: Load OOOO oyerhead!!
None-R/O:|Load [T 1T 1T7|&
Compute OO L O

0000

Backup

Lazy Switching Overhead by MAC
= 97.2% of reqs = Hidden by lazy switching & R/O

= Only 2.8% of regs makes moderate overhead (Id data chunks)

o 0000
Coarse MAC = HASH (Fine MACs)

* Scale-up
Q000 Q000 O O
T T 1] T I T 1 I

Coarse-detection ® = HASHO OO 0O)

* Scale-down

[o 0000 O000O
Fine-detection R/O: Load OOOO oyerhead!!

None-R/O:|Load [T 1T 1T7|&
Compute OO O O

Backup

Lazy Switching Overhead by MAC
= 97.2% of reqs = Hidden by lazy switching & R/O

= Only 2.8% of reqs makes moderate overhead (Id data chunks)

L 0000
Coarse MAC = HASH (Fine MACs)

* Scale-up
Q00O 0000 o o
Coarse-detection ® = HASHO OO 0O)
* Scale-down
o o Q00O Q00O
Fine-detection R/O: Load OOOO oyerhead!!
None-R/O:|Load [T 11T |&
Compute OO L O

Lazy switching considerably reduces switching overhead!!

Backup

Lazy Switching Overhead by CTR Tree

Lazy Switching Overhead by CTR Tree

Granul.
detection

Lazy Switching Overhead by CTR Tree

Granul. _, ~ Store
detection = next granul.

Lazy Switching Overhead by CTR Tree

Granul. Store Granul. switch
! — —
detection = next granul. = after next access

Lazy Switching Overhead by CTR Tree

Granul.
detection

Store
next granul.

Granul. switch
after next access

Read Write Scale Scale
[$] Cached Down Up

Backup

Lazy Switching Overhead by CTR Tree

Granul. Store Granul. switch
. = —
detection = next granul. = after next access

Read Write Scale Scale
[$] Cached Down Up

* Scale-up with WAR/WAW

15 48

Write Scale

Backup

Lazy Switching Overhead by CTR Tree

Granul. _, ~ Store _ Granul. switch
detection = next granul. ~ after next access

Read Write Scale Scale
[$] Cached Down Up

* Scale-up with WAR/WAW * Scale-up with RAW

Metadata _ .
Cache |

Write Scale Scale
Up

Backup

Lazy Switching Overhead by CTR Tree

Granul. _, ~ Store _ Granul. switch
detection = next granul. ~ after next access

Read Write Scale Scale
[$] Cached Down Up

* Scale-up with WAR/WAW * Scale-up with RAW

Metadata _ .
Cache |

Write Scale Scale
Up

* Scale-up W|th RAR

25 48

Read Scale

u
g Backup

Lazy Switching Overhead by CTR Tree

Granul. _, ~ Store _ Granul. switch
detection = next granul. ~ after next access

Read Write Scale Scale
[$] Cached Down Up

* Scale-up with WAR/WAW * Scale-up with RAW

Metadata _ .
Cache |

Write Scale Scale
Up

* Scale-up W|th RAR

Overhead!! Ef! :

Read Scale

u
g Backup

Lazy Switching Overhead by CTR Tree

Granul. Store

* Scale-up with WAR/WAW

15 48

Write Scale

* Scale-up W|th RAR

Overhead!! Ef! :

Read Scale
Up

Granul. switch
. = —
detection = next granul. ~ after next access

Read Write Scale Scale
[$] Cached Down Up

* m with RAW

Metadata_:—_
5 : Cache gf%

Write Scale
Up
* Scale-down
Write Read Scale
Down

Backup

Lazy Switching Overhead by CTR Tree
= 91.29% of reqs - Hidden by lazy switching

= Only 8.2% of regs makes low overhead (read req > write req)

Granul. _, ~ Store _ Granul. switch
detection = next granul. — after next access

Read Write Scale Scale
[$] Cached Down

* Scale-up with WAR/WAW * Scale-up with RAW

- _ Metadata .
.| Cache ||

Write Scale Scale

* Scale-up W|th RAR * Scale-down
Overhead!! Ef! : : i i
Read Scale Write Read Scale
Up Down

Backup

Pros of Matching Granularity

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity

CTR
- D/qu?\m

MAC OOOOO0OO0O0O0O0O0O0OO0OO0O
L\ WAA I IATAIAIAIAIAAAIAIAIALAIA IR, WWWWM

Backup

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity

CTR

MAC OOO0C00000O00000O0O

Data LX XXX TN VA WWWW
<> <>
Coarse Req Coarse Req

Coarse Regs

Backup

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity
CTR i
g I S
MAC %@OOOOOOO 00000 O O O O
Data 27
<> <>
Coarse Req Coarse Req

CoarseReqgs ®m X4 @©X4 mX9

Backup

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity
CTR
Tree]/ql:l\

I [F\D
YrYoelelelel I I I Jelelololelelol® D O) O
Data XXX I I I Lo o o000 G oA o T
> >
Coarse Req Coarse Req

CoarseReqgs ®m X4 @©X4 mX9 mX4 oX1 mX3

Backup

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity
CTR
Ieelelelel I I I Jelolelelololel® O O O O
Data LX XXX TN VA
Coarse Req Coarse Req

