InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator with Localityaware Inner Product Processing

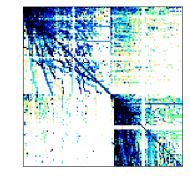
Daehyeon Baek*, Soojin Hwang*, Taekyung Heo*, Daehoon Kim†, and Jaehyuk Huh*

*KAIST, School of Computing

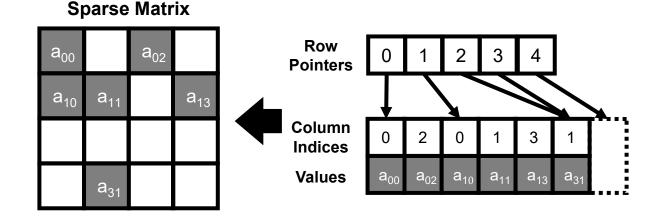
†DGIST, Department of Information and Communication Engineering

Acceleration of SpGEMM

- SpGEMM: Sparse General Matrix Multiplication
- Example: web connectivity matrix¹
 - Dimension: 1,000,005 × 1,000,005
 - # of non-zero elements: 3,105,536
 - Density: 0.00031%



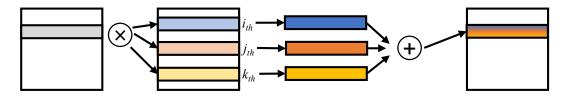
- Sparse matrix representation
 - Compress zero elements
 - CSR, CSC, etc



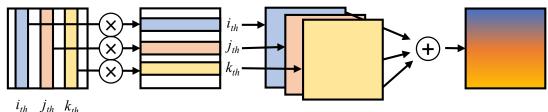
1. S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, "Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms", Parallel Computing Volume 35, Issue 3, March 2009, Pages 178-194. Special issue on Revolutionary Technologies for Acceleration of Emerging Petascale Applications.

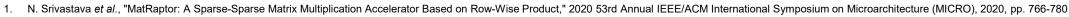
SpGEMM Algorithm

- Row-wise inner product: Intel MKL, cuSPARSE, MatRaptor¹
 - Mostly used in CPU & GPU
 - Fetches 2nd input matrix repetitively

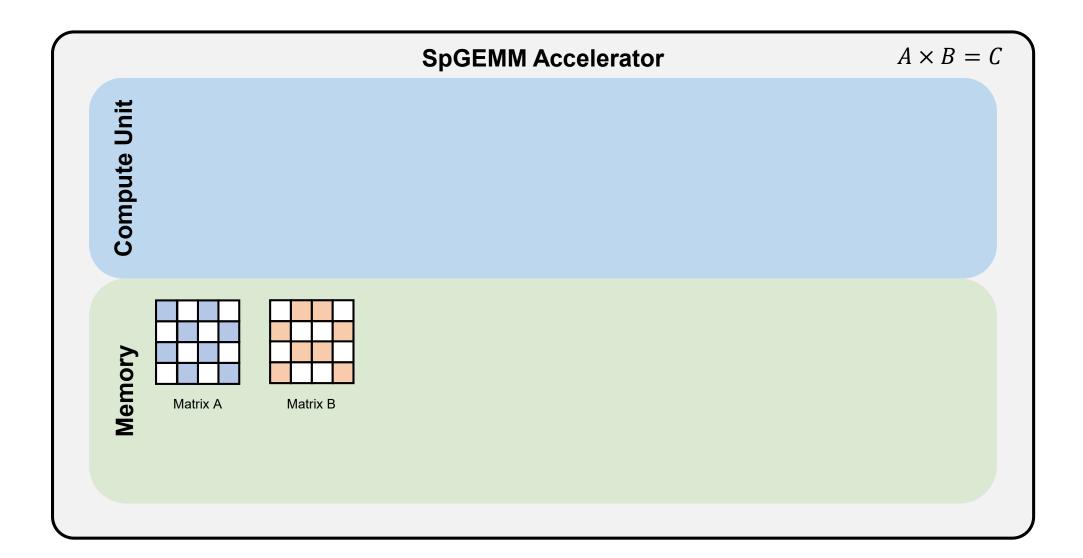


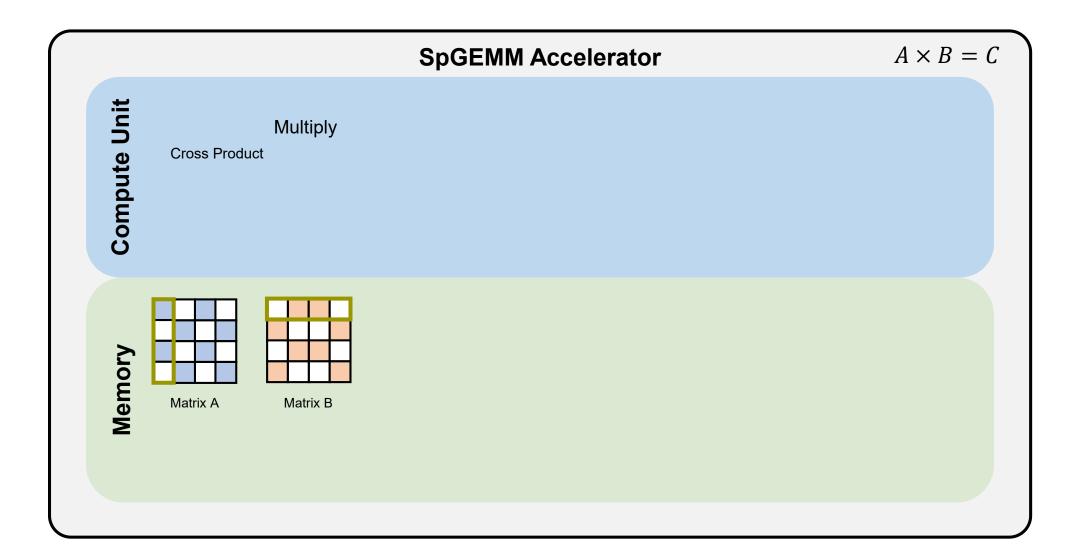
- Outer product: OuterSPACE², SpArch³
 - Proposed for ASIC accelerators
 - Requires additional memory for partial products

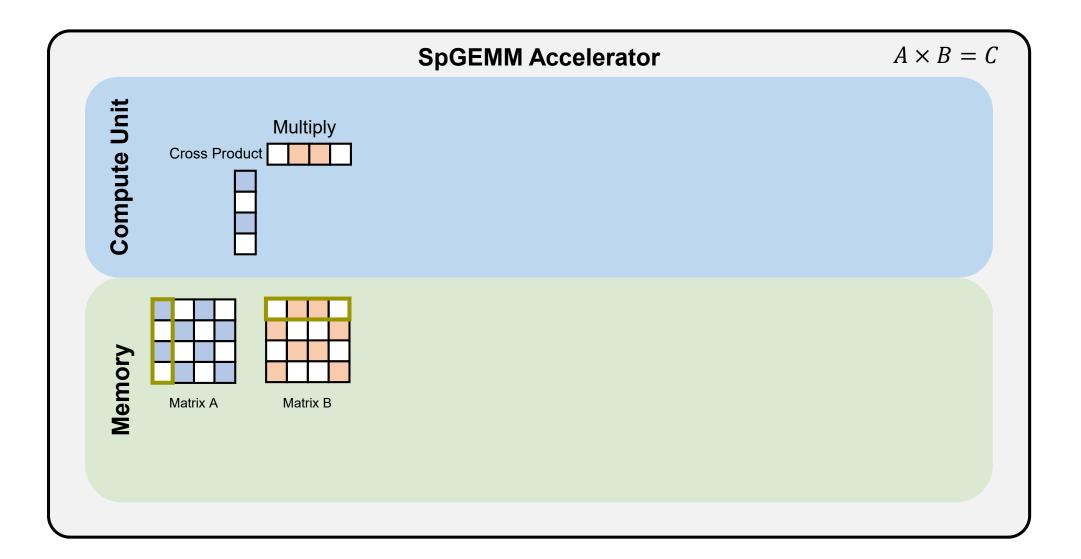


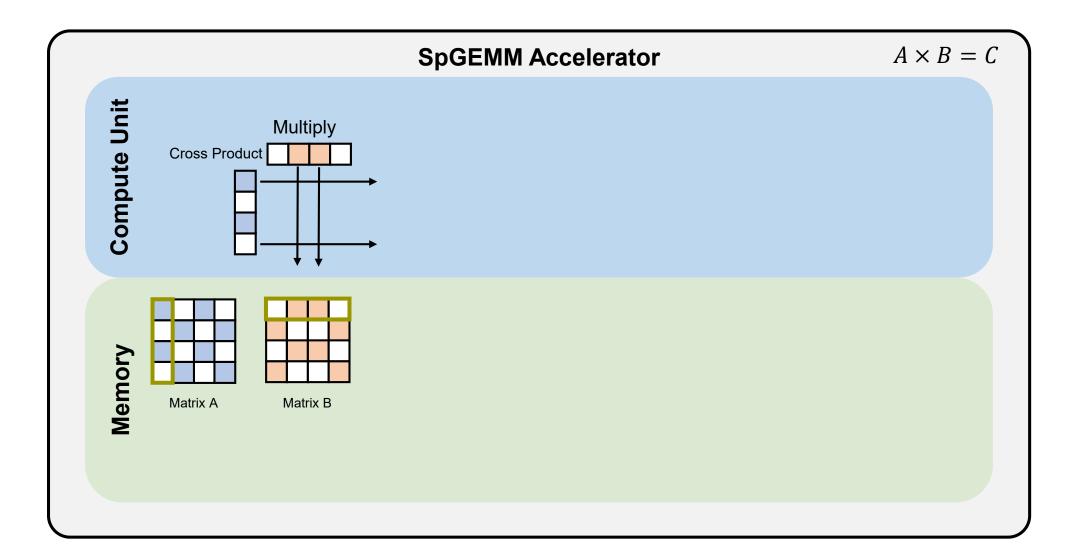


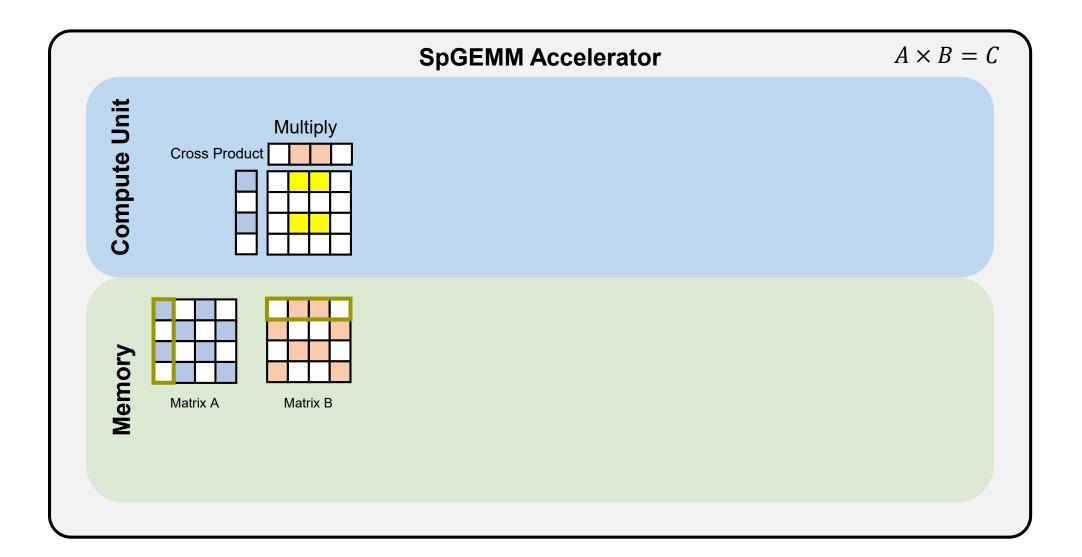
- 2. S. Pal *et al.*, "OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator," 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2018, pp. 724-736.
- 3. 2. Z. Zhang et al., "SpArch: Efficient Architecture for Sparse Matrix Multiplication," 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2020, pp. 261-274.

