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Secure Heterogeneous Processor

= Heterogeneous processor: SoC with CPU, GPU, NPU
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Secure Heterogeneous Processor

= Heterogeneous processor: SoC with CPU, GPU, NPU

= Data confidentiality & integrity are essential
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Secure Heterogeneous Processor

Memory protection is necessary for heterogeneous processors

[3] Direct Memory Attack the Kernel (DEFCON 2016; PCILeech)
[4] Handbook of Applied Cryptography (Menezes, Alfred J. et. al.)
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= Existing memory protections are tailored to specific,
individual access patterns
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Research Goal

= Existing memory protections are tailored to specific,
individual access patterns
= Common Counters i 2 GPU medium-grained pattern
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Research Goal

= Existing memory protections are tailored to specific,
individual access patterns

= Common Counters i 2 GPU medium-grained pattern
= Studies of S/W-based counters=> NPU S/W-detected pattern

= Heterogeneous processor - diverse access pattern

= A unified memory protection for all access patterns
= Limitation of prior studies: Bypassing integrity tree optimization
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Research Goal

This study constructs a unified memory protection scheme
with integrity tree optimization for heterogeneous processors

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
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Counter-mode Memory Protection
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Counter-mode Memory Protection

= Critical factors of memory protection

= Amount of counters and MACs: Granularity
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Counter-mode Memory Protection

= Critical factors of memory protection
= Amount of counters and MACs: Granularity

= QOverhead of recursive validation: Height of integrity tree
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Counter-mode Memory Protection

= Critical factors of memory protection
= Amount of counters and MACs: Granularity
= QOverhead of recursive validation: Height of integrity tree

= 349% delay with 29% data traffic increment
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Counter-mode Memory Protection

Significant overhead caused by
the conventional 64B-granular protection with a full integrity tree
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Diverse Access Granularity

= Major access chunks (consecutive access blocks)
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Diverse Access Granularity
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Matching security granularity to access granularity

- Requirement: Multi-granularity for MACs and counters

5/16



Multi-granular MAC

Fine--------- +Coarse
OX X )

Conventional | MAC 4y 4y ey YYy
Fine-granular Data [ T T TR T TR N [N N T A A A |
MAC

6/16



Multi-granular MAC

i Q0000000000000 00 IMAC | ]
C_onventlonal MAC RS E NSRS : [l : High
Fine-granular  p,., Fa7a7a0 e ||— 1| Overhead

MAC | _

6/16



Multi-granular MAC

Conventional | MAC {0y Yy YR Y Yy i€ high
Flne- ranUIar ........ [ T O T I I | 1 [
g Data N I .[ 1| Overhead
MAC W @ T
MAC @ © © © © O OO00O
Dual-granular t 4 4+ 4+ 4 AAAd
MAC Data 071 70 17 71 1 TrTrTraT

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
6/16



Multi-granular MAC
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Multi-granular MAC
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Multi-granular MAC
= Multi-granular MAC

= Multi-granular MAC fetches fewer MACs
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Multi-granular MAC
= Multi-granular MAC
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Multi-granular MAC
= Multi-granular MAC

= Multi-granular MAC fetches fewer MACs
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What about multi-granular counters?

[1] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

6/16



Prior Multi-granular Counter



Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass
integrity tree under specific conditions.
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Prior Multi-granular Counter

= Due to integrity tree, prior studies bypass
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Prior Multi-granular Counter

Multi-granular counter integrity tree is necessary
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Multi-granular Counter Integrity Tree
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Multi-granular Counter Integrity Tree

= Multi-granular tree
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Multi-granular Counter Integrity Tree

= Multi-granular tree

= Counters w/ varying granularities are mapped to different levels
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Multi-granular Counter Integrity Tree

= Multi-granular tree

= Counters w/ varying granularities are mapped to different levels

» Fetches fewer counters
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Multi-granular Counter Integrity Tree

= Multi-granular tree
= Counters w/ varying granularities are mapped to different levels

» Fetches fewer counters
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Multi-granular MAC&Tree
= Multi-granular MAC&Tree