CoarseRegs ®mX4 ©X4 mX9 mX4 oX1 mX3|Good

Backup

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity
CTR
Ieelelelel I I I Jelelelelol lel® O O O O
Data LX XX XXX TNV TN
Coarse Req Fine Req Coarse Req Fine Req
CoarseRegs ®mX4 ©X4 mX9 mX4 oX1 mX3|Good

Fine Reqs

Backup

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity
CTR
]
Ieelelelel I I'] lelelelelol lel® O O O O
Data EZE2220 e 77 7 I DI
Coarse Req Fine Req Coarse Req Fine Req
CoarseRegs ®mX4 ©X4 mX9 mX4 oX1 mX3|Good

Fine Reqs X1 oX1 mX5

Backup

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity
CTR
‘relelelel I I I Jelolelelolclol® O O O O
Data XXX XXX X I T T
Coarse Req Fine Req Coarse Reqg Fine Req
CoarseRegs ®mX4 ©X4 mX9 mX4 oX1 mX3|Good

Fine Reqs X1 oX1 mX5 X4 oX1 BX3

Backup

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity
CTR
Ieelelelel I I I Jelelelelol lel® O O O O
Data LX XX XXX TNV TN
Coarse Req Fine Req Coarse Req Fine Req
CoarseRegs ®mX4 ©X4 mX9 mX4 oX1 mX3|Good

Fine Reqgs X1 oX1 mX5|Good #=X4 oX1 mX3

Backup

Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty

Fine Granularity Coarse Granularity
CTR
Ieelelelel I I I Jelelelelol lel® O O O O
Data LX XX XXX TNV TN
Coarse Req Fine Req Coarse Req Fine Req
Coarse Regs m X4 oX4 mX9 mX4 X1 mX3|Good

Fine Reqs X1 oX1 mX5|Good #=X4 oX1 mX3

Granularity-managed MAC&tree makes efficient memory protection

Backup

Prior Domain-specific Memory Protections

= No prior study using integrity tree pruning or
multi-granular MAC&counter

Prior Domain-specific Memory Protections

= No prior study using integrity tree pruning or
multi-granular MAC&counter

1. Dual-granular & GPU-optimized Counter 1

Miss
Counter Limited set of
Requests |:> |:> Counter

Dual CTRs, limited CTRs,

CTR-only, device-specific

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Backup

Prior Domain-specific Memory Protections

= No prior study using integrity tree pruning or
multi-granular MAC&counter

1. Dual-granular & GPU-optimized Counter 1
Count L d f Mis

ounter imited set o
Requests E> |:> Counter

2. Dual-granular MAC 2
[Coarse MAC]

MAC |:> OR
Requests
9 . Fine MAC |

Dual MACs, MAC-only

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

Dual CTRs, limited CTRs,

CTR-only, device-specific

Backup

Prior Domain-specific Memory Protections

= No prior study using integrity tree pruning or
multi-granular MAC&counter

1. Dual-granular & GPU-optimized Counter 1

Counter |:> Limited set of
Requests Coarse Counters

2. Dual-granular MAC 2 3. S/W Counter 3-6]
[Coarse MAC]

MAC Counter Tree-less
Requests E> OR Requests E>

" Fine MAC |

Dual MACs, MAC-only

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

[3] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)
[4] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[5] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

[6] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022)

Dual CTRs, limited CTRs,

CTR-only, device-specific

Backup

Prior Domain-specific Memory Protections

= No prior study using integrity tree pruning or
multi-granular MAC&counter

1. Dual-granular & GPU-optimized Counter 1

Counter |:> Limited set of
Requests Coarse Counters

2. Dual-granular MAC 2 3. S/W Counter 3 4. S/W MAC 4
[Coarse MAC]

MAC Counter Tree-less MAC Multi
Requests E> OR Requests E> Requests E>

" Fine MAC |

Dual MACs, MAC-only

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

[3] TNPU: Supporting Trusted Execution with Tree-less Integrity Protection for Neural Processing Unit (HPCA 2022)

[4] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[5] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

[6] SoftVN: Efficient Memory Protection via Software-provided Version Numbers (ISCA 2022) Backup

Dual CTRs, limited CTRs,

CTR-only, device-specific

Detailed of Counter-mode Protection

Detailed of Counter-mode Protection

Secure

Unsecure
Off-chip

Ciphertext

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

Secure

Unsecure
Off-chip

Ciphertext

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

I CTR-mode Encryption

Secure

Unsecure
Off-chip

of write-back Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

Plaintext

Encryption
Engi

Data Addr

Ciphertext

I CTR-mode Encryption

Secure

Unsecure
Off-chip

Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

= MAC authentication: value-integrity

Plaintext

Encryption
Engi

Data Addr

Ciphertext

I CTR-mode Encryption

Secure

Unsecure
Off-chip

Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

= MAC authentication: value-integrity

Data Addr

Plaintext

Encryption
Engi

Hash (Ciphertext)

MAC | Ciphertext

I CTR-mode Encryption
|| MAC Authentication

Secure

Unsecure
Off-chip

Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

= MAC authentication: value-integrity

Plaintext

MAC

Encryption

Au"Ehenticator) [=ple]

