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Motivation



Why Hybrid Memory?

• Data-centric applications
• Requires high bandwidth, large capacity

• New memory techniques
• Advanced performance, but still suffer for cost

• Memory heterogeneity
• Disaggregated memory

4/24



Hybrid Memory

• Take advantages of various memory devices
• High bandwidth, large capacity, ...

• Managed by operating system
• Virtualization: Flexibility on memory management

CPU 
Cache

Hybrid Memory

Fast, Small
Memory Slow, Large Memory
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Hybrid Memory System

• Hotness-based data placement (migration)
• Design choice: page granularity

• Fine-grained[1]: Memory management efficiency
• Huge page[2]: Address translation efficiency

[1] Chou et al., “CAMEO: A Two-Level Memory Organization with Capacity of Main Memory and Flexibility of Hardware-Managed Cache”, MICRO’14
[2] Agarwal et al., “Thermostat: Application-transparent Page Management for Two-tiered Main Memory”, ASPLOS’17

6/24

Cold Pages

Hot Pages

Fast
Memory Slow Memory



Virtualized Hybrid Memory

• Conflicting objectives with page sizes
• Small: Avoids waste of fast memory
• Large: Reduces translation overhead

• Need reduction of data management cost
• Nimble hot page detection
• Efficient migration

7/24
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Fast Memory 
Efficiency

Small Page

Address Translation
Efficiency

Large Page

Virtualized Hybrid Memory

• Conflicting objectives with page sizes
• Small: Avoids waste of fast memory
• Large: Reduces translation overhead

• Need reduction of data management cost
• Nimble hot page detection
• Efficient migration

HW-SW cooperative two-level translation!
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Two-Level
Decoupled Address Translation



Decoupled Address Translation

• Adding one more virtualization layer
• Prior use case: compressed memory[1][2]
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Design Choice: Granularity

• Core-side translation: Page size
• Virtualized unit of memory management
• Reduction of translation costs is important
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Huge page is more efficient than fine-grained page!



Design Choice: Granularity

• Memory-side translation: Frame size
• Real unit of memory management
• Translation cost can also make impact
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Ideal (optimal) frame size depends on
workload characteristics!



Limitation of Fixed Frame Size

12/24



Limitation of Fixed Frame Size

• Wide range of variation on ideal frame sizes
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Limitation of Fixed Frame Size

• Wide range of variation on ideal frame sizes
• Performance gap between ideal and non-ideal
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Limitation of Fixed Frame Size

• Wide range of variation on ideal frame sizes
• Performance gap between ideal and non-ideal

Need dynamic frame size selection!
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Dynamic Frame Size Selection



Overview

• Flexible frame size among 5 candidates
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Architecture

• Shadow mem-TLB
• Hit Filter
• Frame Size Selector
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Architecture: Shadow mem-TLB
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• Estimates mem-TLB misses
• Negligible hardware overhead
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Architecture: Hit Filter

• Estimates fast memory hit rates
• Frame sampling + bloom filter
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Architecture: Frame Size Selector

• Calculate score from estimated hit rates
• Weighted sum of estimated hit rates

• Decide optimal frame size after an epoch
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Evaluation



Methodology

• Memory system: DDR4 (fast) – PCM (slow)
• Baseline: Conventional hybrid memory*
• Execution-driven simulation

• ZSim + DRAMSim2
• 14 Memory-intensive benchmarks

 Component  Configuration
 1024/512 entries per core (conv/two-level)
 4-way SA, miss latency 50 cycles

 mem-TLB  4096 entries, 8-way SA, miss latency 200 cycles
 512MB, 8 channels, DDR4-1600
 tCAS=11, tRCD=11, tRP=11, tRAS=28

 PCM  4 channels, read/write latency = 150/300ns

 core-TLB

 DRAM
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* Meswani et al., “Heterogeneous Memory Architectures: A HW/SW Approach for Mixing Die-stacked and Off-package Memories”, HPCA’15

Simulation Parameters


Sheet1

		 Component		 Configuration

		 core-TLB		 1024/512 entries per core (conv/two-level)

				 4-way SA, miss latency 50 cycles

		 mem-TLB		 4096 entries, 8-way SA, miss latency 200 cycles

		 DRAM		 512MB, 8 channels, DDR4-1600

				 tCAS=11, tRCD=11, tRP=11, tRAS=28

		 PCM		 4 channels, read/write latency = 150/300ns







Performance Evaluation

• Speedup vs. conventional, 4KB page: +23.7%
• vs. conventional, 2MB huge page: +15.3%
• vs. ideal frame size selection: ×0.98
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Analysis

• Fast memory hit rate improvement
• +82.9% of conventional, 4KB page
• ×0.94 of ideal frame size selection
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More Results on Paper

• core-TLB MPMI

• mem-TLB MPMI

• Multi-class application performance

• Strict fairness
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Conclusion

• Naive virtualized hybrid memory is inefficient
• Should handle conflicting objectives of page sizes

• Solution: HW-SW cooperative architecture
• Two-level decoupled address translation
• Dynamic frame size selection

• Shows significant performance improvement
• vs. conventional: +23.7% speedup
• vs. ideal: ×0.98 speedup

24/24


	Supporting Dynamic Translation Granularity�for Hybrid Memory Systems
	Contents
	Motivation
	Why Hybrid Memory?
	Hybrid Memory
	Hybrid Memory System
	Virtualized Hybrid Memory
	Virtualized Hybrid Memory
	Two-Level�Decoupled Address Translation
	Decoupled Address Translation
	Decoupled Address Translation
	Decoupled Address Translation
	Design Choice: Granularity
	Design Choice: Granularity
	Design Choice: Granularity
	Design Choice: Granularity
	Limitation of Fixed Frame Size
	Limitation of Fixed Frame Size
	Limitation of Fixed Frame Size
	Limitation of Fixed Frame Size
	Dynamic Frame Size Selection
	Overview
	Architecture
	Architecture: Shadow mem-TLB
	Architecture: Hit Filter
	Architecture: Frame Size Selector
	Evaluation
	Methodology
	Performance Evaluation
	Analysis
	More Results on Paper
	Conclusion