= Dynamically supports multi-granular MACs and a counter tree

= Key Idea: Merging MACs/counters & pruning a counter tree
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Granularity Detection (Fine > Coarse)
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Granularity Detection (Fine > Coarse)

= Access tracker
= Records accessed addresses 0>
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Granularity Detection (Fine > Coarse)
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Granularity Detection (Fine > Coarse)

= Access tracker
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Granularity Detection (Fine > Coarse)
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Granularity Switching (Fine > Coarse)
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Granularity Switching (Fine > Coarse)
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Granularity Switching (Fine - Coarse)

Granularity switching requires significant overhead > Lazy switching
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Evaluation Environment

« ChampSim (CPU) + MGPUSIm (GPU) + mNPUsim (NPU)

= Configuration: Similar to NVIDIA Orin
= ARM Cortex CPU + Ampere GPU + 2 x NVDLA with LPDDR4

CPU (Jetson AGX GPU (Jetson AGX

Orin ARM Cortex) Orin Ampere) MAD (WYL
Compute i 45 x 45
Engine 8-core 14 SMs Systolic Array
On-chip Cache Cache Scratchpad Memory
Storage (L1: 64KB, L2: 2MB) (L1: 192 KB, L2: 4MB)  (2.2MB in total)
Frequency 2.2GHz 1GHz 1GHz

Memory

System 2.4GHz, 17GB/s, LPDDR4 Memory System
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Evaluation Environment

= Workloads & Scenarios
= 14 workloads, 250 scenarios (all combinations)
= Access pattern: Fine — ff — f — ¢ — cc — Coarse | Diverse (d)

= Traffic per cycles: Small (s) — Medium (m) — Large (I)

Workloads (access pattern-traffic per cycles)

CPU bw (ff-s), gcc (ff-s), mcf (ff-m), xal (f-m), ray (ff-s)

GPU syr2k (ff-m), pr (f-m), sten (c-I), mm (cc-m), floyd (d-s),

NPU ncf (c-s), dirm (c-s), sfrnn (c-1), alex (cc-m)
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= Performance improvement: 14% > 21%
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= Performance improvement of each processing unit
= CPU (24%), GPU (23%), NPU (10%)
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= Unified memory protection for heterogeneous processor

Our Unified Memory Protection Scheme
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= Multi-granular MAC & Integrity Tree
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Conclusion

= Unified memory protection for heterogeneous processor
= Multi-granular MAC & Integrity Tree

= Challenge: Diverse access pattern

= Improvement: 14% (w/o subtree opt.), 21% (w/ subtree opt.)

Our Unified Memory Protection Scheme
O T T I I I

_ System-on-a-Chip (SoC) based — Fast

- Heterogeneous Processor — é
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Detailed Granularity Switching

* Scale-up (Fine - Coarse)
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Granularity switching requires significant overhead! - Lazy switching
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Lazy Switching Overhead by MAC
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Lazy Switching Overhead by MAC
= 97.2% of reqs = Hidden by lazy switching & R/O

= Only 2.8% of regs makes moderate overhead (Id data chunks)
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Lazy Switching Overhead by MAC
= 97.2% of reqs = Hidden by lazy switching & R/O

= Only 2.8% of reqs makes moderate overhead (Id data chunks)

L 0000
Coarse MAC = HASH (Fine MACs)

* Scale-up
Q00O 0000 o o
Coarse-detection ® = HASHO OO 0O)
* Scale-down
o o Q00O Q00O
Fine-detection R/O: Load OOOO oyerhead!!
None-R/O:|Load [T 11T |&
Compute OO L O

Lazy switching considerably reduces switching overhead!!
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Lazy Switching Overhead by CTR Tree

Granul. Store

* Scale-up with WAR/WAW

15 48

Write Scale

* Scale-up W|th RAR

Overhead!! Ef! :