Data Addr

MAC

Ciphertext

I CTR-mode Encryption
|| MAC Authentication

Secure

Unsecure
Off-chip

Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

= MAC authentication: value-integrity

ABORT
Modified I

Plaintext

MAC

Encryption

[=ple]

Au"Ehenticator)

Data Addr

MAC | Ciphertext

I CTR-mode Encryption
|| MAC Authentication

Secure

Unsecure
Off-chip

Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

= MAC authentication: value-integrity

= Freshness validation: replay-attack

ABORT
Modified I

Plaintext

MAC

Encryption

[=ple]

Au"Ehenticator)

Data Addr

MAC | Ciphertext

I CTR-mode Encryption
|| MAC Authentication

Secure

Unsecure
Off-chip

Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality
= MAC authentication: value-integrity

= Freshness validation: replay-attack

I CTR-mode Encryption
[] MAC Authentication
[| Freshness Validation

Recursive
ABORT Plaintext| Validation
Modified I
MAC PN Encryption
Au"Ehenticator [=ple]

Secure

Unsecure

Data Addr Off-chip

MAC Ciphertext

Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

= MAC authentication: value-integrity

= Freshness validation: replay-attack

ABORT
Modified I

Plaintext

MAC

Encryption

[=ple]

Au"Ehenticator)

I CTR-mode Encryption
|| MAC Authentication

[| Freshness Validation

Root Node

CTR| ... CTR Hash

\ 4

Data Addr

MAC | Ciphertext

Freshness
Validation Engine
Tt 1 Secure
_______________________________________ On-chip
Unsecure
CTR| ... |CTR|Hash Off-chip
CTR|Hash| ¢+ |CTR| ... |CTR|Hash

Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

= MAC authentication: value-integrity

= Freshness validation: replay-attack

ABORT
Modified I

Plaintext

MAC

Encryption

[=ple]

Au"Ehenticator)

I CTR-mode Encryption
[] MAC Authentication
[| Freshness Validation

Data Addr

MAC | Ciphertext

Root Node
CTR| ... CTR Hash
Freshness —’M ABORT
Validation Engine
T 1 Secure
_______________________________________ On-chip
Unsecure
CTR| ... |CTR |Hash Off-chip
CTR|Hash| ¢+ |CTR| ... |CTR|Hash

Backup

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality
= MAC authentication: value-integrity

= Freshness validation: replay-attack

Ciphertext

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality
= MAC authentication: value-integrity

= Freshness validation: replay-attack

Ciphertext

CTR
Tree

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality
= MAC authentication: value-integrity

= Freshness validation: replay-attack

Ciphertext
_______ Y.
! MAC .}
_____________ Critical factors for perf. & traffic.
1. Amount of loaded CTRs/MACs
-»

Tree

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality
= MAC authentication: value-integrity

= Freshness validation: replay-attack

Ciphertext

! MAC .}

N T:"_"_"_"_"T:"_"""% Critical factors for perf. & traffic.
1. Amount of loaded CTRs/MACs
2. Height of a counter tree
bl

Tree

Detailed of Counter-mode Protection

= CTR-mode encryption: confidentiality

= MAC authentication: value-integrity

= Freshness validation: replay-attack

_Granularity

Ciphertext

4 Critical factors for perf. & traffic.

1. Amount of loaded CTRs/MACs
2. Height of a counter tree

- Security granularity

Combined with Prior CTR Tree Optimization

Combined with Prior CTR Tree Optimization

= Prior hotness-based integrity tree optimization scheme
(Subtree optimization)u-«

Prior Subtree Optimization

0]0]0]0]0]0]0]0]6]0]0]0]0]0]6]e)
(NN N N N O B B R

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)

[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Backup

Combined with Prior CTR Tree Optimization

= Prior hotness-based integrity tree optimization scheme
(Subtree optimization)u-«

= Caching highly used roots of subtrees

Prior Subtree Optimization

0]0]0]0]0]0]0]0]6]0]0]0]0]0]6]e)
(NN N N N O B B R

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)

[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Backup

Combined with Prior CTR Tree Optimization

= Prior hotness-based integrity tree optimization scheme
(Subtree optimization).«
= Caching highly used roots of subtrees

= Pruned unused nodes

Prior Subtree Optimization

0]0]0]0]0]0]0]0]6]0]0]0]0]0]6]e)
(NN N N N O B B R

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)

[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Backup

Combined with Prior CTR Tree Optimization

= Prior hotness-based integrity tree optimization scheme
(Subtree optimization).«
= Caching highly used roots of subtrees

= Pruned unused nodes

Prior Subtree Optimization Ours

0]0]0]0]0]0]0]0]6]0]0]0]0]0]6]e)
(N N N B O Iy | | [L [11

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)

[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Backup

Combined with Prior CTR Tree Optimization

= Prior hotness-based integrity tree optimization scheme
(Subtree optimization).«
= Caching highly used roots of subtrees

= Pruned unused nodes

Prior Subtree Optimization QOurs Ours + Prior

0]0]0]0]0]0]0]0]6]0]0]0]0]0]6]e)
(N N N B O Iy | | LT T 1 1] | | L L1 11

[1] Bonsai Merkle Forests: Efficiently Achieving Crash Consistency in Secure Persistent Memory (MICRO 2021)
[2] Scalable Memory Protection in the PENGLAI Enclave (OSDI 2021)

[3] Efficient Distributed Secure Memory with Migratable Merkle Tree (HPCA 2023)

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)

Backup

Combined with Prior CTR Tree Optimization

= Prior hotness-based integrity tree optimization scheme
(Subtree optimization).«
= Caching highly used roots of subtrees

= Pruned unused nodes

Prior Subtree Optimization Ours + Prior

- e

T T o
0000000000000000 O O O 0000

Multi-granular MAC&Tree further improves prior solutions!!