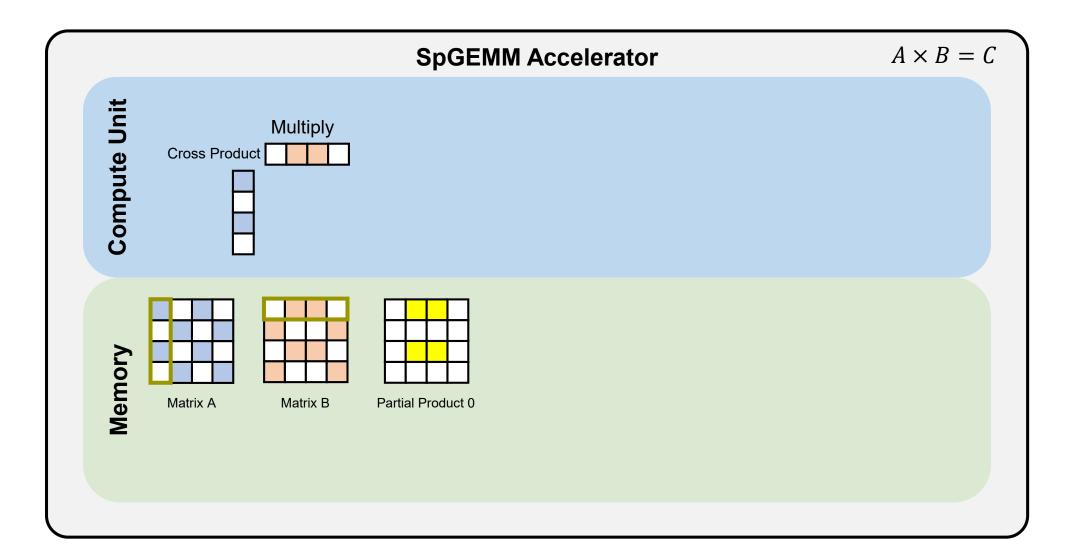


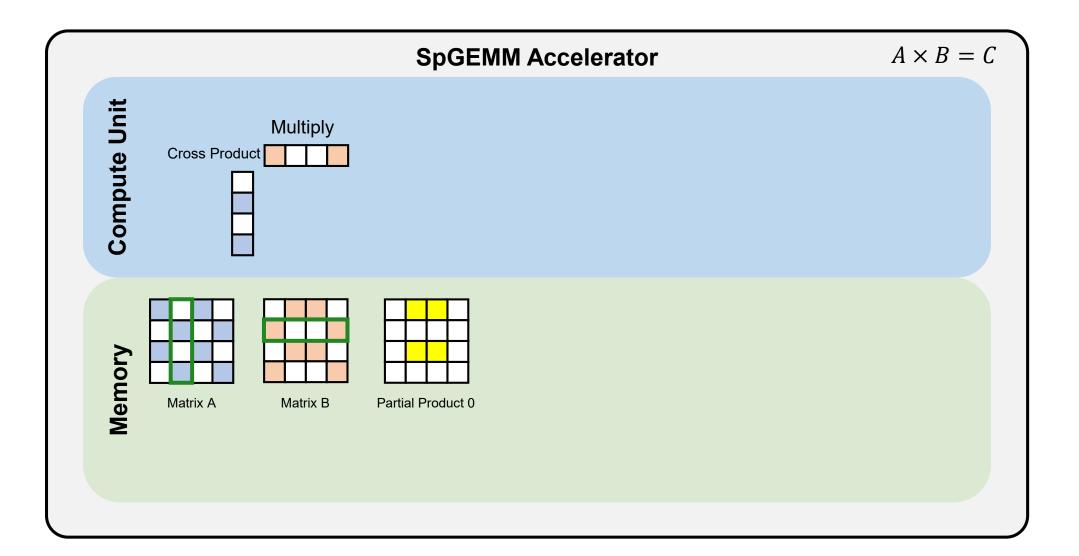


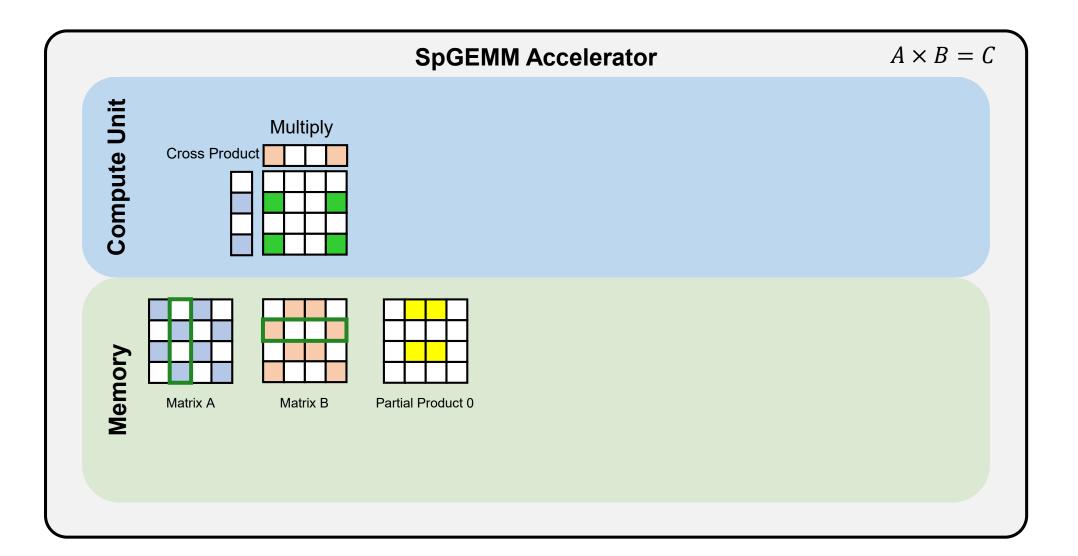


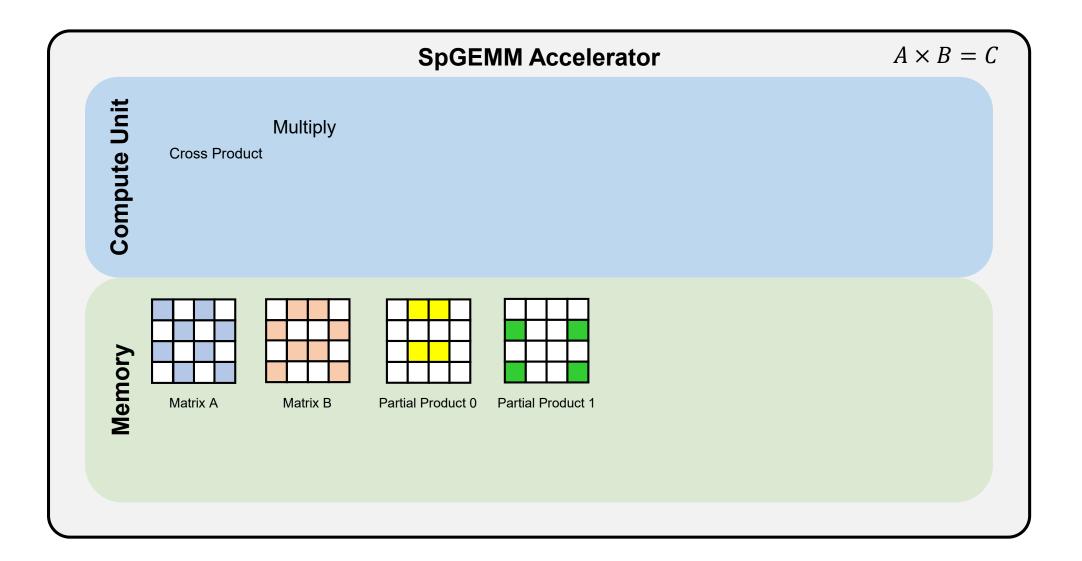


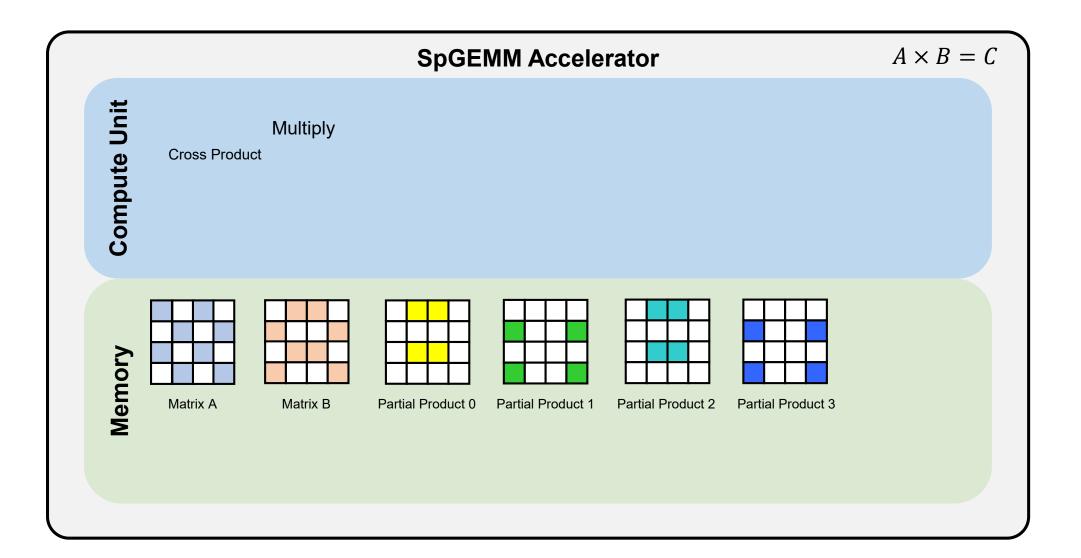


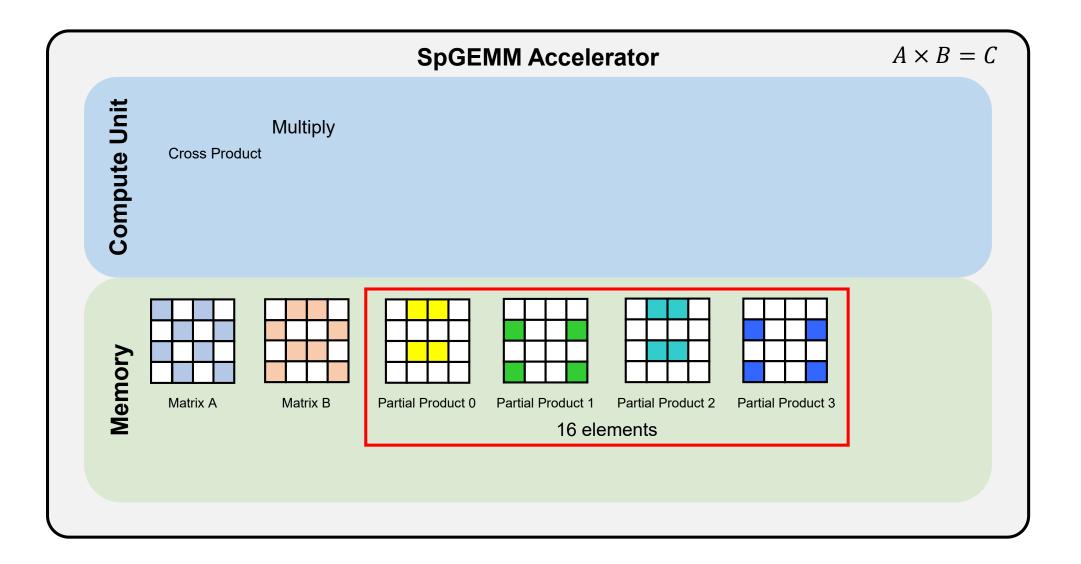


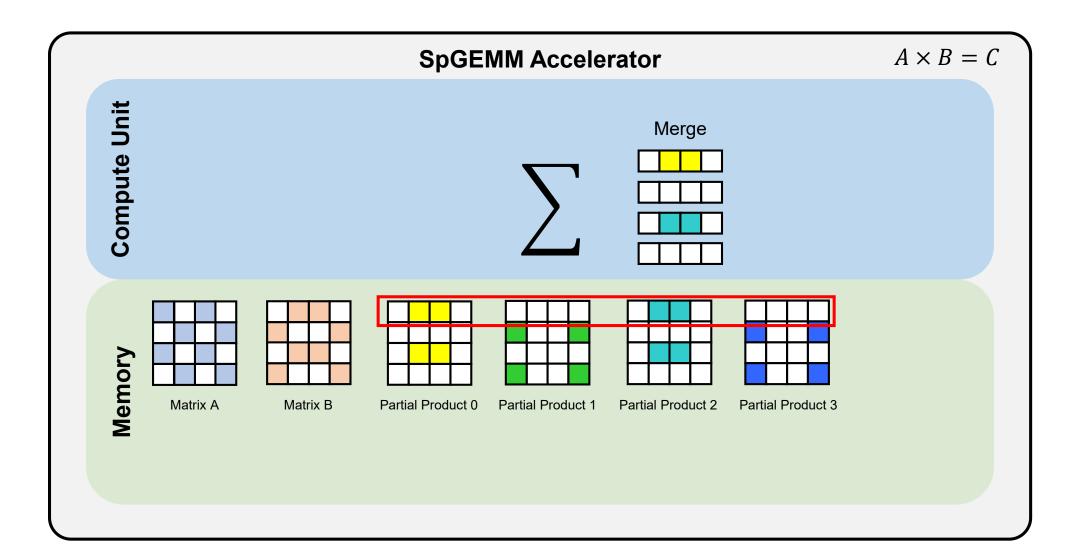


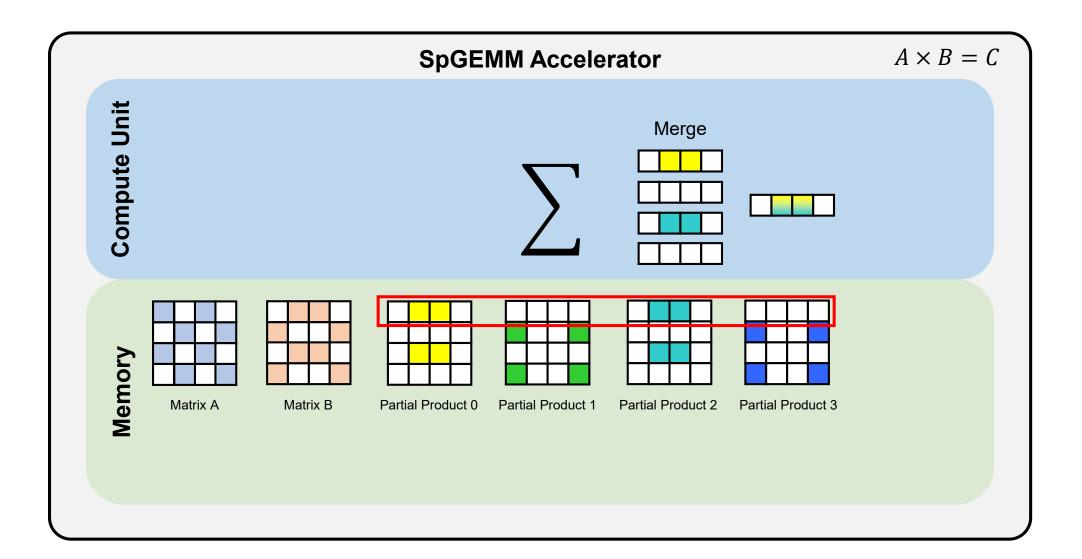


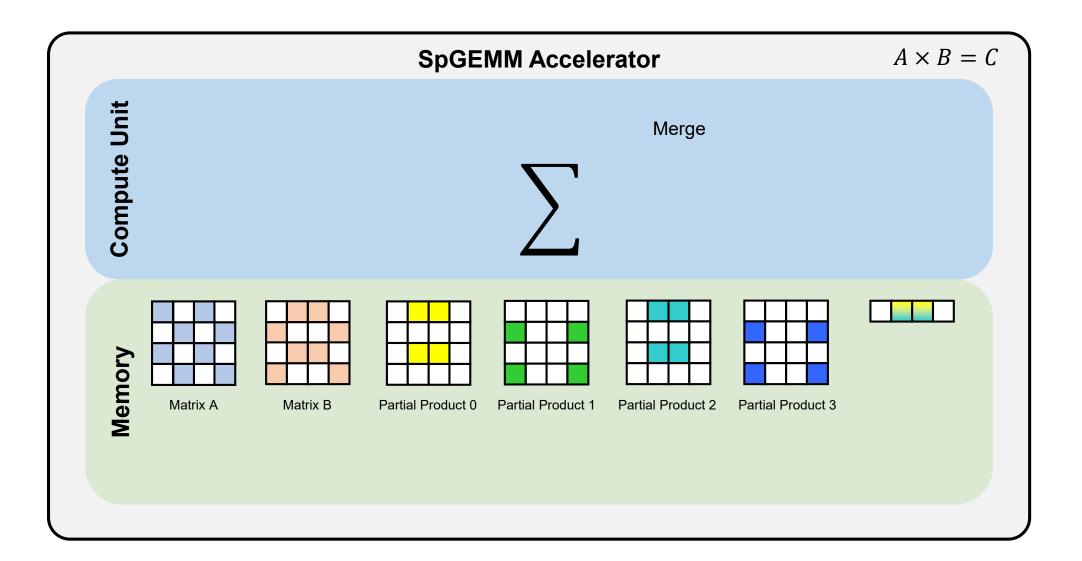


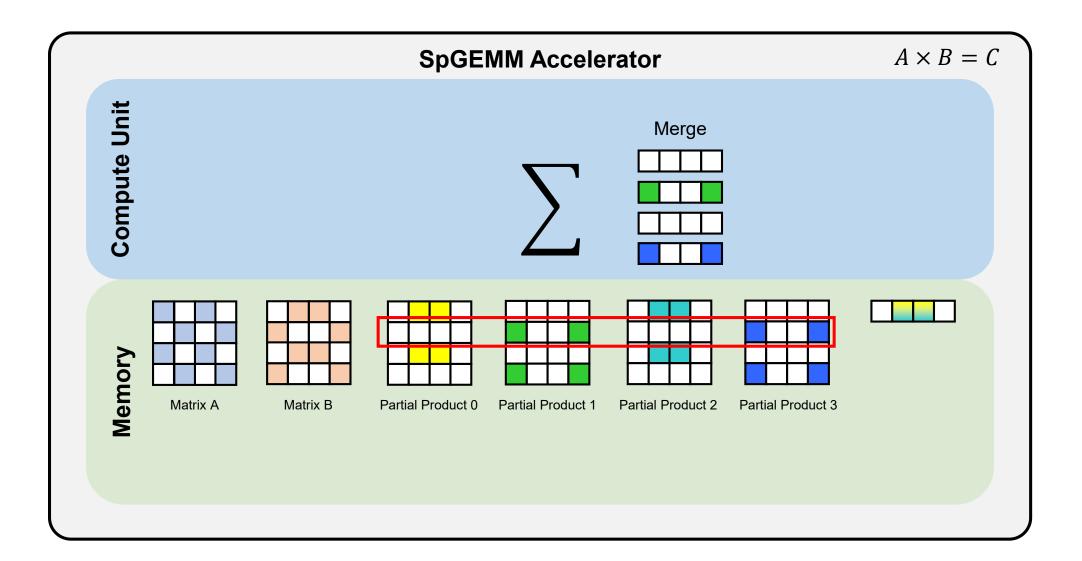


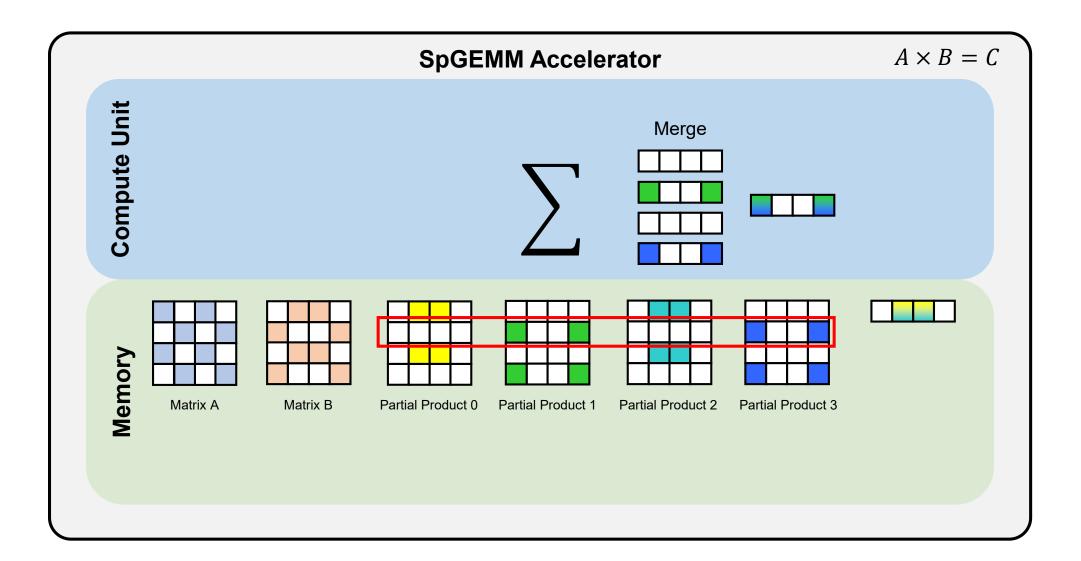


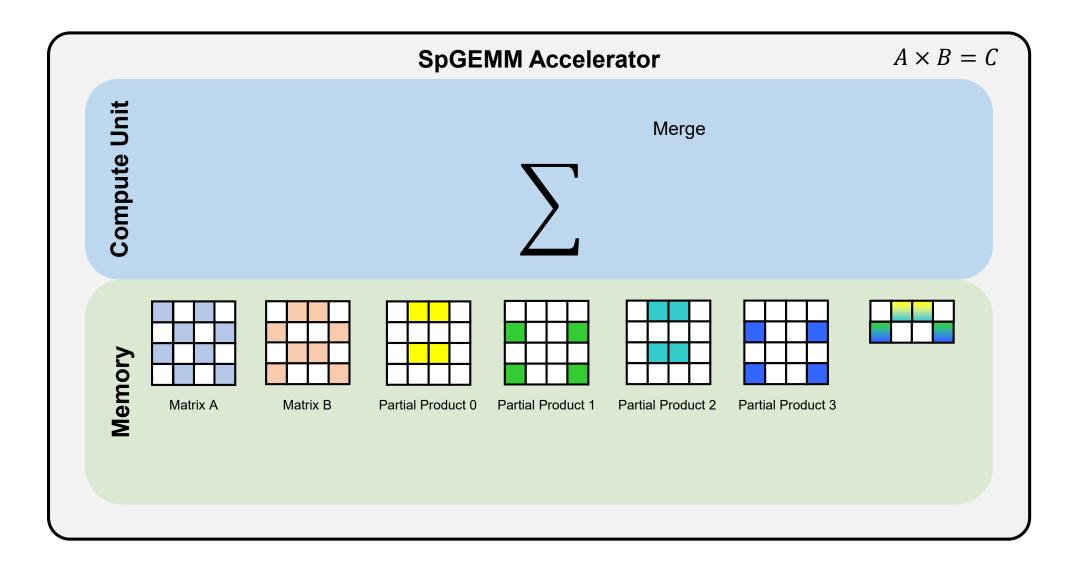


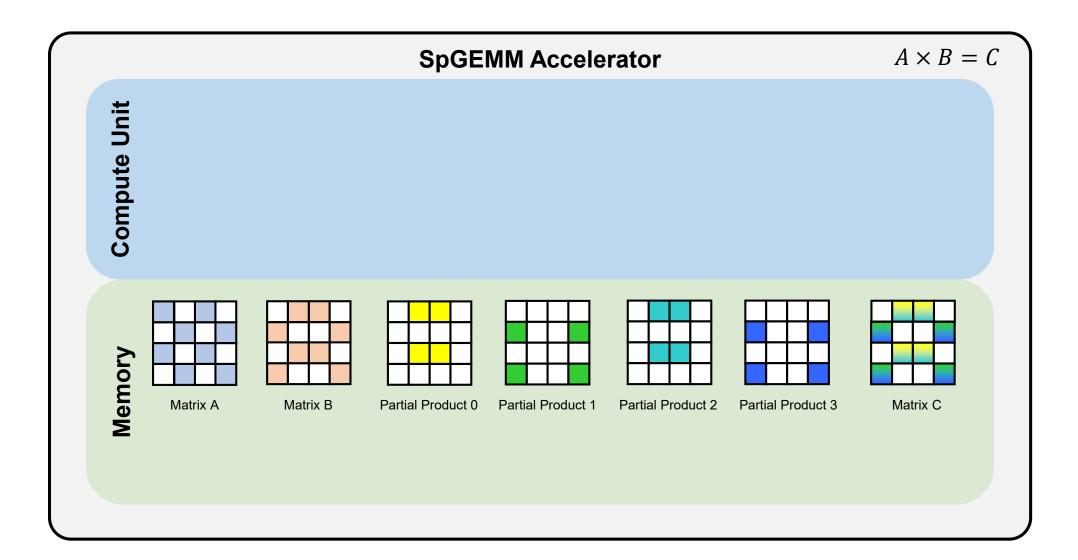


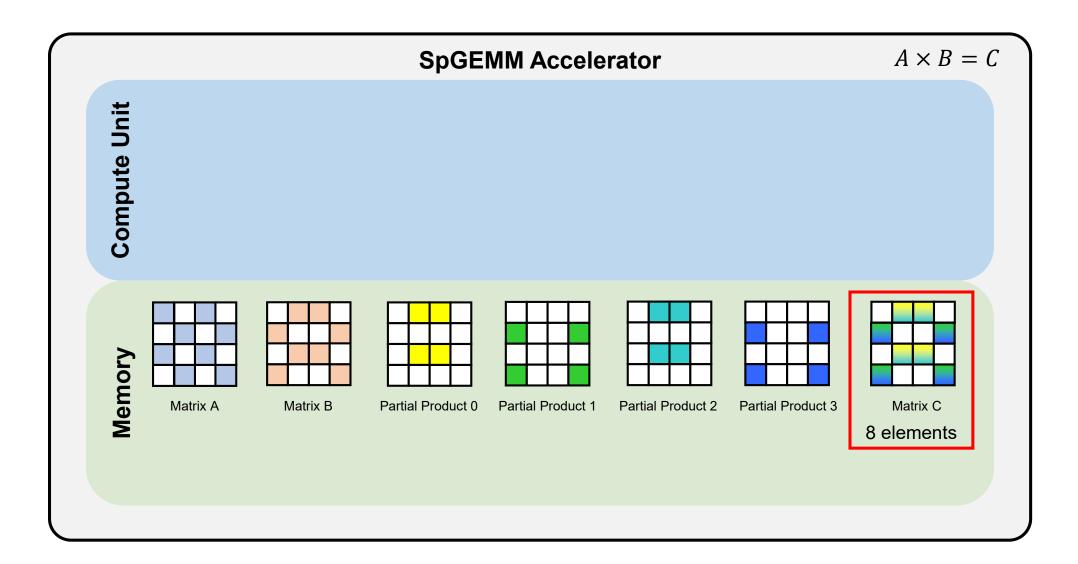






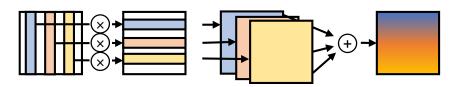






Outer Product for Accelerators

- OuterSPACE¹
 - 1st outer product based accelerator
 - Adopted two step algorithm multiply & merge



• SpArch²

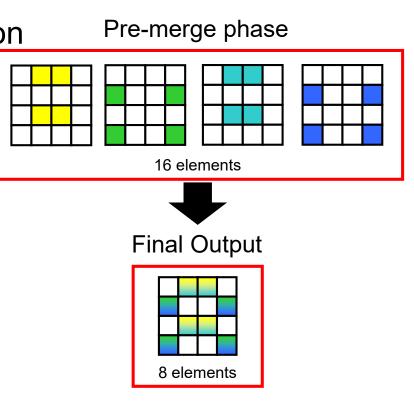
- Pipelined multiply & merge for throughput
- Reduced # of partial matrices by condensing an input matrix
- On-chip merging scheduler to reduce memory footprint
- 4× speedup & 6× energy saving compared to OuterSPACE

^{1.} S. Pal et al., "OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator," 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2018, pp. 724-736.

^{2. 2.} Z. Zhang et al., "SpArch: Efficient Architecture for Sparse Matrix Multiplication," 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2020, pp. 261-274.