Read Scale
Up

Granul. switch
. = —
detection = next granul. ~ after next access

Read Write Scale Scale
[$] Cached Down Up

* m with RAW

Metadata_:—_
5 : Cache gf%

Write Scale
Up
* Scale-down
Write Read Scale
Down

Backup



Lazy Switching Overhead by CTR Tree
= 91.29% of reqs - Hidden by lazy switching

= Only 8.2% of regs makes low overhead (read req > write req)
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Pros of Matching Granularity

= Proper granularity - Reduce security metadata

= Wrong granularity > Data load penalty
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Granularity-managed MAC&tree makes efficient memory protection
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Prior Domain-specific Memory Protections

= No prior study using integrity tree pruning or
multi-granular MAC&counter

1. Dual-granular & GPU-optimized Counter 1
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Study Target Multi Int. Tree Multi Dynamic Target

CTR Opt. MAC  Update App.
SoftViv CPU @) X X X ML-specific
Common GPU Dual X X X General
Counters
Adaptive GPU X X Dual O General
TINPU NPU O X X X ML-specific
funable 0 Sub X General
Tree Optimal
MGX NPU O X O X ML-specific
GuardNiv NPU O X X X ML-specific
TensorTEE CPU+NPU @) X O O ML-specific
Ours CPU+GPU 0] Optimal o) o) General
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Sitlely Target CTR Opt. MAC  Update App.
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= Chunk-level index computation

= Recursive parent call from leaf counters
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Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

v *
(MAC Base Index) (MAC Offset Index)
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=10*1=10 =8/2=4

MAC Index
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Address of MAC & Counter

= Chunk-level index computation

= Recursive parent call from leaf counters

Chunk Index: 0 Chunk Index: 1 Chunk Index: 2

v *
(MAC Base Index) (MAC Offset Index)
= (# of MACs per Chunk) * (Chunk Index) = (Offset Index) / (Granularity)
=10*1=10 =8/2=4

MAC Index
= (MAC Base Index) + (MAC Offset Index) = 14

v
(CTR Leaf Index) = 14
v

(# of Parents) . (CTR Index)
= sqrt{Arity}(Granularity) = Parent(Parent(....(Parent(CTR Leaf Index))))
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Workload Analysis & Selected Scenarios

» Workloads & Scenarios

= 14 workloads, 250 scenarios (all combinations)
= Access pattern: Fine — ff — f — ¢ — cc — Coarse | Diverse (d)
= Traffic per cycles: Small (s) — Medium (m) — Large (1)

Workloads (access pattern-traffic per cycles)

CPU bw (ff-s), gcc (ff-s), mcf (ff-m), xal (f-m), ray (ff-s)

GPU syr2k (ff-m), pr (f-m), sten (c-I), mm (cc-m), floyd (d-s),

NPU ncf (c-s), dirm (c-s), sfrnn (c-1), alex (cc-m)
ID (CPU, GPU, NPU1, NPU2)
ff (bw, syr2k, ncf, dirm), (mcf, syr2k, sfrnn, dirm), (gcc, floyd, sfrnn, ncf)
f (xal, pr, sfrnn, ncf), (xal, pr, ncf, ncf)

¢ (gcc, sten, alex, dlrm), (bw, sten, ncf, ncf), (mcf, sten, sfrnn, sfrnn)
cc (xal, mm, alex, dirm), (ray, mm, alex, alex), (ray, Floyd, alex, alex)




Rowhammer Attacks

codela:

1
2 mov (X), %eax
3 mov (Y), %ebx 0
4 clflush (X)
5 clflush (Y)

6

7

mfence
jmp codela

Bit-flipry RamBleed2

Intelligence

[1] Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (ISCA 2014)

[2] RAMBIeed: Reading Bits in Memory Without Accessing Them (S&P 2020)
[3] DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips (USENIX Security 2020)

Backup



More Design Descriptions in Our Paper

= Lazy-switching analysis
= Cacheline fragmentation issue
= CTR/MAC addressing for multi-granularity

= Coarse-grained memory protection engine using
parallel counter sharing and nested MAC hasing

= Misprediction handler
= Efficient granularity representation
= Hardware overhead