[4] Data Enclave: A Data-Centric Trusted Execution Environment (HPCA 2024)
Backup

Design of Multi-granular MAC&Tree

Design of Multi-granular MAC&Tree

1. Granularity Switching

Design of Multi-granular MAC&Tree

1. Granularity Switching 2. Granularity Detection

Design of Multi-granular MAC&Tree

3. Multi-granularity

1. Granularity Switching 2. Granularity Detection Memory Protection

Design of Multi-granular MAC&Tree

3. Multi-granularity

1. Granularity Switching 2. Granularity Detection Memory Protection

CTR
Tree

MAC OOOOO0OOO
Data T T 1T T 1T 1]

<>
Coarse-grained

Data | [[[1]

MAC/CTR Merging
& CTR Tree Pruning

Backup

Design of Multi-granular MAC&Tree

3. Multi-granularity

1. Granularity Switching 2. Granularity Detection Memory Protection

CTR
Tree

MAC OOOOO0OOO
Data T T 1T T 1T 1]

<>
Coarse-grained

MAC ® 0000

Data | [[[1]

MAC/CTR Merging Dynamic Access Tracking
& CTR Tree Pruning

Backup

Design of Multi-granular MAC&Tree

3. Multi-granularity

1. Granularity Switching 2. Granularity Detection Memory Protection

CTR Accesswn TIIII1]
Tree Tracker [=======" |
MAC 00000000 Addr | Access Bits
Data LT 1T 1T 1171

<>
Coarse-grained

MAC ® 0000

Data | [[[1]

MAC/CTR Merging Dynamic Access Tracking
& CTR Tree Pruning

Backup

Design of Multi-granular MAC&Tree

3. Multi-granularity

1. Granularity Switching 2. Granularity Detection Memory Protection

CTR Accesswn TITTTL

Tree Tracker [|

MAC 00000000 Addr | Access Bits

Data [T

<>
Coarse-grained @

Granul.
Detection:(<<)+),
Engine

MAC ® OO0OO0O

Data | [T T 1]

MAC/CTR Merging Dynamic Access Tracking

& CTR Tree Pruning

Backup

Design of Multi-granular MAC&Tree

3. Multi-granularity

1. Granularity Switching 2. Granularity Detection Memory Protection

CTR Accesswn TITTTL
Tree Tracker s |
MAC OOOOO0000 Addr | Access Bits
Data T T T 1T 1T 171
<>
Coarse-grained
Granul.
Detection:(<<)+),
Engine U """""""""
i Granularity
MAC ®@ 0000 Table
Data | [T T 11
MAC/CTR Merging Dynamic Access Tracking

& CTR Tree Pruning

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching 2. Granularity Detection

CTR
Tree

MAC OOOOOOO0O
Data 1T 1T T 1171
<>
Coarse-grained

CTR
Tree

MAC ® 0000
Data | L T T 71

MAC/CTR Merging
& CTR Tree Pruning

3. Multi-granularity
Memory Protection

Accesswn TIIIIL
Tracker

|

|

[B— — — —— — —

e e g

Addr ' Ac:ces:s Bi:ts

Granul.

Engine

Granularity
Table

Dynamic Access Tracking Granularity-aware Protection

Backup

Design of Multi-granular MAC&Tree

3. Multi-granularity

1. Granularity Switching 2. Granularity Detection Memory Protection

CTR Access | (E TTITTT CTRIMAC
Tracker [[=2reerrr | Cloa) ALU).
Tree fac /I:L -------------------- . Compute ..<IOq><ALU>
= T T T T |\\ Engine
MAC OOOO0OO0O0O0OO Addr - Access Bits
Data LT 11T 1T 171
<>
Coarse-grained
Granul.
Detection:(<<)+),
Engine _
o <
Tree
N Granularity
MAC ® OO0O0 Table
Data | [T 111
MAC/CTR Merging Dynamic Access Tracking Granularity-aware Protection

& CTR Tree Pruning

Backup

Design of Multi-granular MAC&Tree

1. Granularity Switching 2. Granularity Detection

CTR
Tree

MAC OOOOOOO0O
Data 1T 1T T 1171
<>
Coarse-grained

CTR
Tree

MAC ® 0000
Data | L T T 71

MAC/CTR Merging
& CTR Tree Pruning

3. Multi-granularity
Memory Protection

1,Q‘ccc?(ss rﬁmlll T1L) CTAF;/' Cl\l/'rAC _____________________

racker [V | " :

/,,'— -------------------- - Compute Lcloq DCALU)
BN Engine

Addr ' Ac:ces:s Bi:ts |

Granul. Data = .
Detection!(<<)(_+) i m
Engine 'D_ _____
<£:]7v >}
Granularity [CIR]
Table Multi-granular Mem.