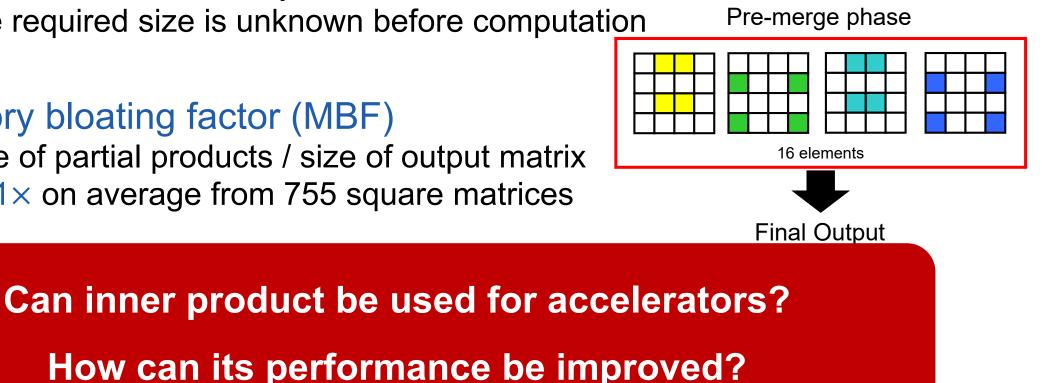
Outer Product: Memory Bloating Problem

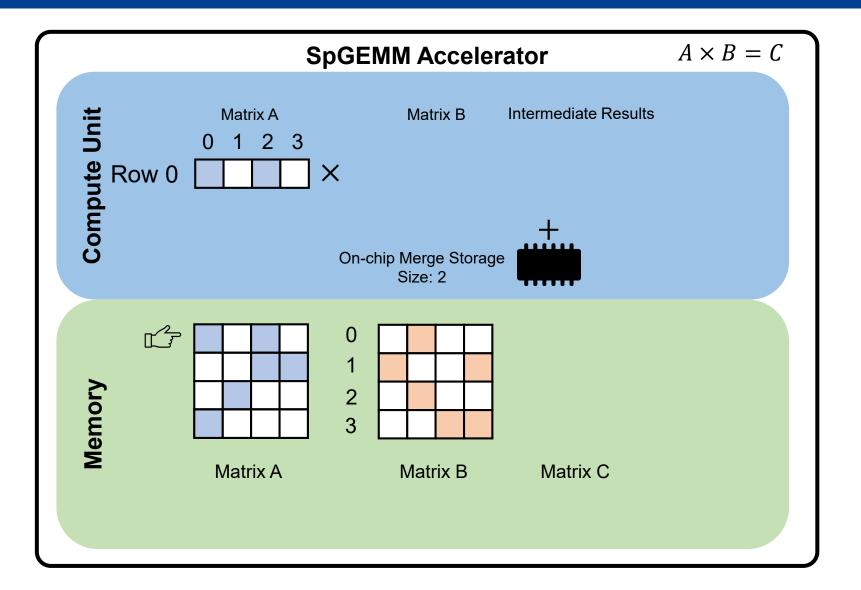
- Must keep partial matrices in the memory
 - The accelerator memory is limited
 - The required size is unknown before computation
- Memory bloating factor (MBF)
 Size of partial products / size of output matrix
 5.41× on average from 755 square matrices
- Non-computable cases from 755 matrices¹
 - Outer product: 54 matrices require > 4GB
 - Inner product: only 2 matrices > 4GB

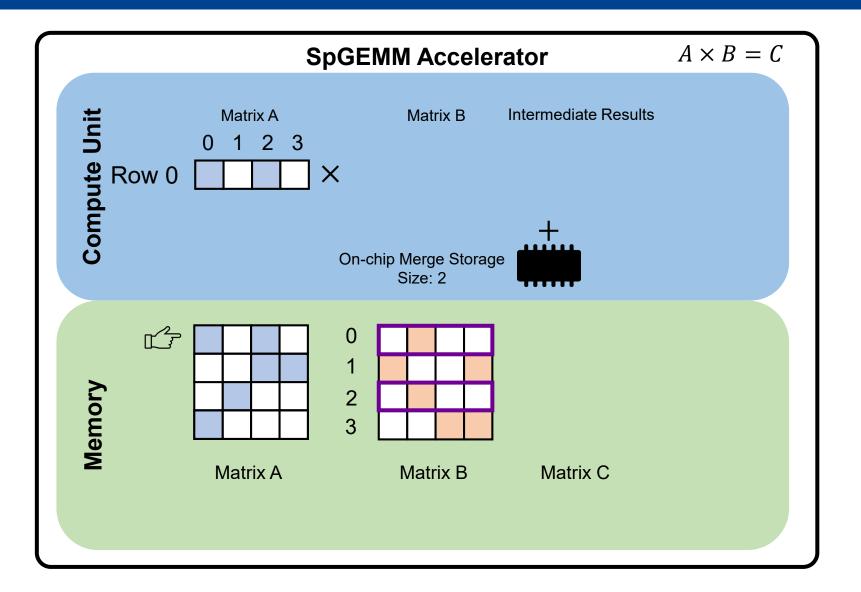


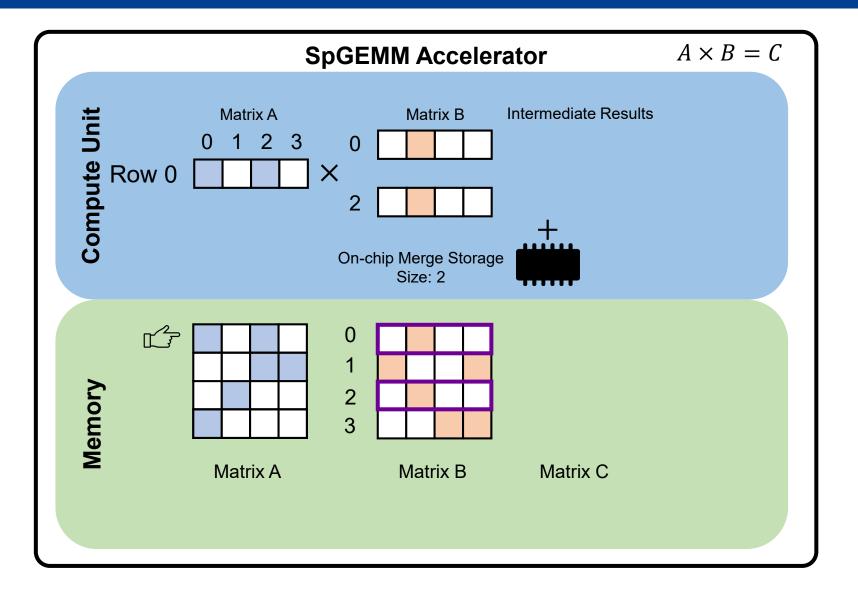
Outer Product: Memory Bloating Problem

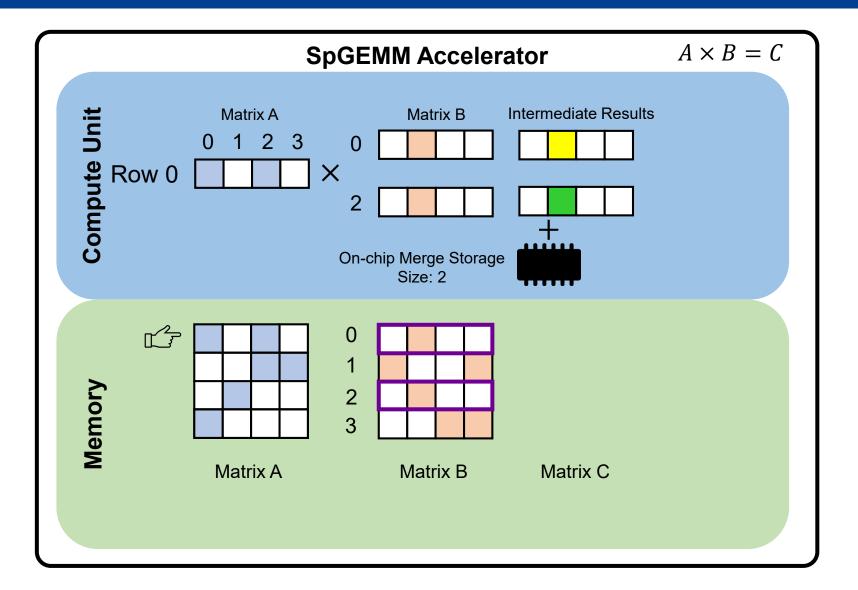
- Must keep partial matrices in the memory
 - The accelerator memory is limited
 - The required size is unknown before computation
- Memory bloating factor (MBF) Size of partial products / size of output matrix 5.41× on average from 755 square matrices