= Comparison to prior subtree optimization schemes



More Results in Our Paper

The ratio of stream chunks

Performance analysis of selected scenarios
End-to-end performance

Drawbacks of the per-device (static) granularity
Performance comparison with dual-granularity
Switching overhead measurement

Security cache hit ratio improvement

Hardware overhead
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Research Objective

Constructs a general and efficient memory protection scheme

for heterogeneous processors

= Challenge 1: Heterogeneous processors have diverse access pattern
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= For example, GPU coarse-grained pattern, NPU software-detected pattern
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Research Objective

Constructs a general and efficient memory protection scheme

for heterogeneous processors

= Challenge 1: Heterogeneous processors have diverse access pattern

= Challenge 2: Each prior protection only for a specific access pattern

= For example, GPU coarse-grained pattern, NPU software-detected pattern

- We unified prior studies with our novel multi-granular tree
Our Unified Memory Protection Scheme

K System-on-a-Chip (SoC) based \ Fast
Heterogeneous Processor

g goung || ¢ %D*E‘ES

GPU NPU| | (oo oo

o o

\; lllllllllllllllll = e T J

@)

U

cC
[ANNNNNN|

Temp



Multi-granular MAC and Counter

= Multi-granular MAC and counter

= Multi-granular MAC and counter fetches small # of MACs and
counters for coarse-grained access

Conventional
Counter OOOOOCCIOOIOOIOCIOC
MAC 0000000000000
EEE R R RN
Data |'|'|'|'|'|'|'|'|I‘| [T T T T T

Multi-granular MAC & Counter

Counter m . ®OO0C0r
MAC ® ® e 0000 1

1 e L o i
Data | : I T T 171711 Low Overhead

|

Multi-granularity can reduce memory protection overhead

However, how maintain a counter integrity tree?

Temp
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Counter-mode Protection Integrity
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Prior Memory Protection Schemes

Counter-mode Protection

_Granularity

<«

Ciphertext

Recursive

Validation
Counter

Tree

v
Replay-attack Protection

Integrity
Encniption Prote‘ction

Conventional 64B-granular Protection

Lower is better

1.4
1.3
1.2
1.1

1
0.9
0.8

29% (34%

Unsecure CTR-mode

Norm. Exec. Time
—e—Norm. Data Traffic
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Prior Domain-specific Memory Protection
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[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
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Counter-mode Protection Integrity Conventional 64B-granular Protection
Encniption Proteiction

_Granularity

<

Ciphertext ——» [@6]ijjii=];

Significant overhead

Recursive

Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity [3-4]

Limited set of OR
Coarse Counters Counter
Tree

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)

[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)

[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp
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[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp
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[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
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[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)
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Counter-mode Protection Integrity Conventional 64B-granular Protection
_Granularity Encniption Proteiction
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Significant overhead
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Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity [3-4]

Dual CTRS, limited CTRS, Dual MACS, Tree-less
CTR-only, device-specific MAC-only + Counter E:>

Tree

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp



Prior Memory Protection Schemes

Counter-mode Protection Integrity Conventional 64B-granular Protection
_Granularity Encniption Proteiction

<

Ciphertext ——» [@6]ijjii=];

Significant overhead

Recursive . - .
Validation Tree in conventional protection

Counter Height

Tree

v
Replay-attack Protection

Prior Domain-specific Memory Protection
1. Common Counters i 2. Dual-MAC 2 3. Software-managed Granularity [3-4]

Dual CTRs, limited CTRs, Dual MACs, Application-specific,

CTR-only, device-specific MAC-only device-specific

[1] Common Counters: Compressed Encryption Counters for Secure GPU Memory (HPCA 2021)
[2] Adaptive Security Support for Heterogeneous Memory on GPUs (HPCA 2022)
[3] MGX: Near-zero Overhead Memory Protection for Data-intensive Accelerators (ISCA 2022)

[4] GuardNN: Secure Accelerator Architecture for Privacy-preserving Deep Learning (DAC 2022) Temp