Protection Engine

Dynamic Access Tracking Granularity-aware Protection

Backup

Design of Multi-granular MAC&Tree

Design of Multi-granular MAC&Tree

Granularity
Switching
4 I

Design of Multi-granular MAC&Tree

Granularity
Switching
a I

Granularity Detection

Design of Multi-granular MAC&Tree

Granularity

Switching

/

\

Multi-granularity based Memory Protection

-

~

Granularity Detection

Design of Multi-granular MAC&Tree

Multi-granularity based Memory Protection

Granularity

Switching [I
4 I
_ VAN J
Granul.
Table
\
J

Granularity Detection

Design of Multi-granular MAC&Tree

Multi-granularity based Memory Protection

Granularity
Switching 4 N\
a I
_ N J
Granul. — - —
Table - 1 B
. —~Addr— Granul.
\ i | |
J

Granularity Detection

Design of Multi-granular MAC&Tree

Granularity Multi-granularity based Memory Protection

Switching [Address I
e ™~ |

y

Additional_> Granul.
Data Switching

_ VAN J

Granul. \
Granul. — - —
Table

—~Addr—+ Granul. -

Granularity Detection

Design of Multi-granular MAC&Tree

Multi-granularity based Memory Protection

Granularity
Switching / Address \
V- ~ |
Additional_> Granul.
Data Switﬁhinq
_ A)
Granul. \
rand Granul. - T
Table i 1
/ S \ —~Addr— Granul.
Access |~ JTITI]] oL L
Tracker ((=ereeer

Granularity Detection

Backup

Design of Multi-granular MAC&Tree

Multi-granularity based Memory Protection

Granularity
Switching / Address \
V- ~ |
Additional_> Granul.
Data Switching
_ A)
Granul. \
rand Granul. - T
Table i 1
/ > \ —~Addr— Granul.
Access |~ JTITI]] oL L
Tracker (lemeeesr
k Addr Ac:ces:s Bi:ts /

Granularity Detection

Backup

Design of Multi-granular MAC&Tree

Multi-granularity based Memory Protection

Granularity ~
Switching / Address
- ~ |
Additional_> Granul.
Data Switching
- N J
Granul. \
Granul. — - —
Table - 1 B
- —~Addr— Granul. -
/ __________________ Evicted \ — —+ —
Access | (T[] Entries Granul. ~——= /" i i B
Tracker [> Detection! - <<+
k Addr Ac:ces:s Bi:ts /

Granularity Detection

Backup

Design of Multi-granular MAC&Tree

Granularity

Multi-granularity based Memory Protection

Switching / Address \
- ~ |
Additional_> Granul.
Data Switching
_ A)
Granul. \
Granul. - T N
Table - 1 B
. —Addr— Granul. -
v 4 N
/ ____________________ Ev|cted 1 Updatex\ 1 _|
Access [11 Entries Granul. ~——= /"= | i |
Tacker {(Semaeeer = petection <<+
Addr Ac:ces:s Bi:ts

\

Granularity Detection

Backup

Design of Multi-granular MAC&Tree

Granularity

Multi-granularity based Memory Protection

Switching 4 Address N
s ™~ |
Additional_,| Granul. | |[CTR/MAC l __________
Data Switching| | Address |(_log) C ALU)!
1 Compute ,
N NS 1 Granu_l._ __________ %
Granul. \
rand Granul. B T 7]
Table N i |
. ~Addr-— Granul.
i 4
/ ____________________ Ev|cted 1 Updatex\ £ _
Access | [[111 Entries Granul. j~——=/ -~} | | -
Tracker ((Semeasr =+ petection <<+
k Addr Ac:ces:s Bi:ts /

Granularity Detection

Backup

Design of Multi-granular MAC&Tree

Granularity

Multi-granularity based Memory Protection

Switching [Address I
/ ™~ I
Additional_,| Granul. | |[CTR/MAC l __________ % Ffj/r'\g?f CTR/MAC
Data Switching| | Address :(_log) C ALU)i ———> ot
5 Compute -~ orage
N NS 1 Granu_l._ __________ %
Granul. \
rand Granul. - T 7
Table - 1 _
S —~Addr— Granul. -
v 4 S
/ ____________________ Ev|cted 1 Updatex\ 1]
Access [T 111 Entries Granul. [~——=~/~"] | 1 _
Tracker ((Semeasr =+ petection <<+
k Addr Ac:ces:s Bi:ts /

Granularity Detection

Backup

Design of Multi-granular MAC&Tree

Granularity

Multi-granularity based Memory Protection

Switching / Address \
- ~ I
. v l CTR/MAC
Additional _,| Granul. | |(CTR/MAC "~ A
Data Switching | Address (log)CALUD! Ledic: C;cR/ MAC| CTR/MAC PMeJ.(mc;_ry
7y Compute . orage rotection
_ AN TGranu_I._ __________ -
Granul. \
rand Granul. — - —
Table - 1 B
S —Addr— Granul. -
v * \\
/ ____________________ Ev|cted 1 Updatex\ 1 _|
Access (T[] Entries Granul. ~——= /" i i |
Tracker (((==25me = Detection - <5 C *+)
k Addr Ac:ces:s Bi:ts /