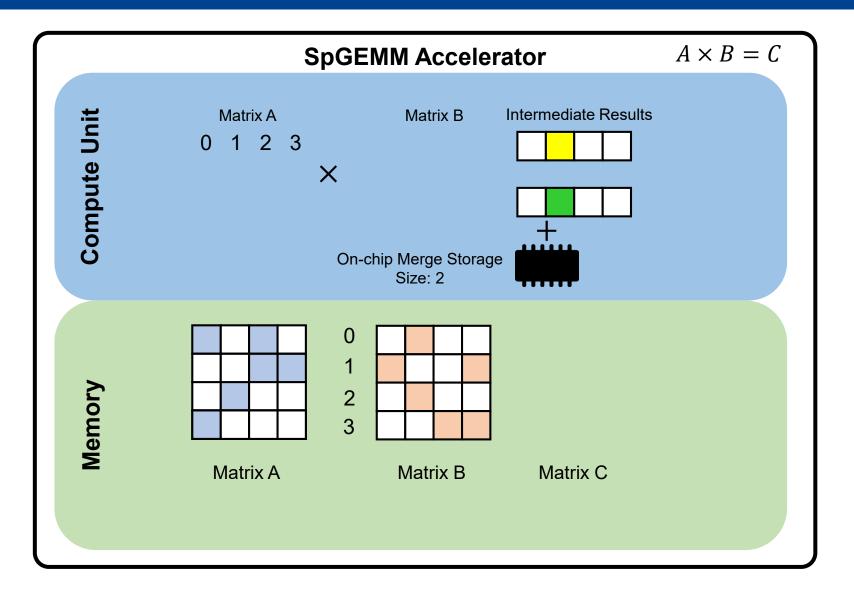


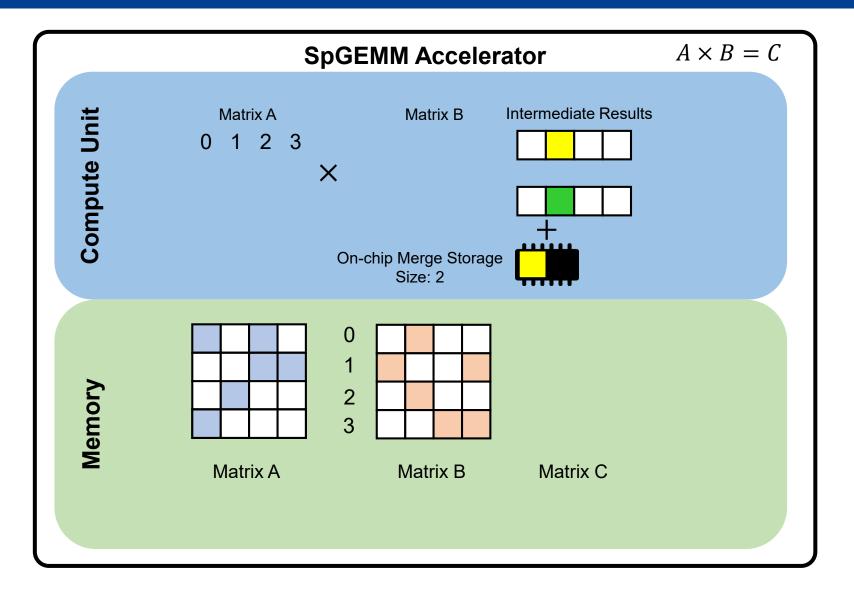


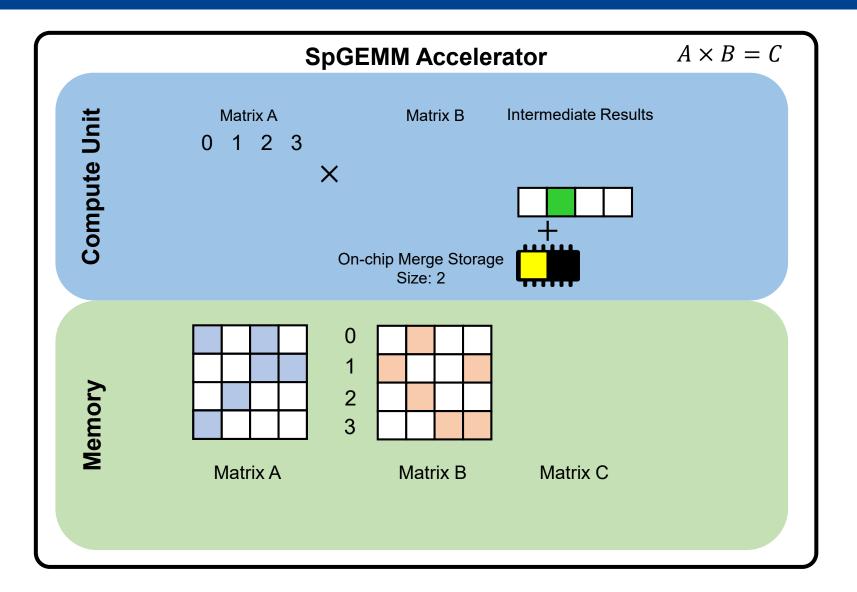


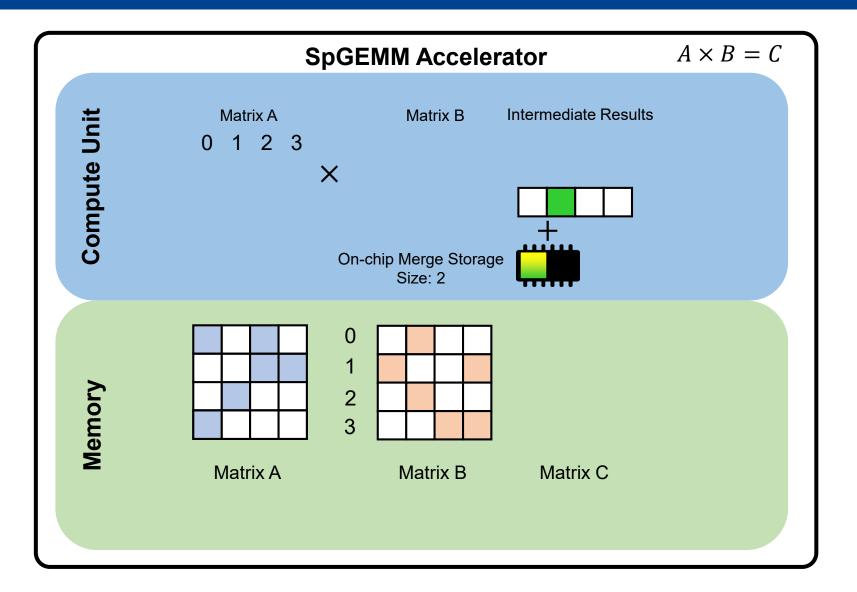


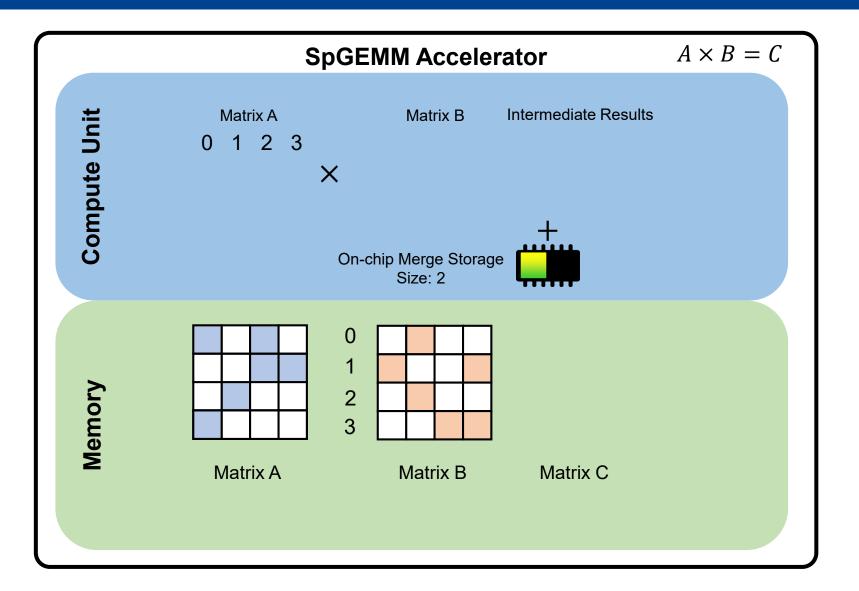


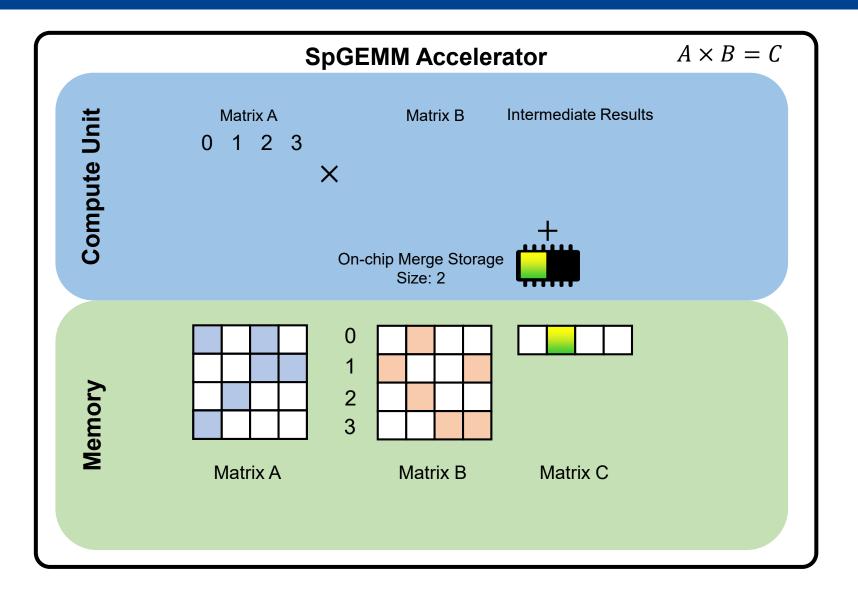


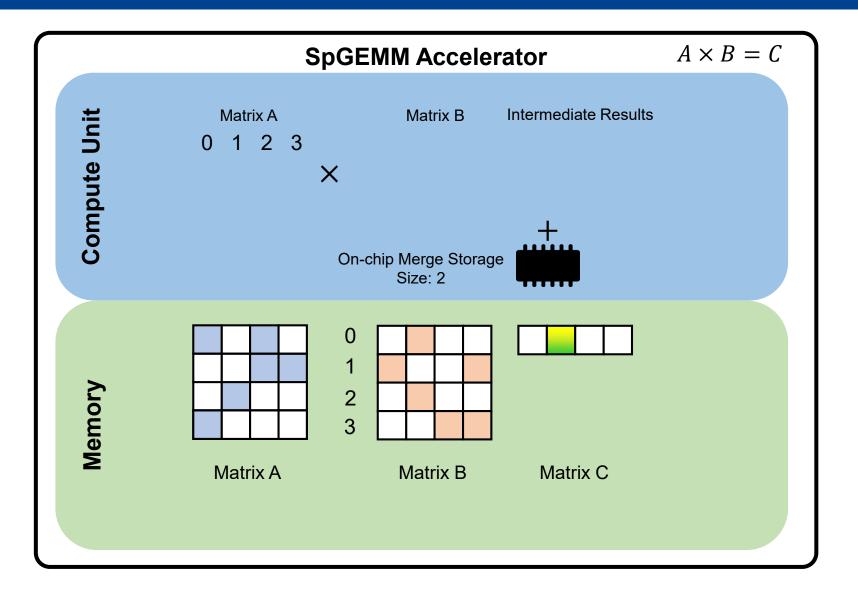


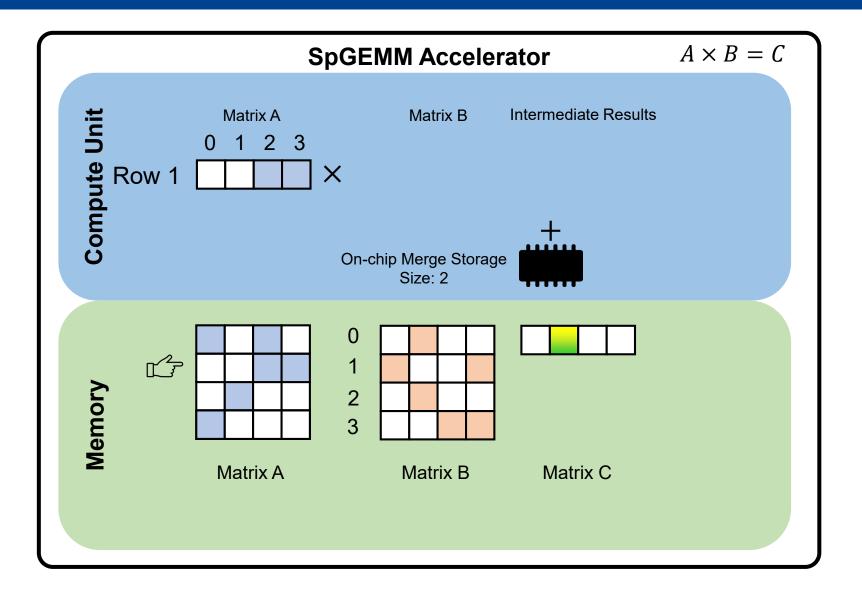


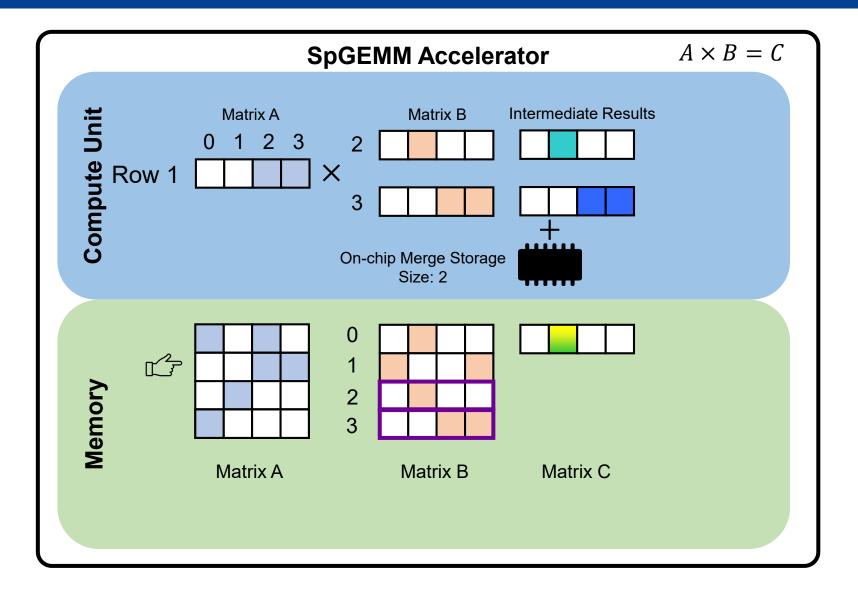


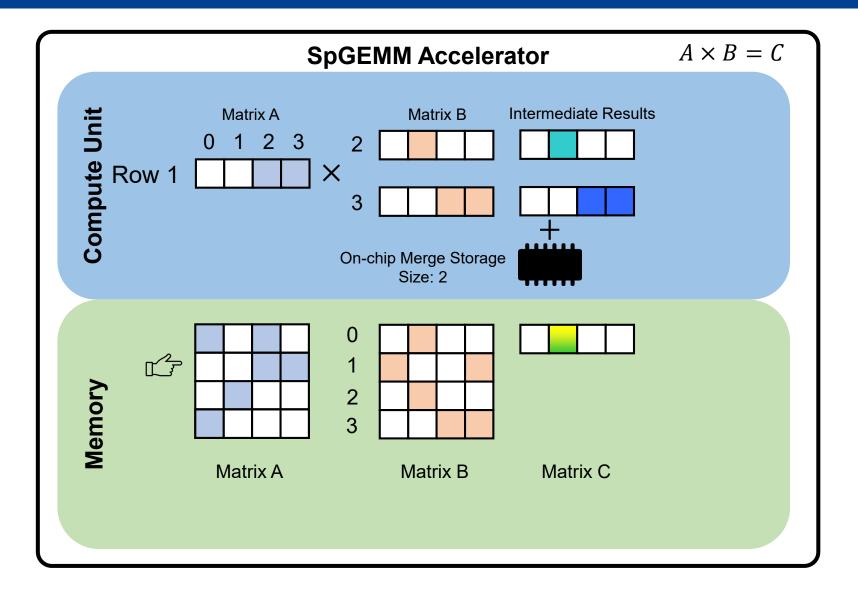


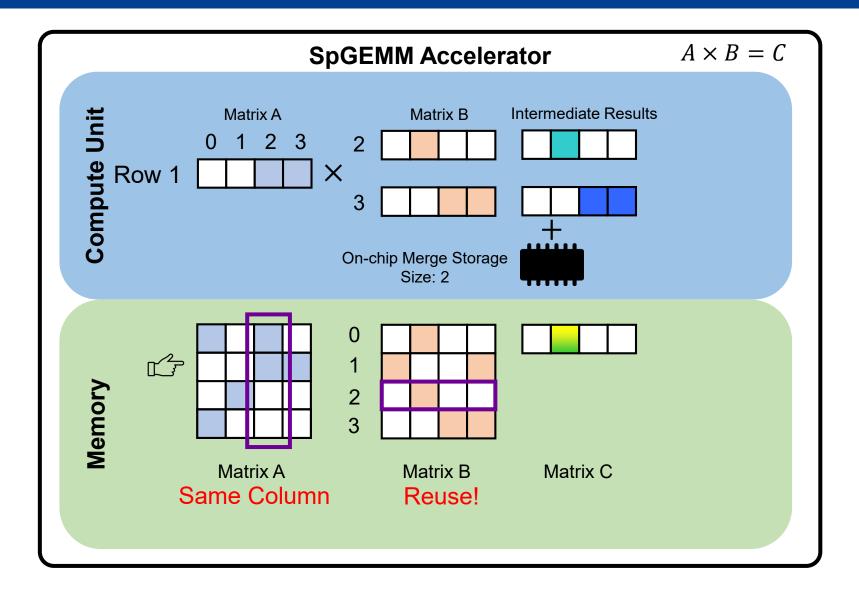


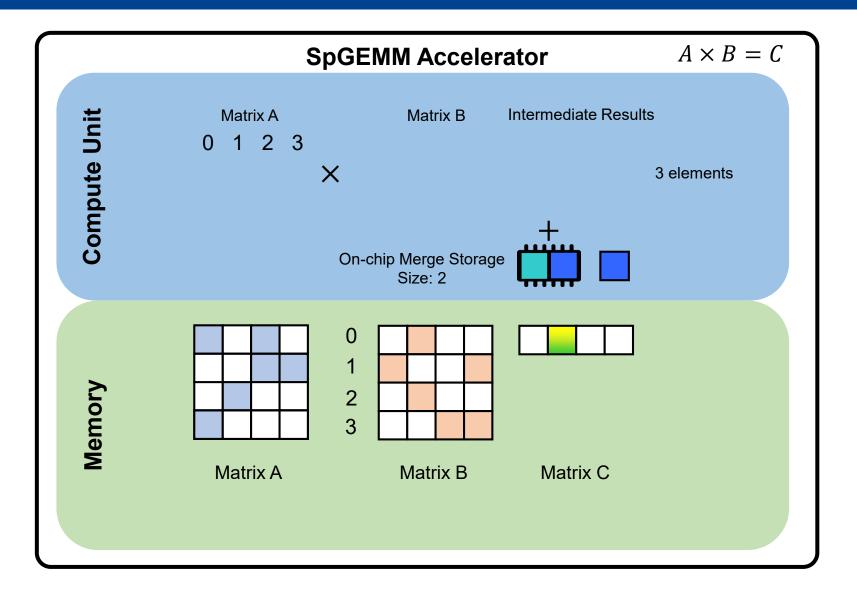


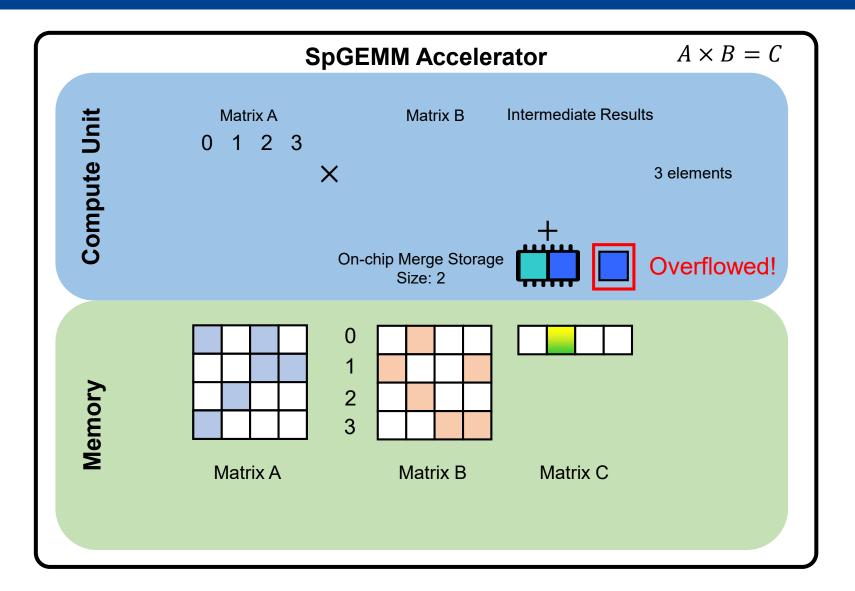


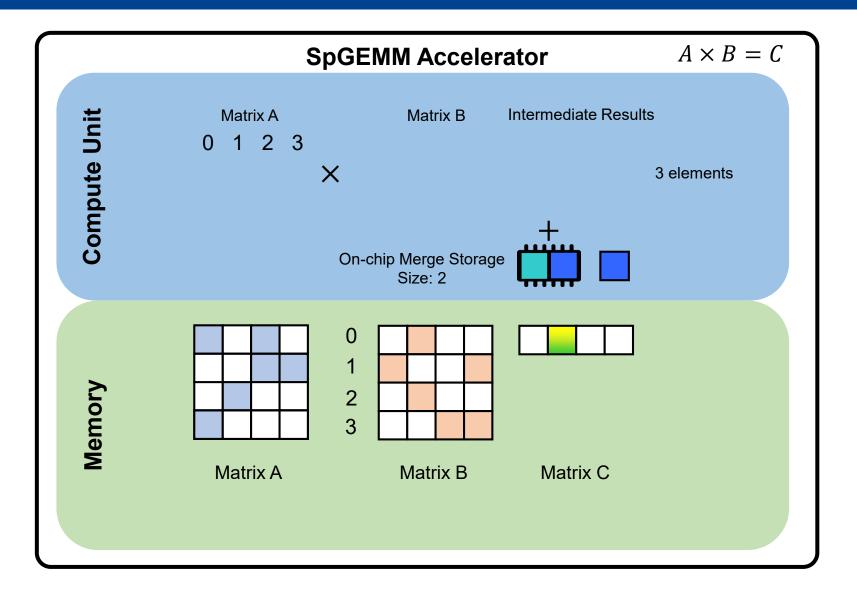


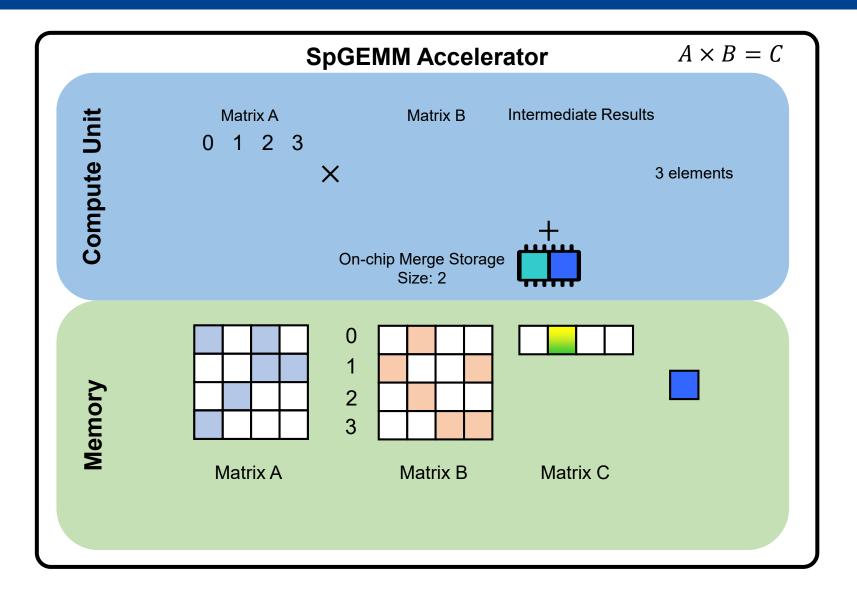


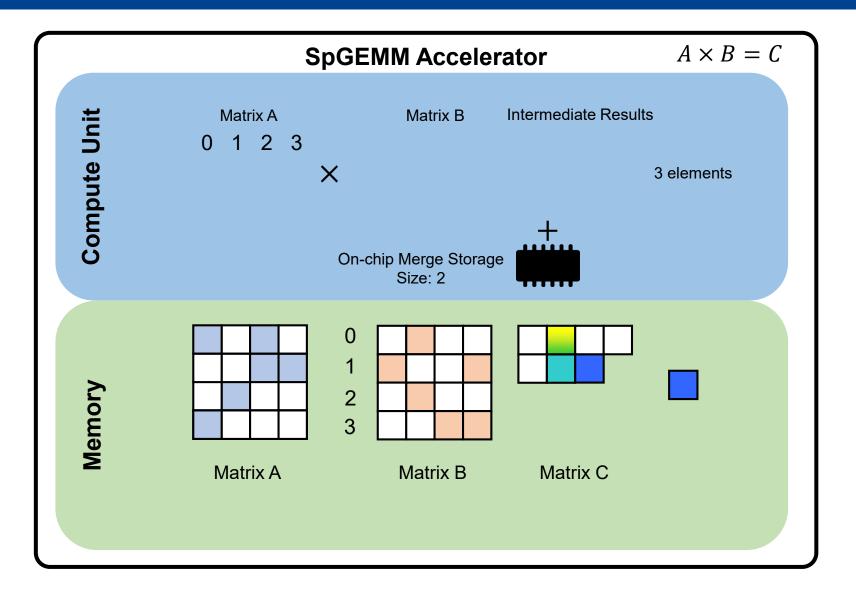


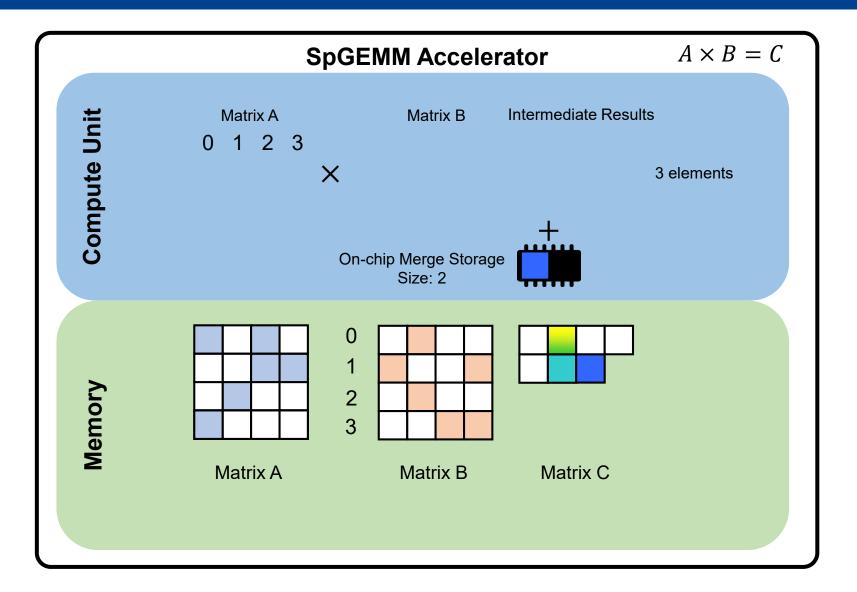


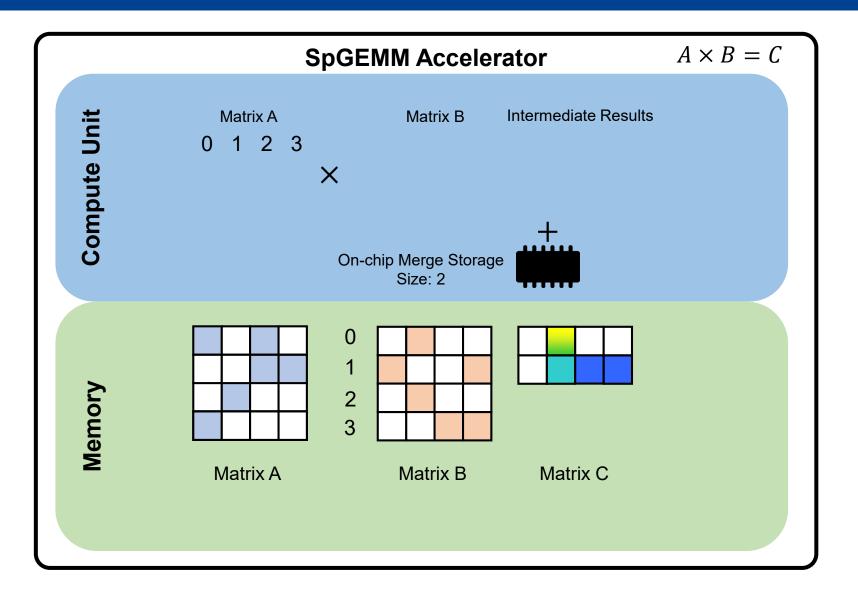


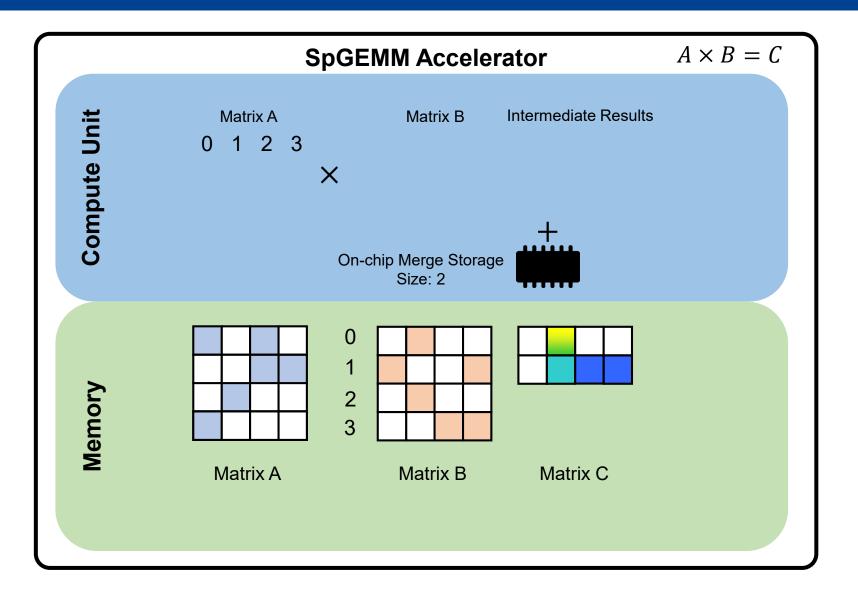


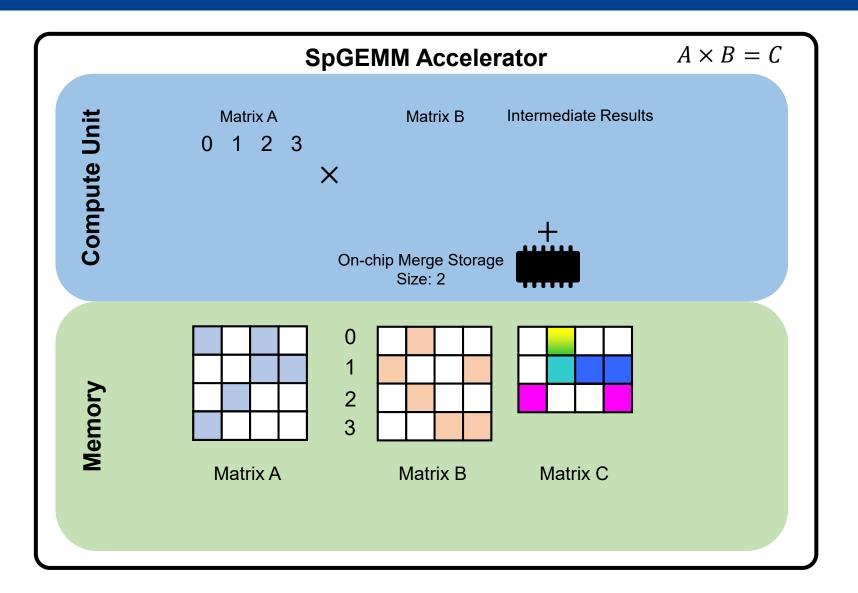


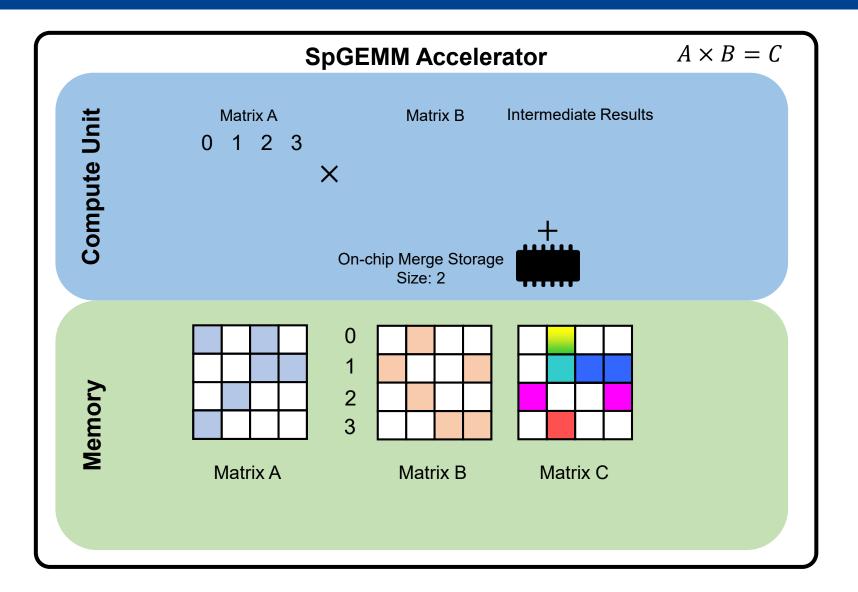


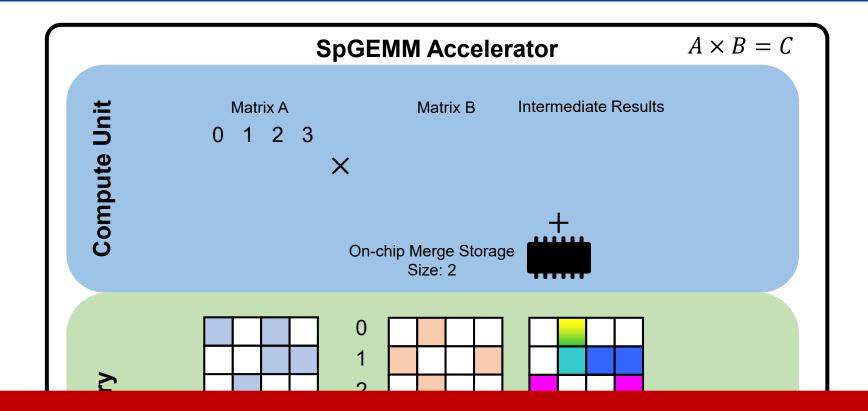








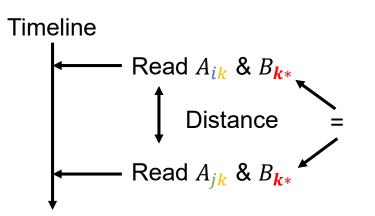


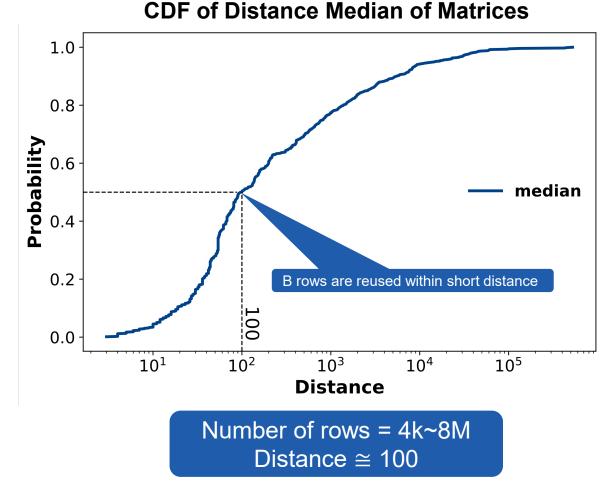


Opportunity: locality may exist for B accesses Challenge: on-chip merging storage is limited

Opportunity: Locality of Sparse Matrix

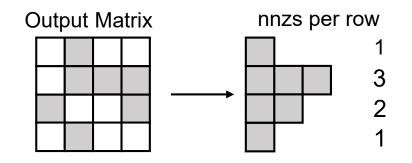
- Row-wise inner product
 - Repetitive B row fetching
 - Dependent to A's columns
- Reuse distance
