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• Sparse matrix representation
• Compress zero elements
• CSR, CSC, etc

• SpGEMM: Sparse General Matrix Multiplication
• Example: web connectivity matrix¹
 Dimension: 1,000,005 × 1,000,005
 # of non-zero elements: 3,105,536
 Density: 0.00031%

Acceleration of SpGEMM
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SpGEMM Algorithm

• Row-wise inner product: Intel MKL, cuSPARSE, MatRaptor¹
 Mostly used in CPU & GPU 
 Fetches 2nd input matrix repetitively

• Outer product: OuterSPACE², SpArch³
 Proposed for ASIC accelerators 
 Requires additional memory for partial products
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Outer Product for Accelerators

• OuterSPACE1

 1st outer product based accelerator
 Adopted two step algorithm – multiply & merge 

• SpArch2

 Pipelined multiply & merge for throughput
 Reduced # of partial matrices by condensing an input matrix
 On-chip merging scheduler to reduce memory footprint
 4× speedup & 6× energy saving compared to OuterSPACE

5

+
×
×
×

1. S. Pal et al., "OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator," 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2018, pp. 724-736.
2. 2. Z. Zhang et al., "SpArch: Efficient Architecture for Sparse Matrix Multiplication," 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2020, pp. 261-274.



Outer Product: Memory Bloating Problem

• Must keep partial matrices in the memory
 The accelerator memory is limited
 The required size is unknown before computation

• Memory bloating factor (MBF)
 Size of partial products / size of output matrix
 5.41× on average from 755 square matrices

• Non-computable cases from 755 matrices¹
 Outer product: 54 matrices require > 4GB
 Inner product: only 2 matrices > 4GB
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1. Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix Collection. ACM Transactions on Mathematical Software 38, 1, Article 1 (December 2011), 25 pages.
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Can inner product be used for accelerators?

How can its performance be improved?
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Challenge: on-chip merging storage is limited



Opportunity: Locality of Sparse Matrix

• Row-wise inner product
 Repetitive B row fetching
 Dependent to A’s columns

• Reuse distance
 The number of rows processed 

between two A rows, which require to 
access the same B row

8

CDF of Distance Median of Matrices

B rows are reused within short distance

Read 𝐴𝐴𝑖𝑖𝑘𝑘 & 𝐵𝐵𝒌𝒌∗

Timeline

Distance Number of rows = 4k~8M
Distance ≅ 100

Read 𝐴𝐴𝑗𝑗𝑘𝑘 & 𝐵𝐵𝒌𝒌∗
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Challenge: Variance in Row-wise Sparsity

• # of non-zeros (𝑛𝑛𝑛𝑛𝑛𝑛) varies in each output row

• Memory fallback leads to performance drop

• Majority of output rows: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛/𝑟𝑟𝑟𝑟𝑟𝑟 < 64
 On-chip storage will be underutilized without batching

• A few output rows: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛/𝑟𝑟𝑟𝑟𝑟𝑟 > 16𝑘𝑘
 Some rows cannot be fit in the on-chip merging storage

9

Size of output rows from 755 matrices

1
3
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Output Matrix nnzs per row



Goals

Design a memory efficient row-wise inner product accelerator
• Eliminates the memory bloating problem

• Exploit locality of sparse matrix
→ Caching B with an improved replacement policy (adopted from P-OPT)

• Address variance in row-wise sparsity
→ Row splitting & merging with output size approximation

10
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Inner product can be as fast as outer product, 

without memory bloating problem



Algorithm Overview

1. Pre-scan: finding upper bound size of output rows

2. Merge & Split 𝐵𝐵

3. Perform 𝐴𝐴 × 𝐵𝐵𝑖𝑖 = 𝐶𝐶𝑖𝑖
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Output Size Approximation

• Identifying # of non-zeros is costly
 Requires index matching
 Same time complexity as SpGEMM only without value calculation

• Upper bound approximation
• Fast and safe method to detect overflows
• Counting # of products per row
• Overestimation possible

13

Matrix A Matrix B

×

Hash Table Size

Real Output Size Upper Bound Size

Pre-scanning step
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Row Merging & Splitting

Underutilization: Row merging Overflow: Row splitting

• Divide matrix B in column

• Making smaller output to fit in on-chip storage

• Batching multiple small rows

• Enhancing parallelism on merge phase

• Maximizing on-chip storage utilization

15
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2. Merge & Split 𝐵𝐵

3. Perform 𝐴𝐴 × 𝐵𝐵𝑖𝑖 = 𝐶𝐶𝑖𝑖

16

𝐵𝐵

→

𝐵𝐵1 𝐵𝐵2

A

×

𝐵𝐵𝑖𝑖

=

𝐶𝐶𝑖𝑖

A 𝐵𝐵 size(𝐶𝐶)

→
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Applying P-OPT¹ Policy in B Cache

• Extract reuse distance from A column indices
• Store reuse distance values in cache
• Policy: evict a block with the highest distance value

 High distance: not used for a long time
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• Timing simulator + DRAMSim3 (HBM 128GB/s)
• Baseline: Intel MKL with Intel Core-i7 5930k
• Benchmarks
 14 square matrices that is evaluated from prior works
 755 square matrices from SuiteSparse Matrix Collection

• Comparison with prior works
 Outer Product: OuterSPACE, SpArch
 Row-wise Inner Product: MatRaptor

Experiment Environment

19



Performance Evaluation with Prior Works

20

Perf. boost of 6.8% from SpArch without memory bloating problem

Relative Performance over Intel MKL: 18.0×
Absolute Performance: 11.7 GFLOPS Geomean



Performance Evaluation with Intel MKL

21

14.0 GFLOPS 
Geometric mean

CDF of Relative Speedup of InnerSP over Intel MKL on 755 matrices



Conclusion

• Outer product
• Memory bloating problem to store partial results

• Row-wise inner product
 Hard to handle variance of workloads with fixed on-chip storage
 Wasting memory bandwidth by fetching inputs repetitively

• InnerSP
 A high performance row-wise inner product SpGEMM accelerator
 Uses optimal cache replacement policy based on reuse distance
 Row merging/splitting for handling sparsity variance

22



Thank You
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