Granularity Detection

Backup

Recent Memory Protection Studies

Recent Memory Protection Studies

Study Target Multi Int. Tree Multi Dynamic Target

CTR Opt. MAC Update App.
SoftViv CPU @) X X X ML-specific
Common GPU Dual X X X General
Counters
Adaptive GPU X X Dual O General
TINPU NPU O X X X ML-specific
funable 0 Sub X General
Tree Optimal
MGX NPU O X O X ML-specific
GuardNiv NPU O X X X ML-specific
TensorTEE CPU+NPU @) X O O ML-specific
Ours CPU+GPU 0] Optimal o) o) General

+NPU

Backup

Prior Integrity Tree Optimization

Prior Integrity Tree Optimization

Multi Int. Tree Multi Dynamic Target
Sitlely Target CTR Opt. MAC Update App.
Bonsal Merkle CPU X Sl.Jb X X General
Forests Optimal
PENGLAI GPU x S X X General
Optimal
Migratable Sub
Merkle Tree GPU X Optimal X X General
Sub
Data Enclave NPU X : X X General
Optimal
Ours CPU+GPU O Optimal O O General

+NPU

Backup

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

= Coarse-MAC & counter encryption, integrity validation

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

= Coarse-MAC & counter encryption, integrity validation
- CTRcourse(l k) T MAX(CTRfine 1 CTRfine 2, CTRfine k)

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

= Coarse-MAC & counter encryption, integrity validation
- CTRcourse(l k) T MAX(CTRfine 1 CTRfine 2, CTRfine k)

. MACcourse(l k) —
HASH(--- HASH(HASH(MACﬁne 1)) MACfine o) MACfine i)

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

= Coarse-MAC & counter encryption, integrity validation

" CTReourse(- k) = MAX(CTRfine 1, CTRfine 2, CTRfine k)
. MACcourse(l k) —
HASH(--- HASH(HASH(MACﬁne 1)) MACfine o) MACfine i)

512B

CTRcourse (1---8)

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

= Coarse-MAC & counter encryption, integrity validation
- CTRcourse(l k) T MAX(CTRfine 1 CTRfine 2, CTRfine k)

- MACcourse(l k) —
HASH(--- HASH(HASH(MACﬁne 1)) MACfine o) MACfine i)

512B
Block
Cipher
Block Addril
Cipher
Block

Addr8

CTRcourse (1---8)

Backup

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

= Coarse-MAC & counter encryption, integrity validation
- CTRcourse(l k) T MAX(CTRfine 1 CTRfine 2, CTRfine k)

- MACcourse(l k) —
HASH(--- HASH(HASH(MACﬁne 1)) MACfine o) MACfine i)

512B Block
___________________________ oC

Addr1l

OTP7

OTP8 «

CTRcourse (1---8)

Backup

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

= Coarse-MAC & counter encryption, integrity validation
- CTRcourse(l k) T MAX(CTRfine 1 CTRfine 2, CTRfine k)

- MACcourse(l k) —
HASH(--- HASH(HASH(MACﬁne 1)) MACfine o) MACfine i)

512B 64B Block
_________________________________ 0]®

’) Addr1l
r OTP7

------ > OTPS |«

CTRcourse (1---8)

Backup

Encryption & Integrity Validation using
Coarse-grained MAC & Counter

= Coarse-MAC & counter encryption, integrity validation

" CTReourse(- k) = MAX(CTRfine 1, CTRfine 2, CTRfine k)

- MACcourse(l k) —

HASH(:+- HASH(HASH(MAC fine 1), MACsine 2), =+, MACsine 1)

5128 64B
------][XOR
A1 xorR
------][XOR

OTP1

e Block
Cipher

Addr1l

OTP7

OTP8 «

CTRcourse (1---8)

Backup

Address of MAC & Counter

Address of MAC & Counter

= Chunk-level index computation

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

= e e e e e e e e e = = e e e = e e e e e e e e e e e e o e e e e e ek e e e e e e e e

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1

Chunk Index: 2

(MAC Base Index)

L e e e e e e e et e e e e e e e e ==

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1

Chunk Index: 2

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)

L e e e e e e e et e e e e e e e e ==

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1

Chunk Index: 2

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
=10*1=10

L e e e e e e e et e e e e e e e e ==

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1

Chunk Index: 2

(MAC Base Index)
= (# of MACs per Chunk) * (Chunk Index)
=10*1=10

v
(MAC Offset Index)

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

_____ ChunkIndex: 0 ~_ _ ChunklIndex:1 ChunkIndex: 2
011(2(3 jl 5(6171819
A e T

(MAC Base Index) (MAC Offset Index)

= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

_____ ChunkIndex: 0 ~_ _ ChunklIndex:1 ChunkIndex: 2
011(2(3 jl 5(6171819
A e T

(MAC Base Index) (MAC Offset Index)

= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10 =8/2=4

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

v *
(MAC Base Index) (MAC Offset Index)
= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10 =8/2=4

(MAC Index)

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2
012344156789 oee
A e T
(MAC Base Index) (MAC Offset Index)
= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10 =8/2=4
(MAC Index)

= (MAC Base Index) + (MAC Offset Index) = 14

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2
0123?56789 oee
Ty e
(MAC Base Index) (MAC Offset Index)
= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10 =8/2=4
(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14
v