 - The number of rows processed between two A rows, which require to access the same B row





Challenge: Variance in Row-wise Sparsity

- # of non-zeros (nnz) varies in each output row
- Memory fallback leads to performance drop
- Majority of output rows: nnzs/row < 64
 - On-chip storage will be underutilized without batching
- A few output rows: nnzs/row > 16k
 - Some rows cannot be fit in the on-chip merging storage



Size of output rows from 755 matrices



Design a memory efficient row-wise inner product accelerator

- Eliminates the memory bloating problem
- Exploit locality of sparse matrix

 \rightarrow Caching B with an improved replacement policy (adopted from P-OPT)

• Address variance in row-wise sparsity \rightarrow Row splitting & merging with output size approximation

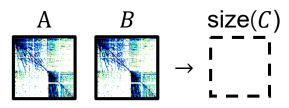
Design a memory efficient row-wise inner product accelerator

- Eliminates the memory bloating problem
- Exploit locality of sparse matrix
 - \rightarrow Caching B with an improved replacement policy (adopted from P-OPT)

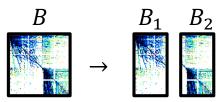
Inner product can be as fast as outer product, without memory bloating problem

Algorithm Overview

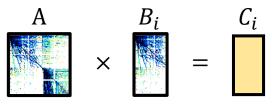
1. Pre-scan: finding upper bound size of output rows



2. Merge & Split B