(CTR Leaf Index) = 14

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2
011(2(3 jl 5617189
Ty e

(MAC Base Index) (MAC Offset Index)
= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10 =8/2=4
(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14
v

(CTR Leaf Index) = 14

(# of Parents)

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2
011(2(3 jl 5617189
Ty e

(MAC Base Index) (MAC Offset Index)
= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10 =8/2=4
(MAC Index)
= (MAC Base Index) + (MAC Offset Index) = 14
v

(CTR Leaf Index) = 14

(# of Parents)
= sqrt{Arity}(Granularity)

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

v *
(MAC Base Index) (MAC Offset Index)
= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10 =8/2=4

MAC Index
= (MAC Base Index) + (MAC Offset Index) = 14

v
(CTR Leaf Index) = 14
v

(# of Parents) . (CTR Index)
= sqrt{Arity}(Granularity)

Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

v *
(MAC Base Index) (MAC Offset Index)
= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10 =8/2=4

MAC Index
= (MAC Base Index) + (MAC Offset Index) = 14

v
(CTR Leaf Index) = 14
v

(# of Parents) . (CTR Index)
= sqrt{Arity}(Granularity) = Parent(Parent(....(Parent(CTR Leaf Index))))

Workload Analysis & Selected Scenarios

Workload Analysis & Selected Scenarios

» Workloads & Scenarios

Workload Analysis & Selected Scenarios

» Workloads & Scenarios

= 14 workloads, 250 scenarios (all combinations)
= Access pattern: Fine — ff — f — ¢ — cc — Coarse | Diverse (d)
= Traffic per cycles: Small (s) — Medium (m) — Large (1)

Workloads (access pattern-traffic per cycles)

CPU bw (ff-s), gcc (ff-s), mcf (ff-m), xal (f-m), ray (ff-s)

GPU syr2k (ff-m), pr (f-m), sten (c-I), mm (cc-m), floyd (d-s),

NPU ncf (c-s), dirm (c-s), sfrnn (c-1), alex (cc-m)
ID (CPU, GPU, NPU1, NPU2)
ff (bw, syr2k, ncf, dirm), (mcf, syr2k, sfrnn, dirm), (gcc, floyd, sfrnn, ncf)
f (xal, pr, sfrnn, ncf), (xal, pr, ncf, ncf)

¢ (gcc, sten, alex, dlrm), (bw, sten, ncf, ncf), (mcf, sten, sfrnn, sfrnn)
cc (xal, mm, alex, dirm), (ray, mm, alex, alex), (ray, Floyd, alex, alex)

Rowhammer Attacks

codela:

1
2 mov (X), %eax
3 mov (Y), %ebx 0
4 clflush (X)
5 clflush (Y)

6

7

mfence
jmp codela

Bit-flipry RamBleed2

Intelligence

[1] Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (ISCA 2014)

[2] RAMBIeed: Reading Bits in Memory Without Accessing Them (S&P 2020)
[3] DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips (USENIX Security 2020)

Backup

More Design Descriptions in Our Paper

= Lazy-switching analysis
= Cacheline fragmentation issue
= CTR/MAC addressing for multi-granularity

= Coarse-grained memory protection engine using
parallel counter sharing and nested MAC hasing

= Misprediction handler
= Efficient granularity representation
= Hardware overhead

= Comparison to prior subtree optimization schemes

More Results in Our Paper

The ratio of stream chunks

Performance analysis of selected scenarios
End-to-end performance

Drawbacks of the per-device (static) granularity
Performance comparison with dual-granularity
Switching overhead measurement

Security cache hit ratio improvement

Hardware overhead

Temp Slide

Research Objective

Constructs a general and efficient memory protection scheme

for heterogeneous processors

Temp

Research Objective

Constructs a general and efficient memory protection scheme

for heterogeneous processors

= Challenge 1: Heterogeneous processors have diverse access pattern

Conventional Memory Protection: High Overhead
/ System-on-a-Chip (SoC) based \ Slow

Heterogeneous Processor Y
ST L _||||||||_ I I HD#DE:d
E 19— YE — L — | ==
J|CPU|E J|GPUlE |NPU
ké E o °:_| I_J
||||||||||||||||| UL

Temp

Research Objective

Constructs a general and efficient memory protection scheme

for heterogeneous processors

= Challenge 1: Heterogeneous processors have diverse access pattern

= Challenge 2: Each prior protection only for a specific access pattern

Conventional Memory Protection: High Overhead
/ System-on-a-Chip (SoC) based \ Slow

Heterogeneous Processor Y
ST L _||||||||_ I I HD#DE:d
E 19— YE — L — | ==
J|CPU|E J|GPUlE |NPU
\E E o °:_| I_/
||||||||||||||||| UL

Temp

Research Objective

Constructs a general and efficient memory protection scheme

for heterogeneous processors

= Challenge 1: Heterogeneous processors have diverse access pattern

= Challenge 2: Each prior protection only for a specific access pattern

= For example, GPU coarse-grained pattern, NPU software-detected pattern

Conventional Memory Protection: High Overhead
/ System-on-a-Chip (SoC) based \ Slow

Heterogeneous Processor Y
ST L _||||||||_ I I HD#DE:d
E 19— YE — L — | ==
J|CPU|E J|GPUlE |NPU
\E E o °:_| I_/
||||||||||||||||| UL