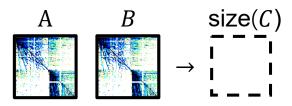


3. Perform $A \times B_i = C_i$



Algorithm Overview

1. Pre-scan: finding upper bound size of output rows



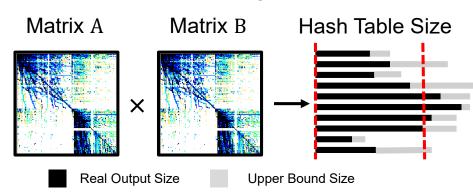
2. Merge & Split B

3. Perform $A \times B_i = C_i$

Output Size Approximation

- Identifying # of non-zeros is costly
 - Requires index matching
 - Same time complexity as SpGEMM only without value calculation

- Upper bound approximation
 - Fast and safe method to detect overflows
 - Counting # of products per row
 - Overestimation possible

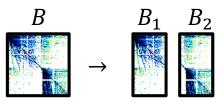


Pre-scanning step

Algorithm Overview

1. Pre-scan: finding upper bound size of output rows

2. Merge & Split B

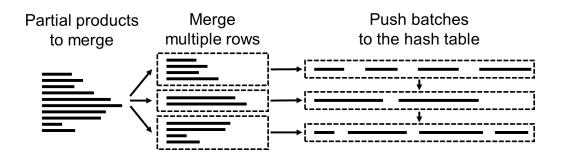


3. Perform $A \times B_i = C_i$

Row Merging & Splitting

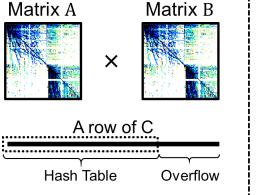
Underutilization: Row merging

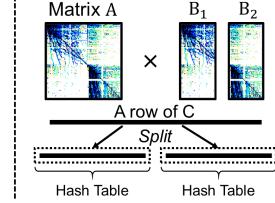
- Batching multiple small rows
- Enhancing parallelism on merge phase
- Maximizing on-chip storage utilization



Overflow: Row splitting

- Divide matrix B in column
- Making smaller output to fit in on-chip storage



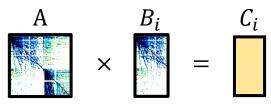


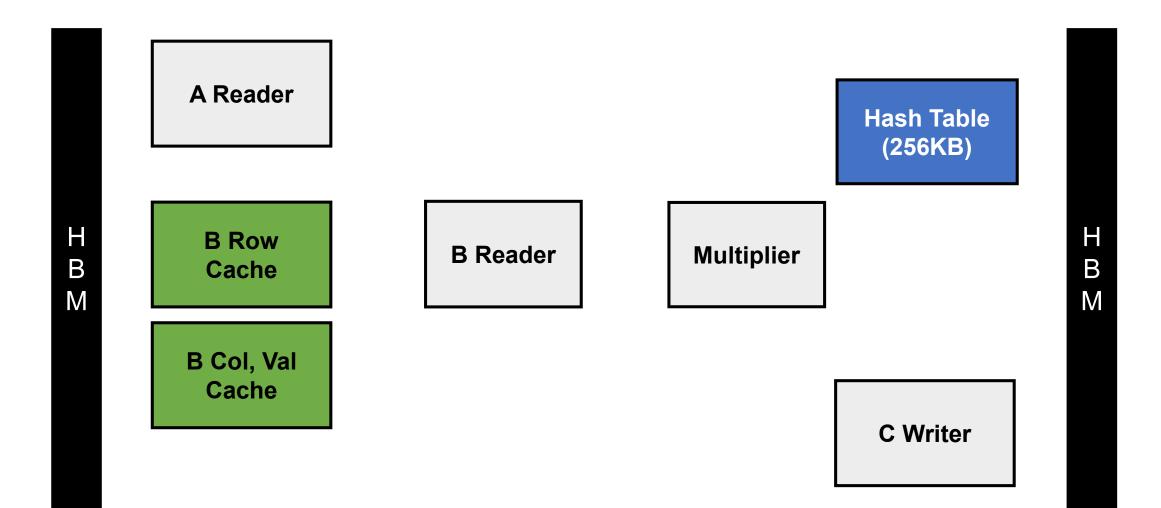
Algorithm Overview

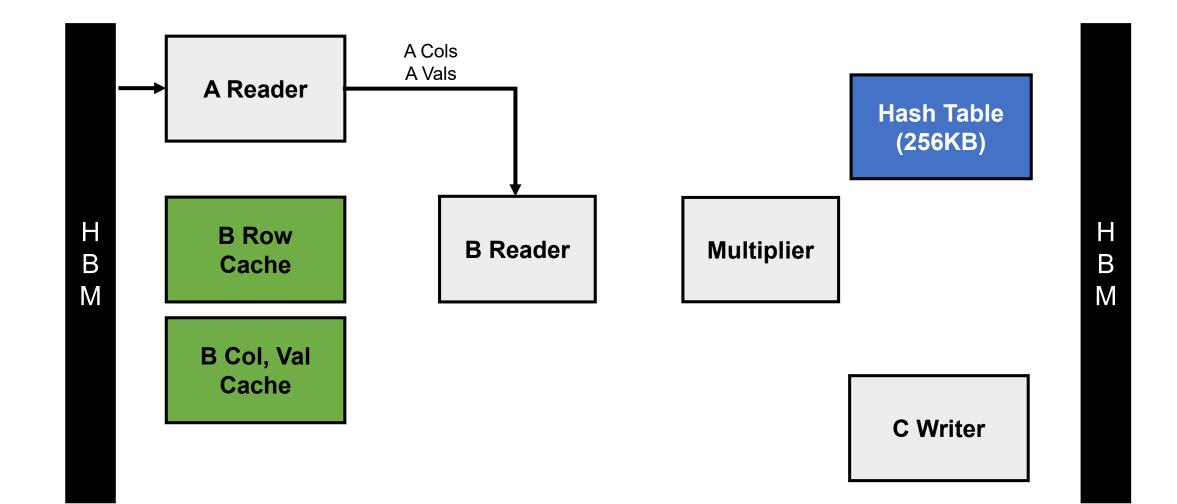
1. Pre-scan: finding upper bound size of output rows

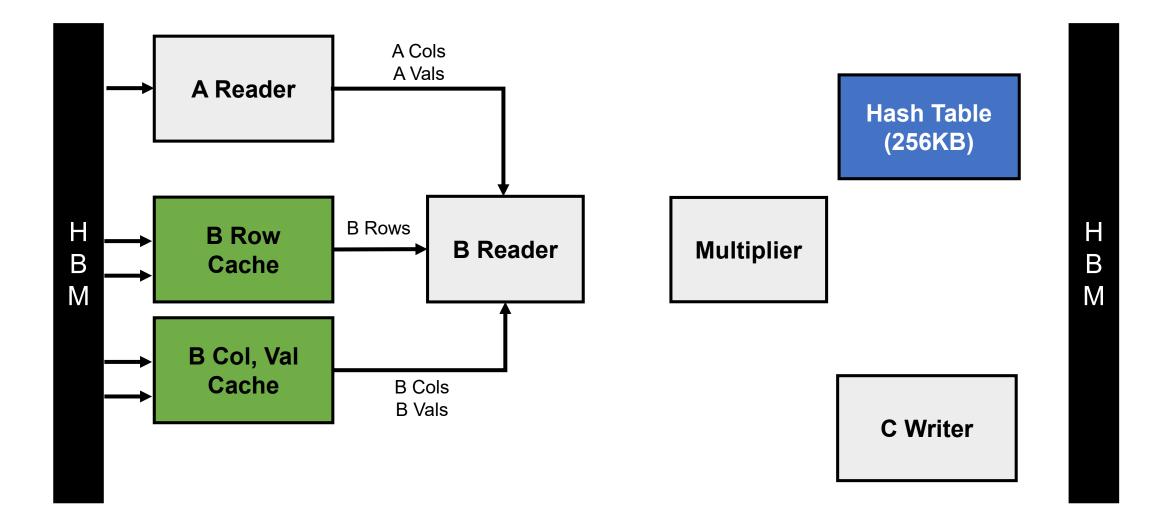
2. Merge & Split B

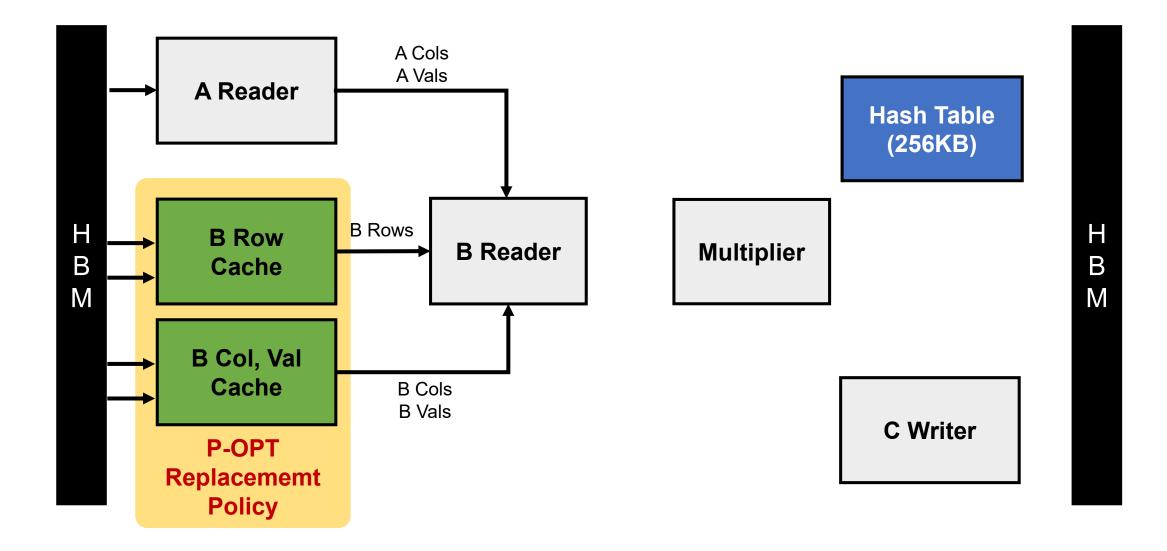
3. Perform $A \times B_i = C_i$

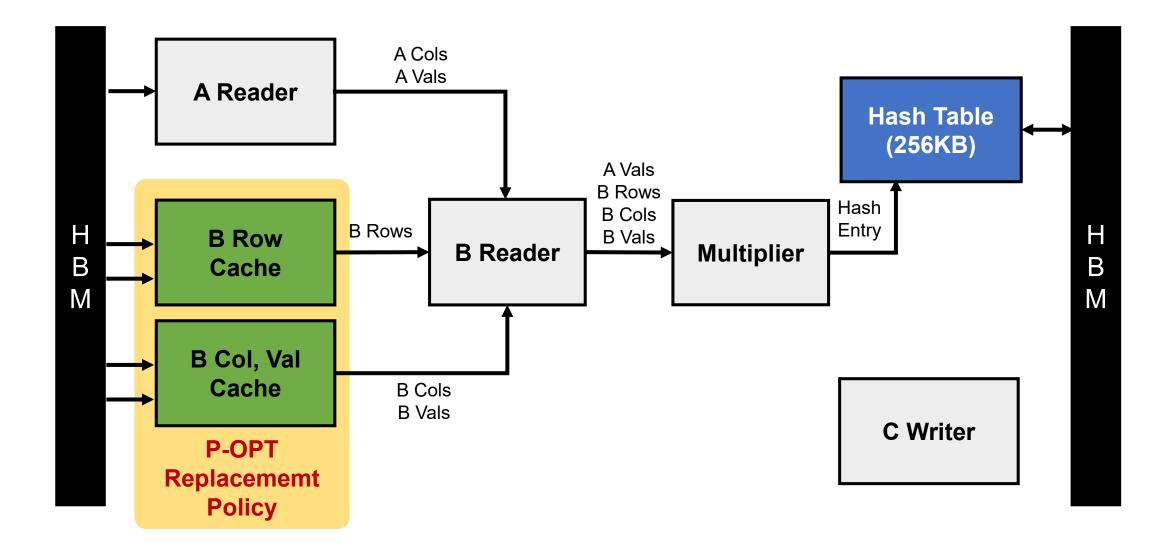


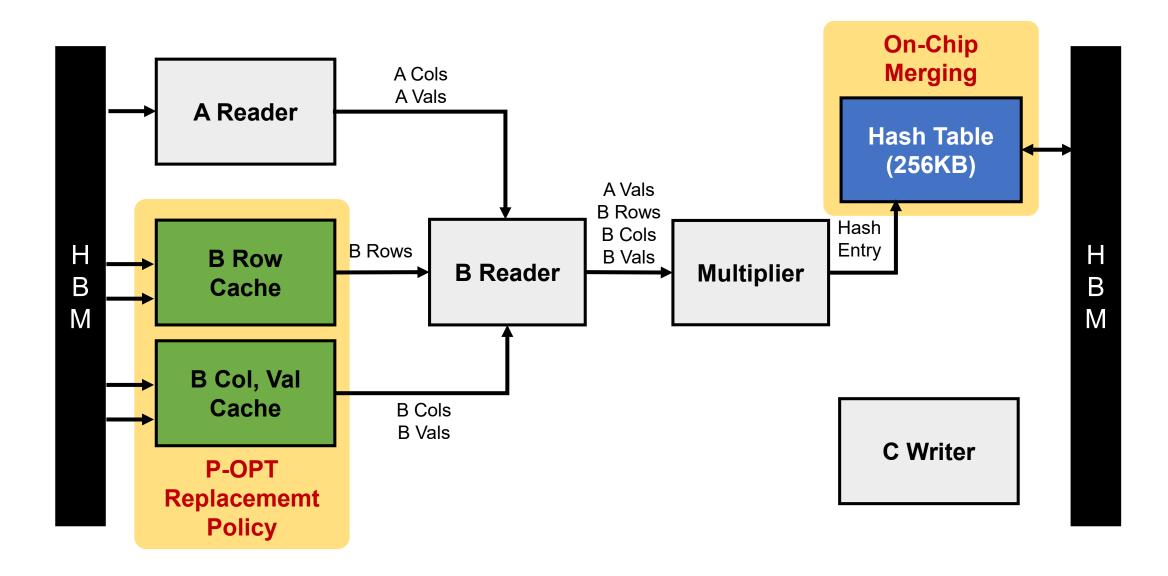


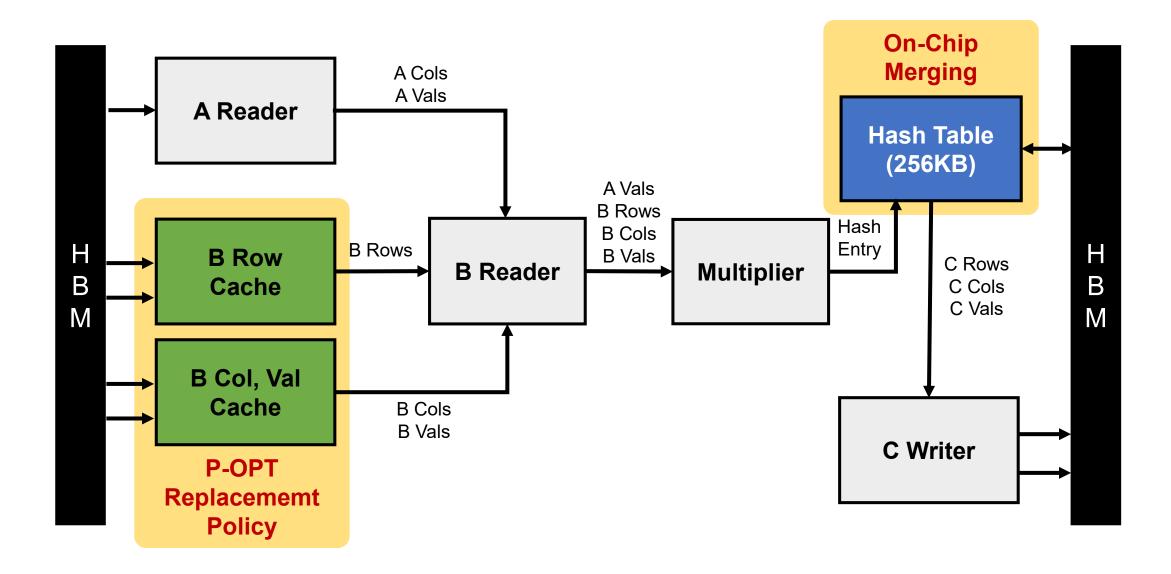








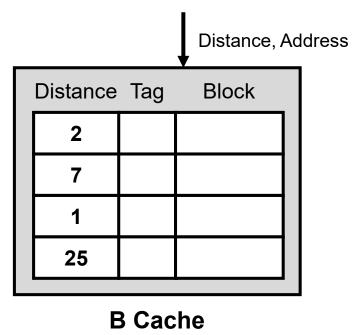




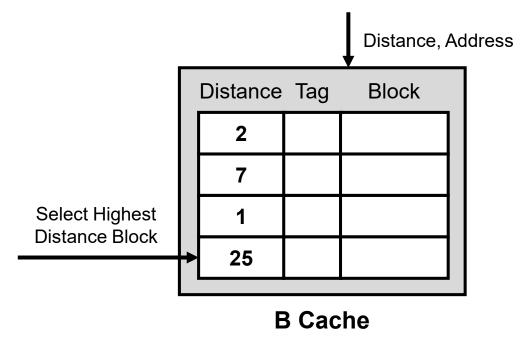
- Extract reuse distance from A column indices
- Store reuse distance values in cache
- Policy: evict a block with the highest distance value
 - High distance: not used for a long time

Distance Tag Block			
	2		
	7		
	1		
	25		
B Cache			

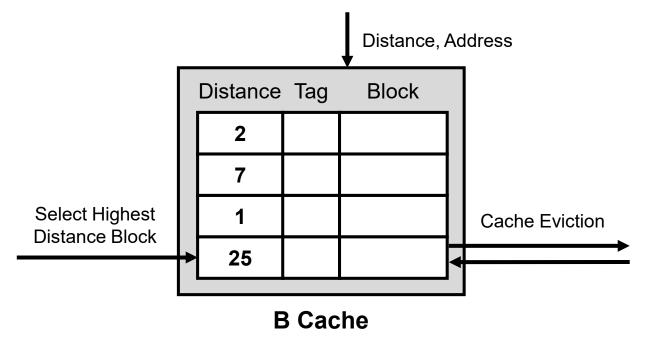
- Extract reuse distance from A column indices
- Store reuse distance values in cache
- Policy: evict a block with the highest distance value
 - High distance: not used for a long time



- Extract reuse distance from A column indices
- Store reuse distance values in cache
- Policy: evict a block with the highest distance value
 - High distance: not used for a long time



- Extract reuse distance from A column indices
- Store reuse distance values in cache
- Policy: evict a block with the highest distance value
 - High distance: not used for a long time



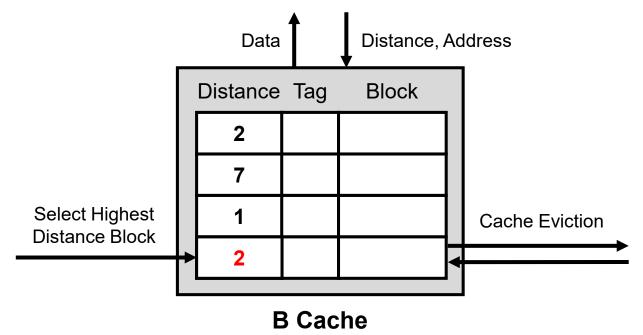
1. V. Balaji, N. Crago, A. Jaleel and B. Lucia, "P-OPT: Practical Optimal Cache Replacement for Graph Analytics," 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2021, pp. 668-681.

- Extract reuse distance from A column indices
- Store reuse distance values in cache
- Policy: evict a block with the highest distance value
 - High distance: not used for a long time



1. V. Balaji, N. Crago, A. Jaleel and B. Lucia, "P-OPT: Practical Optimal Cache Replacement for Graph Analytics," 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2021, pp. 668-681.

- Extract reuse distance from A column indices
- Store reuse distance values in cache
- Policy: evict a block with the highest distance value
 - High distance: not used for a long time



1. V. Balaji, N. Crago, A. Jaleel and B. Lucia, "P-OPT: Practical Optimal Cache Replacement for Graph Analytics," 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2021, pp. 668-681.

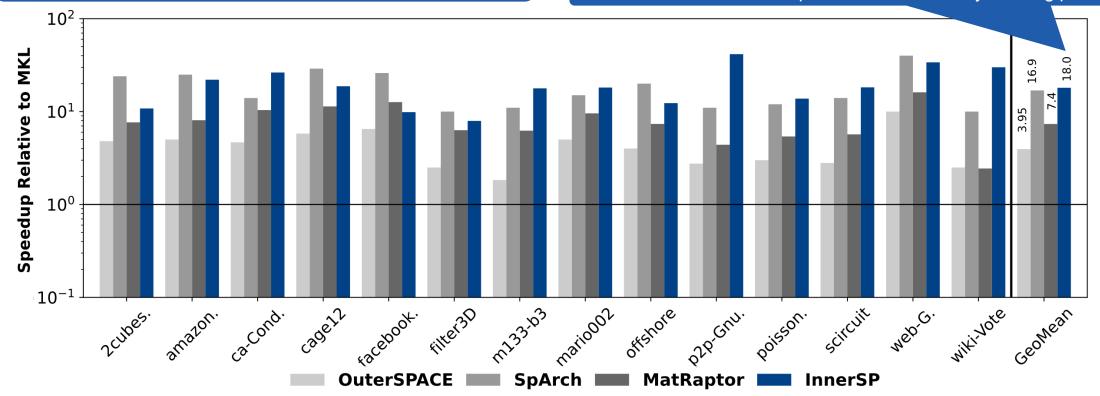
Experiment Environment

- Timing simulator + DRAMSim3 (HBM 128GB/s)
- Baseline: Intel MKL with Intel Core-i7 5930k
- Benchmarks
 - 14 square matrices that is evaluated from prior works
 - 755 square matrices from SuiteSparse Matrix Collection
- Comparison with prior works
 - Outer Product: OuterSPACE, SpArch
 - Row-wise Inner Product: MatRaptor

Performance Evaluation with Prior Works

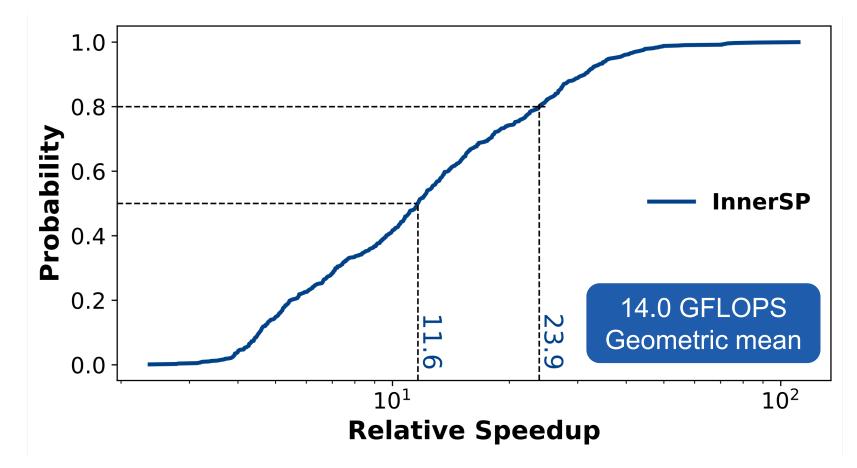
Relative Performance over Intel MKL: 18.0× Absolute Performance: 11.7 GFLOPS Geomean

Perf. boost of 6.8% from SpArch without memory bloating problem



Performance Evaluation with Intel MKL

CDF of Relative Speedup of InnerSP over Intel MKL on 755 matrices



Conclusion

- Outer product
 - Memory bloating problem to store partial results
- Row-wise inner product
 - Hard to handle variance of workloads with fixed on-chip storage
 - Wasting memory bandwidth by fetching inputs repetitively

InnerSP

- A high performance row-wise inner product SpGEMM accelerator
- Uses optimal cache replacement policy based on reuse distance
- Row merging/splitting for handling sparsity variance

Thank You