Temp

Research Objective

Constructs a general and efficient memory protection scheme

for heterogeneous processors

= Challenge 1: Heterogeneous processors have diverse access pattern

= Challenge 2: Each prior protection only for a specific access pattern

= For example, GPU coarse-grained pattern, NPU software-detected pattern

- We unified prior studies with our novel multi-granular tree
Our Unified Memory Protection Scheme

K System-on-a-Chip (SoC) based \ Fast
Heterogeneous Processor

g goung || ¢ %D*E‘ES

GPU NPU| | (oo oo

o o

\; lllllllllllllllll = e T J

@)

U

cC
[ANNNNNN|

Temp

Multi-granular MAC and Counter

= Multi-granular MAC and counter

= Multi-granular MAC and counter fetches small # of MACs and
counters for coarse-grained access

Conventional
Counter OOOOOCCIOOIOOIOCIOC
MAC 0000000000000
EEE R R RN
Data |'|'|'|'|'|'|'|'|I‘| [T T T T T

Multi-granular MAC & Counter

Counter m . ®OO0C0r
MAC ® ® e 0000 1

1 e L o i
Data | : I T T 171711 Low Overhead

|

Multi-granularity can reduce memory protection overhead

However, how maintain a counter integrity tree?

Temp

Prior Memory Protection Schemes

Prior Memory Protection Schemes

Counter-mode Protection

Prior Memory Protection Schemes

Counter-mode Protection

Ciphertext —— |

Temp

Prior Memory Protection Schemes

Counter-mode Protection
Encrxption

Ciphertext i [l (MAC |

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity
Encrxption Prote‘ction

Ciphertext —— m E

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity
Encniption Prote‘ction

Ciphertext

Counter
Tree

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity
Encniption Prote‘ction

Ciphertext

Counter
Tree

v
Replay-attack Protection

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity
Encniption Prote‘ction

Ciphertext —— [&elljic]; |

Recursive

Validation
Counter

Tree

v
Replay-attack Protection

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity

‘Granularity Encryption - Protection

Ciphertext —— [&elljic]; |

Recursive

Validation
Counter

Tree

v
Replay-attack Protection

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity

‘Granularity Encryption - Protection

<«

Ciphertext —— [&elljic]; |

A

Recursive

Validation Tree

Counter Height

Tree

v
Replay-attack Protection

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection

_Granularity Encryption Protection

<«

Ciphertext —— [&elljic]; |

A

Recursive

Validation Tree

Counter Height

Tree

v
Replay-attack Protection

Temp

Prior Memory Protection Schemes

Counter-mode Protection

_Granularity

<«

Ciphertext

Recursive

Validation
Counter

Tree

v
Replay-attack Protection

Integrity
Encniption Prote‘ction

Conventional 64B-granular Protection

Lower is better

1.4
1.3
1.2
1.1

1
0.9
0.8

29% (34%

Unsecure CTR-mode

Norm. Exec. Time
—e—Norm. Data Traffic

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection
Encryiption Proteftion

_Granularity

<

Ciphertext — [#0ligiic]y

Significant overhead

Recursive

Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection

_Granularity Encniption Proteftion

<

Ciphertext — [#0ligiic]y

Significant overhead

Recursive

Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection
Encniption Proteftion

_Granularity

Ciphertext — [#0ligiic]y

Significant overhead

Recursive

Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters (1]

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection

_Granularity Encniption Proteftion

Ciphertext — [#0ligiic]y

Significant overhead

Recursive

Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection

_Granularity Encryption Protection

<«

Ciphertext —— [&elljic]; |

A

Significant overhead

Recursive

Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection —

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity (3-4]

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection
Encniption Proteiction

_Granularity

<

Ciphertext ——» [@6]ijjii=];

Significant overhead

Recursive

Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity [3-4]

Limited set of OR
Coarse Counters Counter
Tree

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection
_Granularity Encniption Proteiction

<

Ciphertext ——» [@6]ijjii=];

Significant overhead

Recursive . - .
Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity [3-4]

Dual CTRs, limited CTRs,

CTR-only, device-specific

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection
_Granularity Encniption Proteiction

<

Ciphertext ——» [@6]ijjii=];

Significant overhead

Recursive . - .
Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity [3-4]

Dual CTRs, limited CTRs, _
CTR-only, device-specific OR

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022)

Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection
_Granularity Encniption Proteiction

<

Ciphertext ——» [@6]ijjii=];

Significant overhead

Recursive . - .
Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity [3-4]

Dual CTRs, limited CTRs, Dual MACs,

CTR-only, device-specific MAC-only

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection
_Granularity Encniption Proteiction

<

Ciphertext ——» [@6]ijjii=];

Significant overhead

Recursive . - .
Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity [3-4]

Dual CTRS, limited CTRS, Dual MACS, Tree-less
CTR-only, device-specific MAC-only + Counter E:>

Tree

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp

Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection
_Granularity Encniption Proteiction

<

Ciphertext ——» [@6]ijjii=];

Significant overhead

Recursive . - .
Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity [3-4]

Dual CTRs, limited CTRs, Dual MACs, Application-specific,

CTR-only, device-specific MAC-only device-specific

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp

